úloh pro ODR jednokrokové metody

Rozměr: px
Začít zobrazení ze stránky:

Download "úloh pro ODR jednokrokové metody"

Transkript

1 Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat jen velmi malou skupinu počátečních úloh pro ODR. Proto je tak důležité numerické řešení. Princip: Základem metod je diskretizace proměnných. Přibližné řešení se nekonstruuje jako spojitá funkce, ale nagenerujeme body,,,... a určujeme čísla y, y, y,..., která aproimují y( ), y( ), y( ),.... Poznámka: Body sítě,,,... nemusí být ekvidistantní: i+ = i + h i. Platí-li: h i = h i mluvíme o metodě s konstantním krokem (ekvidistantní síť) Neplatí-li: h i = h i mluvíme o metodě s proměnným krokem Poznámka: Aproimace y n hodnoty přesného řešení y( n ) v bodě n se počítá z hodnot přibližného řešení v předchozích uzlech. Počítáme-li y n+ pouze pomocí hodnoty y n mluvíme o jednokrokové metodě. Počítáme-li y n+ pomocí více předchozích hodnot y n, y n,... mluvíme o vícekrokové metodě.

2 Jednokrokové metody Nejjednodušší metodou je Eulerova metoda. Princip: y... je dáno (počáteční podmínka) y... počítáme etrapolací z hodnoty y, přičemž se na intervalu, řešení aproimuje přímkou, která prochází bodem [, y ] a má směrnici y = f(, y ). Ta má rovnici y = y + ( )f(, y ). Tj. pro dostáváme: y = y + ( ) }{{} h f(, y ). Obecně dostaneme rekurentní vztah: Geometricky: y n+ = y n + h n f( n, y n ), n =,,,... 6 y přesné řešení... y() y( ) y( ) y y( ) y y( ) y y y 6 7 8

3 Poznámky:. Eulerovu metodu můžeme chápat také tak, že hodnotu y( n+ ) = y( n + h n ) aproimujeme pomocí Taylorova polynomu stupně pro funkci y v bodě n : y( n+ ) y( n ) + h n y ( n ) = y( n ) + h n f( n, y( n )).. Také ji lze chápat tak, že diferenciální rovnici y = f(, y) nahradíme diferenční rovnicí y n+ y n h n = f( n, y n ) n =,,,...

4 Příklad: Řešte úlohu y = y, y() = Řešení: Použijeme rekurentní vztah: na intervalu ;,6 s konstantními kroky h =, a h =,. (Přesné řešení: y() = e + ). y n+ = y n + h f( n, y n ). h =, h =, n přesné {}}{ y( n ) y n e n y n e n,,,,,,,9,9,,,87,8,7,8,7,,78,78,,,7,68,6,7,9,,7,68,,6,698,6,7,66,. y... přesné řešení... řešení pro h =,... řešení pro h =, Poznámka: ) Vidíme, že je chyba úměrná h, ) Chyba s rostoucím vzrůstá.

5 Obecná jednokroková metoda Eulerova metoda je sice velmi jednoduchá, ale k dosažení určité přesnosti musíme používat velmi malé kroky h i. Chceme-li jednokrokovou metodu vyššího řádu, musíme se zříci linearity, tj. y n+ = y n + \h n Φ( n, y n, h n, f) n =,,,... Metody Taylorova typu: Hodnotu y( n+ ) budeme aproimovat pomocí Taylorova rozvoje vyššího řádu (. řádu = Eulerova metoda), tj. y( n+ ) = y( n + h n ) = y( n ) + h n y ( n ) + h n! y ( n ) hp n p! y(p) ( n ) () Derivace y v bodě n lze určit postupným derivováním funkce f. y = f(, y()) y = f + f y y }{{} =f(,y()) ( f = }{{} f + f y }{{} f y. dy ) }{{} d y Obecně lze odvodit rekurenci: y = f(, y()) y (r+) = f (r) (, y()) = f (r ) (, y()) + f y (r ) (, y()) f(, y()) r =,,... () Zbývá jen dosadit () za derivace v ().

