Numerická integrace (kvadratura)
|
|
- Patrik Kašpar
- před 7 lety
- Počet zobrazení:
Transkript
1 Numeriká integrae (kvadratura) Úvod V jedné dimenzi jde o numeriký výpočet integrálu I = b a f(x) dx Tato úloha je ekvivalentní řešení počátečního problému pro obyčejnou difereniální rovnii (ODE) di dx = f(x) s podmínkou I(a) = 0 kdy se hledá I(b). Metody řešení ODE obsahují adaptivní volbu kroku a proto převedení na úlohu ODE je vhodné u funkí, které mají proměnné měřítko (např. integrae spektra s úzkými spektrálními čarami) Metody numeriké integrae: Integrae aproximované funke (kubiký spline, Čebyševův polynom) Klasiké kvadraturní vzore + případně Rombergova integrae Gaussovy kvadratury Integrae ve víe dimenzíh je samostatnou kapitolou. Ukážeme si následujíí přístupy: rozklad na opakované integrae v jedné proměnné integrál pomoí metody Monte Carlo
2 2 Klasiké kvadraturní vzore Uvažujeme ekvidistantní body x i f(x i ) = f i. = + (i )h, kde i =,..., N, a Základní formule přesný integrál pro polynomy do určitého stupně. uzavřené (obsahují krajní body) otevřené extrapolační používají body i + 2 Složené formule 2. Uzavřené Newton Cotesovy vzore Lihoběžníkové pravidlo Vzore x 2 2 f + 2] 2 f + O ( h 3 f ) je přesný pro polynomy do prvního stupně včetně. Chybu vzore můžeme odvodit pomoí rozkladu do Taylorovy řady x 2 f(x) dx = h f( ) + f ( ) x + f ( ) x d x = 0 = h 2 f + ( f + f ( )h + ) 2 2 f ( )h ] + }{{} f 2 + f ( ) Simpsonovo pravidlo h3 6 h3 4 } {{ } 2 f ( )h 3 = h 2 (f + f 2 ) + O ( h 3 f ) Je to tříbodový vzore konstruovaný pro polynom druhého stupně, ale je přesný i pro integrai polynomu třetího stupně x 3 3 f f 2 + 3] 3 f + O ( h 5 f (4)) 2
3 Simpsonovo 3/8 pravidlo Je to čtyřbodový vzore, přesný pro integrai polynomu třetího stupně x f f f ] 8 f + O ( h 5 f (4)) 2.2 Jiné typy jednoduhýh vzorů Otevřené Newton-Cotesovy formule Otevřené formule se nedají vhodně skládat vedle sebe nejde z nih sestavovat rozšířené formule. Například x 6 Extrapolační formule f f f ] 24 f 5 + O ( h 5 f (4)). Extrapolační formule se někdy hodí na okrajíh. Počítají integrál s pomoí bodů ležííh mimo interval. Jako příklad uvedeme x 2 f 2 + O ( h 2 f x f 2 3] 2 f + O ( h 3 f ). Integrae s polovičními body ) Příkladem (často užívaným) je obdélníkové pravidlo. Dá se dobře skládat a složený vzore se používá při nemožnosti výpočtu funke v některém z okrajovýh bodů. x2 f 3 + O ( f h 3). 2 3
4 2.3 Složené vzore K výpočtu integrálu přes zadaný interval není vhodné při rovnoměrné síti použít jeden mnohabodový vzore, přesný pro polynomy až do vysokého stupně. Lepší je rozdělit interval do mnoha krátkýh podintervalů a ve použít vzore relativně nízkého řádu. Součtu těhto integrálů se říká složený vzore. Složené lihoběžníkové pravidlo 2 f + f 2 + f f N + ] 2 f N + O Složené Simpsonovo pravidlo (b a)3 f N 2 + O 3 f f f f f N f N + 3 f N ] ( N 4 ) Ve střídání koefiientů není žádné magie, je to spíše nevýhodou. Rozšířené Simpsonovo pravidlo ale lépe aproximuje okraje než lihoběžníkové pravidlo. Vzore 4. řádu přesnosti k konstantními koefiienty uprostřed intervalu lze získat následovně. Alternativa 2 Simpsonova + 2 ( začátek 3 8 Simpsonova + Simpsonovo)] Složené obdélníkové pravidlo 7 48 f f f f 4 + f f 43 N 3 48 f N f N + 7 ] ( ) 48 f N + O N 4 ( ) f 3/2 + f 5/ f N /2 + O(h 2 ) 4
