M - Příprava na pololetku č. 1-1KŘA, 1KŘB, 1SB.

Rozměr: px
Začít zobrazení ze stránky:

Download "M - Příprava na pololetku č. 1-1KŘA, 1KŘB, 1SB."

Transkript

1 M - Příprava na pololetku č. 1-1KŘA, 1KŘB, 1SB. Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s odkazem na VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

2 Číselné obory Číselné obory Přirozená čísla - označujeme N Potřebujeme-li přidat nulu, pak označujeme N 0. - jedná se o čísla 1, 2, 3, 4,... Nejmenší přirozené číslo je 1. Celá čísla - označujeme Z (Opět můžeme vytvářet např. Z +, Z -, či Z 0 +.) - tento číselný obor dostaneme, když k přirozeným číslům přidáme čísla opačná a nulu Racionální čísla - označujeme Q (Opět můžeme vytvářet např. Q +, Q -, či Q 0 +.) - jsou to všechna čísla, která můžeme vyjádřit zlomkem s celočíselným čitatelem i jmenovatelem. Iracionální čísla - nemají své označení, protože ho vlastně nepotřebujeme - patří sem např. čísla π, 2, 3, apod. Reálná čísla - označujeme je R (Opět můžeme vytvářet např. R +, R -, či R0 +.) - jsou to všechna čísla, která můžeme zobrazit na číselné ose Komplexní čísla - označujeme je C - jsou to čísla, která už nelze zobrazit na jedné číselné ose, ale potřebujeme k tomu dvě na sebe kolmé osy (podobně jako pro zobrazení bodů v rovině). Rovinu, v níž čísla zobrazujeme, nazýváme Gaussovou rovinou. Číselné výrazy Číselné výrazy, výpočty s reálnými čísly Výraz je matematický zápis, ve kterém se vyskytují čísla (např. 2, 76, 896), proměnné (např. x, y, z), znaky početních operací (např. +, -, :), případně i pomocné znaky (např. závorky). Pokud se ve výrazu nevyskytují proměnné, ale pouze čísla, hovoříme o číselném výrazu. Pozn.: Úpravy číselných výrazů budeme provádět zpaměti, tedy bez použití kalkulačky Přehled základních operací s číselnými výrazy 1. Sčítání (odečítání) číselných výrazů členy při sčítání nazýváme sčítanci, výsledek pak součet; při odečítání nazýváme číslo, od něhož odečítáme, menšenec, číslo, které odečítáme, menšitel a výsledek rozdíl při sčítání využíváme vhodně komutativnost, případně asociativnost jedná-li se o složitější čísla, postupujeme odzadu, podobně jako při sčítání (odečítání) písemném - pozor na odpovídající si řády! zlomky sčítáme (odečítáme) tak, že je nejprve převedeme na společného jmenovatele 2. Násobení číselných výrazů členy, které mezi sebou násobíme, nazýváme činitelé, výsledek pak jejich součin opět výhodně využíváme komutativnost nebo asociativnost složitější čísla si vynásobíme formou pomocného výpočtu pod sebe, případně můžeme využít některých dalších pomůcek (např. máme-li číslo vynásobit 25, je vhodné ho vynásobit stem a následně vydělit čtyřmi) násobíme-li desetinná čísla, má výsledek tolik desetinných míst, kolik jich měly všechny činitelé dohromady násobíme-li mezi sebou zlomky, pak součin jejich čitatelů lomíme součinem jejich jmenovatelů Pozn.: U zlomku horní číslo nazýváme čitatel, spodní jmenovatel 1 z 46