6 Příklad: Odvoďte metodu Taylorova typu.řádu pro řešení úlohy: y = y, y() = na intervalu ;, 6 s konstantním krokem h =,. (Přesné řešení: y() = e + ). Řešení: f(, y) = y f (, y) = f + f y f = + ( ) f(, y) = + y. Dostáváme rekurentní vztah: y n+ = y n + h n ( n y n ) + h n( n + y n ) n přesné {}}{ y( n ) y n h( n y n ) h ( n + y n ) e n,, -,,,,,87,8 -,8, -,,,7,7 -,69,7 -,,6,698,7 -, Poznámka: Vidíme, že metoda Taylorova typu. řádu pro h =, dává přesnější výsledky než Eulerova metoda s h =,.

7 Metody Runge-Kuttova typu Univerzálnější metody než metody Taylorova typu. Vychází také z Taylorova polynomu, ale nepoužívá se ho přímo, aby nebylo nutné eplicitně vyjadřovat derivace funkce f = f(, y()) a počítat jejich hodnoty. Hledaná aproimace je kombinací několika hodnot funkce f vypočítaných v několika strategicky volených bodech (, y) na intervalu n, n+. Poznámka: Těchto metod je velké množství! Ukážeme si odvození dvou metod tohoto typu s geometrickou interpretací. Použijeme následující úvahy: 6 y M P M Věta: Nechť oblouk M M je částí paraboly. Potom platí:. Tečna v bodě P je rovnoběžná s tětivou M M.. Směrnice tětivy M M je aritmetickým průměrem směrnic tečen v M a M.

8 Důkaz: Rovnice paraboly (polynomu.stupně): y b = c( a) 6 y y b = c( a) y = c( a) + b y = c( a) b a 6 8. Směrnice tečny v bodě P : Směrnice tětivy M M je: y ( + ) = c( + a) = c( + a) y( ) y( ) = c( a) + b c( a) b = = c ac + a c + b c + ac a c b = ( = c ) a( ) = c( + a).. Směrnice tečny v bodě M je: y ( ) = c( a) Směrnice tečny v bodě M je: y ( ) = c( a) Jejich aritmetický průměr: y ( ) + y ( ) = c( a) + c( a) = = c( a + a) = c( + a).

9 Nyní použijeme vlastnost ) Známe souřadnice bodu M. Jestliže bychom znali y-souřadnici bodu P, pak stačí udělat tečnu a bodem M vést rovnoběžku a dostaneme y-souřadnici bodu M. My ale y-souřadnici bodu P neznáme (obecně funkce y = y() nemusí být parabola, to je jen naše aproimace), takže ji vyjádříme přibližně. Bod P nahradíme bodem P, který má stejnou -ovou souřadnici a leží na tečně k M. 6 y P P M P má souřadnice: + h, y + h f(, y ) }{{} y ( ) M Tečna v bodě P má směrnici: y ( + h ), tj. y ( + h )= f( + h, y + h k {}}{ f(, y )). Stejnou směrnici by však měla mít i tětiva M M souřadnice bodu M jsou: = + h y = y + h Tyto vztahy lze přepsat do tvaru (obecně) k {}}{ y ( + h ) k = f( n, y n ) k = f( n + h n, y n + h n k ) Této metodě se říká modifikovaná Eulerova metoda. y n+ = y n + h n k

10 Nyní použijeme vlastnost ) Známe souřadnice bodu M. Protože neznáme y-souřadnici bodu M, nahradíme ho bodem M, který má stejnou -souřadnici a leží na tečně procházející bodem M y M M M má souřadnice: ozn. = k {}}{ + h }{{, y } + h f(, y ) = } {{ } =y ( ) M Směrnice tečny v M je: ozn. = k {}}{ f( + h, y + h f(, y )) Bod M dostaneme z podmínky, že směrnice tětivy M M je aritmetickým průměrem směrnic tečen v M a M, tj. M má souřadnice: = + h y = y + h (k + k ) Obecně: k = f( n, y n ) k = f( n + h n, y n + h n k ) y n+ = y n + h n (k + k ) Této metodě se říká Heunova metoda Poznámka: Obě tyto metody jsou.řádu (aproimovali jsme parabolou). Poznámka: Nejvíce se používá tzv. klasická Runge-Kuttova metoda, která je. řádu.