5 2.4 Praktiká implementae složeného lihoběžníkového pravidla. vol n r r r b b r b r b r r 2. vol n 3. vol n 4. vol n Podintervaly při jednotlivýh voláníh lihoběžníkového pravidla Postup přidávání bodů - hodnoty proměnnýh NV, NS, N a ND: volání NV počet subintervalů NS počet bodů N počet přidanýh bodů ND Pro začátek integrae NV =, je algoritmus Int := (b - a) / 2 * (f(a) + f(b)); ND := ; Pro volání NV = k > je algoritmus HD := (b - a) / ND; SUM := 0; x := a * HD; for j := to ND do begin SUM := SUM + f(x); x := x + HD end; Int := 0.5 * (Int + (b - a) * SUM / ND); ND := 2 * ND; Postupné zpřesňování při jednotlivýh voláníh odpovídá půlení podintervalů. Přitom se využije předhozíh bodů. 5
6 Odhad hyby získáme porovnáním výsledků pro h a 2h. I h = I + a h 2 + b h 4 + O(h 6 ) I 2h = I + 4 a h b h 4 + O(h 6 ), kde konstanty a, b sie neznáme, ale jsou shodné v obou vztazíh. Chybu výpočtu s krokem h lze tedy odhadnout ε (I h ) a h 2 I 2h I h 3 Odhad hyby pro rozšířené lihoběžníkové pravidlo. Chyba je funkí jen sudýh monin /N. Chyba je dána okrajem = h 2 f + f 2 + f f N + ] 2 f N B 2h 2 (f N f 2! )... B 2kh 2k (2k)! ( f (2k ) N f (2k ) )... V předhozím vztahu jsou B k Bernoulliova čísla, pro která platí B 0 =, B 2 = /6, B 4 = /30, B 6 = /42, B 8 = /30, B 0 = 5/66 a B 2 = 69/2730. Rozvoj nemusí konvergovat, jde o asymptotiký rozvoj. Chyby rozvoje můžeme odhadnout shora dvojnásobkem absolutní hodnoty nejnižšího zanedbaného členu. Zpřesnění výsledku I = 4 3 I h 3 I 2h + O(h 4 ) Výsledek je zpřesněn ze dvou následujííh výsledků integrační proedury. Tento výsledek je identiký se složeným Simpsonovým pravidlem. 6
7 3 Rombergova integrae Výsledek numeriké integrae lze hápat jako funki veličiny h 2. Správná hodnota integrálu je vlastně hodnota funke pro h = 0. Tu ovšem nemůžeme spočítat přímo. Můžeme ji ovšem získat přibližně pomoí extrapolae výsledků spočítanýh pro různá h 2. Provedeme polynomiální extrapolai na h 2 = 0. Složené lihoběžníkové pravidlo mělo přesnost 2.řádu, při použití 2 výsledků jsem získal přesnost 4. řádu, ze 3 výsledků přesnost 6. řádu atd. Ze 7 výsledků lze získat přesnost 4. řádu, tedy velmi vysoký stupeň přesnosti. Větší počet bodů není vhodný použít vzhledem k vlastnostem polynomiální extrapolae (interpolae). Rombergova metoda často podstatně sníží počet bodů, ve kterýh musíme počítat funki při zadané přesnosti integrae. 4 Integrály se singularitami. Na okraji má f(x) konečnou limitu, ale nelze tam f(x) přímo počítat ( sin x x v bodě x = 0). 2. Integrál má okraj v bodeh + nebo. 3. Integrabilní singularita na okraji. 4. Integrabilní singularita ve známém bodě uprostřed. 5. Integrabilní singularita v neznámém bodě uprostřed. obyčejnou difereniální rovnii (ODE). Řešíme vždy jako Pozn. Neexistujíí nebo nekonečný integrál neřešíme, protože je to nekorektní úloha. 7
8 . případ - funki nelze počítat na okraji Použijeme složené obdélníkové pravidlo ] f 3 + f f 2 2 n B 2kh 2k (2k)! ( 2 2k+ ) ( f (2k ) N f (2k ) ) +... Při půlení podintervalů nelze využít předhozí body. Proto užijeme h/3, pak je implementae obdobná jako u lihoběžníkového pravidla. I zde můžeme použít Rombergovu metodu, která provádí extrapolai integrálu na h 2 = 0. Integrál s nekonečnými mezemi Integrál transformujeme na integrál s konečnými mezemi a pro ten užijeme složené obdélníkové pravidlo. Například po substitui t = /x dostaneme b a f(x) dx = a b ( ) t f 2 t dt, Tuto substitui lze použít pokud interval integrae neobsahuje 0, jinak integrál rozděĺıme na víe integrálů. Často integrály rozděĺıme + a = d a + + d funke v absolutní hodnotě klesala. tak, aby od bodu d integrovaná Integrál s integrabilní singularitou Transformae záleží na harakteru funke. Pokud f(x) x a (x a) γ, kde 0 γ <, provádíme transformai t = (x a) γ. Potom platí b a f(x) dx = γ (b a) γ 0 t γ γ ( f t γ ) + a dt 8