3 3. Dělení číselných výrazů číslo, které dělíme, nazýváme dělenec, číslo, kterým dělíme, nazýváme dělitel a výsledek podíl opět můžeme používat různé triky - např. chceme-li číslo dělit 25, pak ho vydělíme stem a následně vynásobíme čtyřmi dělíme-li mezi sebou desetinná čísla, postupujeme nejprve tak, že výpočet rozšíříme tak, aby v děliteli vymizelo desetinné číslo dělení často vyjadřujeme zlomkem Pozn.: Zlomky můžeme rozšiřovat (tj. můžeme násobit jejich čitatele i jmenovatele stejným číslem různým od nuly), dále je můžeme též krátit (tj. dělit jejich čitatele i jmenovatele stejným číslem různým od nuly). Při rozšiřování nebo krácení zlomků se nemění jejich hodnota. Zlomek je v základním tvaru, pokud už honelze dále krátit. dělíme-li mezi sebou dva zlomky, násobíme první zlomek (v nezměněné podobě) převrácenou hodnotou druhého zlomku Pozn.: Převrácenou hodnotu zlomku dostaneme tak, že jeho čitatele nahradíme jmenovatelem a naopak. Pokud u zlomku změníme jen znaménko, dostáváme zlomek opačný. Při této činnosti je jedno, zda napíšeme znaménko do čitatele, do jmenovatele nebo před zlomek. 4. Umocňování číselných výrazů umocňujeme-li desetinné číslo, pak výsledek má tolik desetinných míst, kolik je součin desetinných míst u původního čísla a exponentu mocniny umocňujeme-li číslo, které končí jednou nebo více nulami, pak umocníme tu část čísla, která vznikne po pomyslném odstranění nul a připíšeme tolik nul, kolik je součin jejich původního počtu a čísla v exponentu umocňujeme-li zlomek, pak umocňujeme jeho čitatele i jmenovatele druhé mocniny čísel do 20 musíme znát zpaměti stejně tak musíme znát zpaměti třetí mocniny čísel do Odmocňování číselných výrazů provádíme-li zpaměti (nebo pomocí tabulek) druhou odmocninu desetinného čísla, musíme nejprve číslo upravit tak, aby obsahovalo sudý počet desetinných míst a zároveň toto číslo zapsané bez ohledu na desetinnou čárku bylo v rozmezí od jedné do tisíce. To provedeme tak, že buď přidáme nulu na konec čísla, případně provedeme zaokrouhlení. U výsledku pak přibude polovina desetinných míst z jejich původního počtu. provádíme-li zpaměti (nebo pomocí tabulek) třetí odmocninu desetinného čísla, postupujeme úplně stejně, jen číslo v prvním kroku upravíme tak, aby počet desetinných míst byl násobkem tří. U výsledku pak přibude třetina desetinných míst z jejich původního počtu. jedná-li se o čísla naopak příliš velká (končí jednou nebo více nulami), provedeme zaokrouhlení tak, aby počet nul byl sudé číslo (pro druhou odmocninu) a číslo odpovídající násobku tří (pro třetí odmocninu) a 2 z 46

4 zbytek čísla (po pomyslném oddělení nul) byl z rozmezí od jedné do tisíce. Po odmocnění posuneme desetinnou čárku o tolik míst doprava, kolik je polovina z celkového počtu nul (pro druhou odmocninu) nebo třetina z celkového počtu nul (pro třetí odmocninu) Pokud se v číselném výrazu vyskytují závorky, řešíme je na prvním místě s tím, že v první fázi odstraňujeme závorky kulaté, dále hranaté a nakonec teprve závorky složené. Ukázkové příklady: Příklad 1: Řešení: Příklad 2: Vypočtěte: Řešení: Příklad 3: Vypočtěte: 3 z 46

5 Řešení: Pozn.: Sejdou-li se při úpravě číselného výrazu, pak postupujeme tak, že dvě shodná znaménka nahradíme znaménkem plus a dvě opačná znaménka nahradíme znaménkem minus. Číselné výrazy - procvičovací příklady 1. Vypočti a výsledek zaokrouhli na dvě desetinná místa ,43 2. Vypočti z 46

6 3. Vypočtěte a zaokrouhlete na desítky Vypočti Vypočti Vypočti Vypočtěte: 15,1 ( 2) ,3: ( 0,7) [(2,5 3,7) : ,1] Vypočti z 46

7 9. Vypočti Vypočti , Vypočti Vypočti z 46

8 13. Vypočti Vypočti Zjednoduš: Vypočti Vypočti z 46

9 18. Vypočti Vypočti Vypočti , Vypočti Vypočti bez zaokrouhlování z 46

10 23. Vypočti Vypočtěte bez použití kalkulátoru: ( 3) + 6,4: ( 0,8) : (1,8 2,9) 4 2-7, Vypočti: ,8 26. Vypočti Vypočtěte Vypočti ,1 29. Vypočti z 46