11 Numerické metody pro řešení počátečních úloh pro ODR vícekrokové metody Myšlenka: V jednokrokových metodách se y n+ počítá pouze s využitím y n (a hodnot n, h n ). Je rozumné počítat y n+ s využitím více předchozích hodnot y n, y n, y n,..., y n k+, dosáhneme tím větší přesnosti. Pro jednoduchost se omezíme na metody s konstantním krokem h (h n = h, Poznámka: Je třeba si uvědomit, že si lze vymyslet nepřeberné množství metod. Jedna z možností je použít metody numerického derivování (špatně podmíněné). Další z možností je použít metody numerické integrace Rovnici y = f(, y) zintegrujeme od n do n+ : y( n+ ) y( n ) = n+ n n). f(, y()) d () }{{} =F () Je zřejmé, že funkci F () = f(, y()) neznáme. Známe-li ale hodnoty y v bodech,,..., n, můžeme vypočítat numerické hodnoty: F = F ( ) = f(, y( )) F = F ( ) = f(, y( )). F n = F ( n ) = f( n, y( n )) Pomocí těchto hodnot lze interpolovat funkci F () funkcí P () a integrál v () nahradit n+ n P () d. Interpolace, etrapolace funkce F () ( postupy): ) F () můžeme etrapolovat na intervalu n, n+ pomocí hodnot F, F,..., F n eplicitně dostaneme y( n+ ) =.... ) F () můžeme interpolovat pomocí hodnot F, F,..., F n a F n+ = F ( n+ ) = f( n+, y( n+ )) ve výpočtu integrálu vystoupí y n+ = y( n+ ) a dostaneme tak implicitní rovnici s neznámou na obou stranách, tuto rovnici řešíme postupnými aproimacemi.

12 Adams-Bashfortovy metody Poznámka: Metody získáné postupem ). Postup: Vezmeme posledních k hodnot F n, F n,..., F n k+ a sestrojíme P k () interpolační polynom (k ) stupně. Tímto polynomem potom aproimujeme funkci f(, y()) na intervalu n, n+, tj. počítáme: y n+ = y n + n+ n P k () d. Příklad: Odvoďte vzorec Adams-Bashfortovy metody pro k =. 7 6 F F n F n P () P () můžeme vyjádřit například pomocí Langrangeova interpolačního polynomu: P () = F n l n () + F n l n (), n n n n+ l n () = n n n }{{} h l n () = n n n }{{} h P () = F n [ ] [ ] h ( n) + F n h ( n ) = = h ( n) = h ( n ) = [ ] (Fn F n ) + n F n n F n h P () d = ( ) [ (Fn F n ) n+ n +(F n n F n n )( n+ n ) ] = n h }{{}}{{} h (( n +h) n) = [ ] (F n F n )( n h + h h ) + F n n F n n = = F n n F n n + h F n h F n + F n n F n n = = F n ( n n ) + h }{{} F n h ( F n = h F n ) F n. h y n+ = y n + h (F n F n )

13 Poznámka: Samozřejmě potřebujeme znát prvních k hodnot F i. (Ty můžeme vypočítat nějakou jednokrokovou metodou). Poznámka: Podobně bychom mohli odvodit vzorec Adams-Bashfortovy metody pro k =. F P () F n n F n n F n n n+ Opět bychom museli najít interpolační polynom P () (. stupně) a poté zintegrovat přes n, n+. Výsledkem je (dcv.): y n+ = y n + h (F n 6F n + F n )