9 5 Gaussovy kvadratury Cheme spočítat integrál s minimálním počtem vyčíslení funke f(x). Voĺıme optimální polohu bodů x i a váhy jednotlivýh bodů w i. Gaussova metoda s použitím N + bodů dává přesný výsledek pro polynomy řádu 2N +, čili dvojnásobek řádu (přesnosti) integrae s ekvidistantním dělením. Řád metody se tak zvýší z N na 2N +. Polohy a váhy bodů jsou známy i pro integrae s některými vahami W (x). Jde o integrál b a W (x)f(x) dx N i=0 W if(x i ), kde funke f(x) by měla být hladká, relativně pomalu proměnná. Z Hermiteovy interpolae vyplývá, že body x i musí být vybrány tak, aby polynom ω N (x) = N (x x i ) i=0 byl ortogonální ke polynomům stupně nejvýše N ve skalárním součinu daném integrálem s příslušnou vahou. Body x i jsou tedy kořeny příslušného ortogonálního polynomu řádu N. Často se používají tyto polynomy: (a, b) W (x) Druh polynomů Rekurenční vztah (, ) Legendrovy P i+ = 2i+ i+ xp i i i+ P i (, ) x 2 Čebyševovy T i+ = 2xT i T i (0, + ) x e x Laguerrovy ( = 0,,...) L i+ = 2i++ x i+ L i i+ i+ L i (, + ) e x2 Hermiteovy H i+ = 2xH i 2iH i Mluvíme pak o Gauss-Legendreově, Gauss-Čebyševově... integrai. Tabulky vah a x i najdeme v literatuře, například: Abramowitz, M. A., Stegun, I. A., Handbook of Mathematial Funtions. Příslušné proedury najdeme v numerikýh knihovnáh. 9
10 6 Víedimenzionální integrály. Počet bodů, kde počítáme funki roste v N dimenzíh s N-tou moninou. Pokud tedy máme v jedné dimenzi 30 bodů, ve třeh dimenzíh již počítáme funki v 30 3 = bodeh. 2. Hranie je (N ) dimenzionální nadploha. Přehod k jednodimenzionálním (D) integrálům může být obtížný. Pro hledání mezí je třeba řešit nelineární rovnie. Metody výpočtu víedimenzionálníh integrálů jsou. Snížení dimenze pomoí symetrie, např. u integrae sfériky symetriké funke přes kouli. 2. Posloupnost opakovanýh jednodimenzionálníh integraí Oblast, přes kterou integrujeme, musí mít jednoduhou hranii a funke musí být hladká. Metodě dáme přednost, pokud požadujeme vysokou přesnost. Pokud víme, kde má funke v dané oblasti ostrá maxima, je potřeba oblast rozdělit. Maxima musíme najít, jinak je výpočet integrálu beznadějný. 3. Metoda Monte Carlo Používá se, pokud má oblast složitou hranii. Výhodná je zejména pro impliitně zadanou integrační oblast (např. vztahem g( x) < 0). Integrand může osilovat a mít nespojitosti, ale ne úzká maxima. 0
11 6. Integrae metodou Monte Carlo Pokud funki f vypočteme v N náhodnýh bodeh v integrační oblasti, pak f( x) dv V f ± V (f 2 ) ( ) 2 f N kde V je objem integrační oblasti a f označuje aritmetiký průměr funkčníh hodnot. Přesnost integrálu metodou Monte Carlo je tedy N /2. V V' Integrae metodou Monte Carlo Při výpočtu integrálu metodou Monte Carlo uzavřeme integrační oblast V do o nejmenší oblasti se známým objemem V, ve které lze snadno generovat náhodné body. Zavedeme funki f( x) = 0 x V f( x) x V definovanou na oblasti V. Vygenerujeme N náhodnýh bodů ve V a integrál vypočteme ze vzore I V N N i= f( x i )
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Integrace. Numerické metody 7. května FJFI ČVUT v Praze
Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál
Numerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 016-017 ( ) Numerické metody a statistika 016-017 1 / Numerické integrování ( ) Numerické metody a statistika 016-017 / Geometrický význam integrálu
Čebyševovy aproximace
Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
EKONOMETRIE 10. přednáška Modely zpožděných proměnných
EKONOMERIE 10. přednáška Modely zpožděnýh proměnnýh Časové posuny mezi působením určitýh faktorů (vyvolány např. informačními, rozhodovaími, instituionálními a tehnologikými důvody). Setrvačnost ve vývoji
Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze
Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
1 Gaussova kvadratura
Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro
Numerické řešení diferenciálních rovnic
Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních
Numerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
MATLAB a numerické metody
MATLAB a numerické metod MATLAB je velmi vhodný nástroj pro numerické výpočt mnoho problémů je již vřešeno (knihovní funkce nebo Toolbo), jiné si můžeme naprogramovat sami. Budeme se zabývat některými
Pseudospektrální metody
Pseudospektrální metody Obecně: založeny na rozvoji do bázových funkcí s globálním nosičem řešení diferenciální rovnice aproximuje sumou kde jsou např. Čebyševovy polynomy nebo trigonometrické funkce tyto
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Typy příkladů na písemnou část zkoušky 2NU a vzorová řešení (doc. Martišek 2017)
Typy příkladů na písemnou část zkoušky NU a vzorová řešení (doc. Martišek 07). Vhodnou iterační metodou (tj. metodou se zaručenou konvergencí) řešte soustavu: x +x +4x 3 = 3.5 x 3x +x 3 =.5 x +x +x 3 =.5
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
Numerická integrace a derivace
co byste měli umět po dnešní lekci: integrovat funkce různými metodami (lichoběžníkové pravidlo, Simpson,..) počítat vícenásobné integrály počítat integrály podél křivky a integrály komplexních funkcí
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 21 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 21 Řešíme následující úlohu: differencovatelnou funkci f : R R známe jen v konečném počtu bodů x 0,
f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady
Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.
řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky
řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden
Nelineární rovnice. Numerické metody 6. května FJFI ČVUT v Praze
Nelineární rovnice Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Ohraničení kořene Hledání kořene Soustava Programy 1 Úvod Úvod - Úloha Hledáme bod x, ve kterém je splněno pro zadanou funkci
METODA PŮLENÍ INTERVALU (METODA BISEKCE) METODA PROSTÉ ITERACE NEWTONOVA METODA
2-3. Metoda bisekce, met. prosté iterace, Newtonova metoda pro řešení f(x) = 0. Kateřina Konečná/ 1 ITERAČNÍ METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC - řešení nelineární rovnice f(x) = 0, - separace kořenů =
Integrace funkcí více proměnných, numerické metody
Matematika III 6. přednáška Integrace funkcí více proměnných, numerické metody Michal Bulant Masarykova univerzita Fakulta informatiky 27. 10. 2010 Obsah přednášky 1 Literatura 2 Integrální počet více
Numerické metody 6. května FJFI ČVUT v Praze
Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné
Konvergence kuncova/
Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu
Monte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel.