11 30. Vypočti číslo b a zapiš jeho převrácenou hodnotu Vypočti Vypočti Zjednoduš zlomek a potom jej převeď na desetinné číslo zaokrouhlené na tisíciny , z 46

12 35. Vypočti Vypočti Vypočti Vypočti Vypočti z 46

13 40. Vypočti Vypočti Vypočti Vypočti Vypočti z 46

14 45. Vypočti Vypočti Vypočti 1826 Procenta Procenta U příkladů, kde se vyskytují procenta, rozlišujeme tři základní veličiny: - základ (100%)... z - procentovou část... č - počet procent... p První dvě z uvedených veličin mají vždy stejnou jednotku (tzn. obě jsou například v kilogramech), zbývající třetí je vždy uvedena v procentech. Zpravidla vždy dvě z uvedených veličin známe, třetí počítáme. Úlohy na procenta můžeme řešit několika postupy: 1. Řešení přes jedno procento (někdy též říkáme přes procentový trojřádek) Příklad 1: Vypočtěte, kolik je 64 % z 12,6 kilogramů mouky. 13 z 46

15 Řešení: 100 %... 12,6 kg mouky 1 %... 12,6 : 100 kg = 0,126 kg mouky 64 % ,126 kg = 8,064 kg Závěr: 64 % z 12,6 kg mouky představuje asi 8 kg mouky. 2. Řešení trojčlenkou Příklad 2: Vypočtěte, kolik procent představuje 6 minut ze 2,5 hodiny Řešení: 100 %... 2,5 h x %... 6 min = 0,1 h U procent se vždy jedná o přímou úměrnost, proto "šipky by vždy vedly obě nahoru". Sestavíme výpočet: x = ,1/2,5 x = 4 % Závěr: Šest minut ze 2,5 hodiny představuje 4 %. 3. Řešení podle vzorce Příklad 3: Vypočtěte, z kolika kilometrů představuje 8 metrů 20 %. Řešení: č = 8 m p = 20 % z =? z = 100č/p z = /20 z = 40 m = 0,04 km Závěr: Osm metrů představuje 20 % z 0,04 kilometru. Pozn.: Přehled všech tří vzorců: z = 100č/p č = zp/100 p = 100č/z 4. Řešení na kalkulačce (myšleno na takové, která má klávesu s označením procent) Klávesa s označením procent má takovou vlastnost, že po jejím stisku se předchozí výpočet automaticky vynásobí stem, předcházelo-li dělení a naopak vydělí stem, předcházelo-li násobení. Jedná se tedy o zrychlení práce, nic víc. 14 z 46

16 Procenta - procvičovací příklady 1. Na konci zimní sezóny byla slevněna bunda z Kč na Kč. O kolik % byla bunda zlevněna? 14,3 % Vypočítejte jednu sedminu z 15 % z čísla 63. 1, Co je méně? 8 % z 500 g nebo 6 % z 1 kg. Odpověď zdůvodněte výpočtem. Méně je 8 % z 500 g Množství krve v lidském těle je přibližně 7,6 % hmotnosti těla. Kolik kg krve je v těle dospělého člověka o hmotnosti 75 kg? 5,7 kg Turisté ušli první den výletu 35 % cesty, druhý den 41 %. Na poslední, třetí den, jim zbývá ujít 15,6 km. Jak dlouhá byla celá cesta? 65 km Z součástek bylo 44 vadných. Kolik procent součástek bylo bez vady? 97,25 % Zmenšením neznámého čísla o 427 dostaneme 35 % jeho původní hodnoty. Které je to číslo? 656, V závodě je zaměstnáno 344 žen. Zbývajících 57 % zaměstnanců jsou muži. Kolik zaměstnanců má závod? Podnik přispívá zaměstnancům na stravenky 3,30 Kč na jeden oběd a zaměstnanci platí 78 % hodnoty oběda. Jaká je cena oběda? Kolik korun platí za oběd zaměstnanci? Oběd stojí 15 Kč, zaměstnanci platí 11,70 Kč Kolik procent činí 40,8 ze 120? 34 % Kolika procentům původní ceny se rovná cena zboží, které bylo nejprve o 20 % zdraženo a potom byla jeho nová cena o 20 % snížena? 96 % Jaká musí být prodejní cena výrobku, jestliže náklady na jeho výrobu jsou 300 Kč a chci ho prodat se ziskem 20 % z prodejní ceny? 375 Kč z 46