14 Adams-Moultonovy metody Poznámka: Metody získáné postupem ). Postup: Vezmeme posledních k hodnot a přidáme ještě neznámou F n+, tj. F n+, F n, F n,..., F n k+. Sestrojíme Q k () interpolační polynom k-tého stupně. Tímto polynomem aproimujeme funkci f(, y()) na intervalu n, n+, tj. počítáme: n+ y n+ = y n + Q k () d. Příklad: Odvoďte vzorec Adams-Moultonovy metody pro k =. n 7 6 F jako bychom F n ji znali Q () F n+ Q () můžeme vyjádřit opět např. pomocí Lagrangeova interpolačního polynomu: Q () = F n+ l n+ () + F n l n () l n+ () = n n+ n = h ( n) n n+ l n () = n+ n n+ = h ( n+) n+ n Q k () d = h [ ] [ Q () = F n+ h ( n) + F n ] h ( n+) = [ = h [(F n+ F n ) + F n n+ F n+ n ] ( ) n+ n (F n+ F n ) + ( n+ n ) (F n n+ F n+ n ) ] = }{{}}{{} h ( n+ n) ( n+ + n) } {{ } h = ( n+ + n )(F n+ F n ) + F n n+ F n+ n = = n+f n+ n+f n + nf n+ nf n + n+ F n F n+ n = ( n+ = F n+ + ) ( n n + F n n+ n+ ) n = = h (F n+ + F n ) y n+ = y n + h (F n+ + F n ), kde F n+ = f( n+, y n+ ). Pozor! y n+ = y n + h ( f(n+, y n+ ) + F n ). Tuto rovnici řešíme iterační metodou např. metodou prosté iterace a tak dostaneme y n+.

15 Poznámka: Podobně můžeme odvodit vzorec např. pro k = F F n+ Q () F n n F n n n+ Opět bychom museli najít interpolační polynom Q () (. stupně). Poté integrovat přes n, n+ a dostat (dcv.) y n+ = y n + h ( Fn+ }{{} +8F n F n ) y n+ = y n + h Opět vyřešíme iterační metodou y n+. F n+ =f( n+,y n+ ) ( f(n+, y n+ ) + 8F n F n )

16 Algoritmus prediktor-korektor Poznámka: Jde o obecné schéma výpočtu. Princip: Předpokládejme, že máme dostatečně přesně vypočítány hodnoty y, y,..., y k nějakou eplicitní metodou. Nyní chceme počítat y k. jako vstupní hod- ) nejprve nějakou eplicitní metodou určíme nultou iteraci y [] k notu pro další výpočet (PREDIKTOR). ) vypočteme hodnotu pravé strany F [s] k ) vypočteme lepší aproimaci y [s+] k =: f k (KOREKTOR). F [s] k = f( k, y [s] k ). pomocí nějaké implicitní metody s využitím Pomocí kroků ) a ) určíme N iterací y [] k, y[] k,..., y[n] k (N dáno). Na závěr přiřadíme y k = y [N] k. Stejný postup opakujeme pro y k+, y k+,.... Poznámka: Dané schéma lze použít na různé metody. Je žádoucí použít eplicitní a eplicitní metodu stejného řádu (pro zachování přesnosti). Volba konkrétních metod je na nás. Poznámka: Označíme-li operaci: a) P... prediktor b) E... vyčíslení (evaluation) c) C... korektor Můžeme toto schéma zapsat ve tvaru: P (EC) N případně P (EC) N E, vyčíslujeme-li ještě F k = f( k, y [N] k ) (což je lepší). Dostaneme pak různé varianty tohoto schématu: P EC, P ECE P (EC), P (EC) E P (EC), P (EC) E.,.