Monte Carlo Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Typy MC simulací a) MC integrace b) Geometrické MC c) Termodynamické MC d) Modelování vývoje na strukturální
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
Numerické metody a programování. Lekce 7
Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
Aproximace funkcí. Polynom Φ m (x) = c 0 + c 1 x + c 2 x c m x m. Φ m (x) = c 0 g 0 (x) + c 1 g 1 (x) + c 2 g 2 (x) +...
Aproximace funkcí 1 Úvod Aproximace funkce - výpočet funkčních hodnot nejbližší (v nějakém smyslu) funkce v určité třídě funkcí (funkce s nějakými neznámými parametry) Příklady funkcí používaných pro aproximaci
, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.
Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení
Semestrální písemka BMA3 - termín varianta A13 vzorové řešení
Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň
Numerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
Numerické integrace některých nediferencovatelných funkcí
Numerické integrace některých nediferencovatelných funkcí Ústav matematiky a biomatematiky Přírodovědecká fakulta Jihočeské univerzity v Českých Budějovicích 2. prosince 2014 Školitel: doc. Dr. rer. nat.
Numerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
f(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0
KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že
Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Numerická integrace. Matematické algoritmy (11MAG) Jan Přikryl. 10. přednáška 11MAG pondělí 7. prosince verze: :54
Numerická integrace Matematické algoritmy (11MAG) Jan Přikryl 10. přednáška 11MAG pondělí 7. prosince 014 verze:014-1-07 3:54 Obsah 1 Numerická integrace 1.1 Formulace úlohy....................................
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující
Řešení nelineárních rovnic
Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS
MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Bakalářská práce BRNO 13 ZUZANA NĚMEČKOVÁ MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Extrapolační
, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
Numerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
Základy matematiky pro FEK
Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních
Diferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný
Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Moderní numerické metody
Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
Určení počátku šikmého pole řetězovky
2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je
Příklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
Numerické metody zpracování výsledků
Numerické metody zpracování výsledků Měření fyzikální veličiny provádíme obvykle tak, že měříme hodnoty y jedné fyzikální veličiny při určitých hodnotách x druhé veličiny, na které měřená veličina závisí.
Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních
Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad
Hammingův odhad koule, objem koule perfektní kód perfektní kódy triviální, Hammingův, Golayův váhový polynom výpočet Hammingův kód H 3 Golayův kód G 23 obecně příklad ternární kód Tvrzení: Dán binární
Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0
Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +
1 Diference a diferenční rovnice
1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá.
Přílad 1. Řešte v R rovnici x 4x + x 4 0. Výslede vypočtěte s přesností alespoň 0,07. 1) Reálné ořeny rovnice budou ležet v intervalu ( 5,5), protože největší z oeficientů polynomu bez ohledu na znaméno
úloh pro ODR jednokrokové metody
Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
4 Integrální počet funkcí více reálných proměnných
Dvojné integrály - 61-4 ntegrální počet funkcí více reálných proměnných 4.1 Dvojné a dvojnásobné integrály Dvojné a dvojnásobné integrály na intervalech z Pod uzavřeným intervalem z rozumíme kartézský
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda.
Úvod Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Mnoho technických problémů vede na řešení matematických úloh, které se následně převedou na úlohy řešení soustav nelineárních rovnic
Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali
NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro
Řešení diferenciálních rovnic
Projekt M3 Řešení diferenciálních rovnic 1. Zadání A. Stanovte řešení dané diferenciální rovnice popřípadě soustavy rovnic. i) Pro úlohy M3.1 až M3.12: uveďte matematický popis použité metody sestavte
Posloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
3 Bodové odhady a jejich vlastnosti
3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.
Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná
Zimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.
A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin
Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je
74 Příloha A Funkce Γ(z) Úvod Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je nesporně funkce Γ(z). Její důležitost se vyrovná exponenciální funkci i funkcím goniometrickým.
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Dvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
metoda Regula Falsi 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda Regula Falsi Michal Čihák 23. října 2012 Metoda Regula Falsi hybridní metoda je kombinací metody sečen a metody půlení intervalů předpokladem je (podobně
Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.
Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.