17 Příklad: Řešte algoritmem prediktor-korektor založeném na Adamsových metodách druhého řádu na intervalu ;, 6 počáteční úlohu: Přesné řešení: y = e ( ). Použijeme algoritmus typu P EC. Vzorec prediktoru má tvar: y = y + e, tj. f(, y()) = y + e y() = y [] n+ = y n + h (F n F n ) Korektor: Volte krok h =,. y n+ = y n + h [] (F n+ + F n ) n n přesné {}}{ y( n ) y n [] F n [] y n e n,,977,,9789,8,,89 P,96 E,87 C,896,, 6,788 P,7 E,776 C,796,8 Pro určení hodnoty y použijeme např. jednokrokovou modifikovanou Eulerovu metodu (. řádu): k = f(, y ) = y + e = = + = k = f( + h/, y + h/ k ) = = + e,. =,. y = y + h k =. = +,, =,9789 Určíme hodnoty F a F.

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních

Více

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální

Více

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit. 7. ODR POČÁTEČNÍ ÚLOHY Numerické metody 7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme

Více

Numerické řešení obyčejných diferenciálních rovnic

Numerické řešení obyčejných diferenciálních rovnic Numerické řešení obyčejných diferenciálních rovnic Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit. 7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme najít vzorce popisující analytickéřešení,

Více

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálníc rovnic Mirko Navara ttp://cmp.felk.cvut.cz/ navara/ Centrum strojovéo vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a ttp://mat.feld.cvut.cz/nemecek/nummet.tml

Více

Numerické metody a statistika

Numerické metody a statistika Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 016-017 ( ) Numerické metody a statistika 016-017 1 / Numerické integrování ( ) Numerické metody a statistika 016-017 / Geometrický význam integrálu

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

Integrace. Numerické metody 7. května FJFI ČVUT v Praze

Integrace. Numerické metody 7. května FJFI ČVUT v Praze Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál

Více

Obyčejné diferenciální rovnice (ODE)

Obyčejné diferenciální rovnice (ODE) Obyčejné diferenciální rovnice (ODE) Obyčejné diferenciální rovnice N tého řádu převádíme na soustavy N diferenciálních rovnic prvního řádu. V rovnici f x, y, y ', y '',, y N =gx se substituují y '=z 1,

Více

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

4 Numerické derivování a integrace

4 Numerické derivování a integrace Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 7, strany 85-94. Jedná se o úlohu výpočtu (první či druhé) derivace či o výpočet určitého integrálu jinými metodami,

Více

Studijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc.

Studijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc. Studijní text pro obor G+K Katedra matematiky Fakulta stavební České vysoké učení technické OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle, CSc.,

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze

Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně

Více

Interpolace Lagrangeovy polynomy. 29. října 2012

Interpolace Lagrangeovy polynomy. 29. října 2012 Interpolace Lagrangeovy polynomy Michal Čihák 29. října 2012 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1 ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

Diferenciál a Taylorův polynom

Diferenciál a Taylorův polynom Diferenciál a Taylorův polynom Základy vyšší matematiky lesnictví LDF MENDELU c Simona Fišnarová (MENDELU) Diferenciál a Taylorův polynom ZVMT lesnictví 1 / 11 Aproximace funkce v okoĺı bodu Danou funkci

Více

ODR metody Runge-Kutta

ODR metody Runge-Kutta ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Čebyševovy aproximace

Čebyševovy aproximace Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

7. Aplikace derivace

7. Aplikace derivace 7. Aplikace derivace Verze 20. července 2017 Derivace funkce se využívá při řešení úloh technické praxe i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce, výpočet limity, vyšetřování průběhu funkce

Více

1 L Hospitalovo pravidlo

1 L Hospitalovo pravidlo L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

Moderní numerické metody

Moderní numerické metody Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

Řešení nelineárních rovnic

Řešení nelineárních rovnic Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS

Více

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5 Příklad 1 Najděte totální diferenciál d (h) pro h=(h,h ) v příslušných bodech pro následující funkce: a) (,)= cos, =1; b) (,)=ln( + ), =2; 0 c) (,)=arctg(), =1; 0 1 d) (,)= +, =1; 1 Řešení 1a Máme nalézt

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce

Více

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a . Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Numerická matematika Písemky

Numerická matematika Písemky Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva

Více

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat. .. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

APROXIMACE FUNKCÍ. Jedním ze základních úkolů numerických metod matematické analýzy je studium aproximací

APROXIMACE FUNKCÍ. Jedním ze základních úkolů numerických metod matematické analýzy je studium aproximací APROXIMACE FUNKCÍ Jedním ze základních úkolů numerických metod matematické analýz je studium aproimací funkcí. Při numerickém řešení úloh matematické analýz totiž často nahrazujeme danou funkci f, vstupující

Více

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako

Více

f(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0

f(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0 KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že

Více

NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí.

NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. RNDr. Radovan Potůček, Ph.D., K-15, FVT UO, KŠ 5B/11, Radovan.Potucek@unob.cz, tel. 443056 -----

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1 ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu

Více

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.

Více

Matematická analýza III.

Matematická analýza III. 3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň

Více

Pseudospektrální metody

Pseudospektrální metody Pseudospektrální metody Obecně: založeny na rozvoji do bázových funkcí s globálním nosičem řešení diferenciální rovnice aproximuje sumou kde jsou např. Čebyševovy polynomy nebo trigonometrické funkce tyto

Více

Derivace funkce Otázky

Derivace funkce Otázky funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0. A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

Řešení diferenciálních rovnic

Řešení diferenciálních rovnic Projekt M3 Řešení diferenciálních rovnic 1. Zadání A. Stanovte řešení dané diferenciální rovnice popřípadě soustavy rovnic. i) Pro úlohy M3.1 až M3.12: uveďte matematický popis použité metody sestavte

Více

Uvod k pocatecnimu problemu pro obycejne diferencialni

Uvod k pocatecnimu problemu pro obycejne diferencialni Uvod k pocatecnimu problemu pro obycejne diferencialni rovnice Budeme resit ulohu mnozeni bakterii. Na zacatku mame jedinou bakterii a vime, ze za urcity cas se takova bakterii rozmnozi na 2. Zajima nas

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 21 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 21 Řešíme následující úlohu: differencovatelnou funkci f : R R známe jen v konečném počtu bodů x 0,

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MATLAB a numerické metody

MATLAB a numerické metody MATLAB a numerické metod MATLAB je velmi vhodný nástroj pro numerické výpočt mnoho problémů je již vřešeno (knihovní funkce nebo Toolbo), jiné si můžeme naprogramovat sami. Budeme se zabývat některými

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

Řešení "stiff soustav obyčejných diferenciálních rovnic

Řešení stiff soustav obyčejných diferenciálních rovnic Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

teorie elektronických obvodů Jiří Petržela řešení nelineárních obvodů

teorie elektronických obvodů Jiří Petržela řešení nelineárních obvodů Jiří Petržela vlastnosti lineárních obvodů přechodný děj obvodu je vždy tlumený, trvá omezenou dobu a je dán jeho vlastnostmi, počátečními podmínkami a buzením ustálený stav nezávisí na počátečních podmínkách

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y = Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Parabola a přímka

Parabola a přímka 755 Parabola a přímka Předpoklad: 755, 756, 75, 75, 753 Pedagogická poznámka: Na probrání celého obsahu je třeba tak jeden a půl vučovací hodin Pokud tolik času nemáte, je potřeba buď rchle proběhnout

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů - Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Interpolace pomocí splajnu

Interpolace pomocí splajnu Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

Řešení 1D vedení tepla metodou sítí a metodou

Řešení 1D vedení tepla metodou sítí a metodou ENumerická analýza transportních procesů - NTP2 Přednáška č. 9 Řešení 1D vedení tepla metodou sítí a metodou konečných objemů Metoda sítí (metoda konečných diferencí - MKD) Metoda sítí Základní myšlenka

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více