17 13. Jirka spořil na prázdninový výlet. V lednu uspořil dvě pětiny celé částky, v únoru polovinu toho co v lednu a v březnu 15 % celkové sumy. Do celé částky mu chybí ještě 150 Kč. Kolik bude stát celý výlet a kolik Kč naspořil v jednotlivých měsících? Celý výlet 600 Kč, v lednu naspořil 240 Kč, v únoru 120 Kč a v březnu 90 Kč Kolik procent je 1 minuta a 48 sekund ze 3 hodin? 1 % Obchodník prodal čtvrtinu zboží se ziskem 20 % a utržil za ni Kč. Druhou čtvrtinu prodal se ziskem 10 %, další čtvrtinu za nákupní cenu a poslední čtvrtinu se ztrátou 5 %. Určete nákupní cenu zboží a obchodníkův zisk. Nákupní cena Kč, zisk obchodníka 350 Kč Ze 700 výrobků bylo 20% vadných. Kolik výrobků bylo bez vady? Vypočtěte, kolik procent je 18,5 ze ,625 % Zmenšíme-li neznámé číslo o 427 dostaneme 65 % jeho hodnoty. Určete neznámé číslo Na výměře 5 ha bylo sklizeno v určitém roce 19 tun obilí. V následujícím roce byla výměra pro osev obilí snížena o 12 %, ale hektarový výnos se proti předchozímu roku zvýšil o 12 %. Kolik tun obilí se v tomto roce sklidilo? 18,7 t Číslo 72 zvětšete o 25 %. O kolik procent budete muset číslo, které vám vyšlo, zmenšit, abyste opět dostal číslo 72? 20 % Za vykonanou práci si vydělali 3 pracovníci celkem Kč. Rozdělili se tak, že první dostal o 20 % více než druhý a třetí o 15 % více než druhý. Kolik Kč dostal každý z nich? První Kč, druhý Kč, třetí Kč Zboží, jehož původní cena byla Kč, bylo dvakrát zlevněno. Nejprve o 15 %, později o 10 % z nové ceny. Určete konečnou cenu zboží a počet procent, o kolik bylo zboží celkem zlevněno. Konečná cena 1836 Kč, zlevněno bylo o 23,5 % Dva společníci si rozdělili zisk Kč tak, že druhý dostal o 20 % více než první. Kolik dostal každý? První dostal Kč, druhý Kč z 46

18 24. Cena ledničky byla dvakrát snížena. Nejprve o 10 %, později ještě o 10 % z nové ceny. Po tomto dvojitém snížení cen se lednička prodala za 4455 Kč. Vypočítejte její původní cenu Kč Obchodník koupil dodávku materiálu a při prodeji vydělal Kč následujícím způsobem. Třetinu dodávky prodal o 18 % dráž, čtvrtinu o 11 % dráž a zbytek o 5 % levněji než nakoupil. Kolik zaplatil dodavateli? Proveďte zkoušku Kč Kolik stála původně halenka, jestliže po slevě o 15 % stála 459 Kč? 540 Kč V nově založeném sadu se ujalo stromků, což je 98 % všech sazenic. Kolik stromků vysadili? stromků Cena ledničky byla dvakrát snížena. Nejprve o 15 %, později o 5 % z nové ceny. Po tomto dvojím snížení ceny se lednička prodávala za Kč. Vypočtěte její původní cenu Kč V roce 1990 byla cena za 1 litr benzínu special 16 Kč. Nyní stojí 19,20 Kč. O kolik procent se cena zvýšila? 20 % Zboží v hodnotě 400 Kč bylo nejprve zdraženo o 10 % a pak zlevněno o 10 % z nové ceny. Určete jeho konečnou hodnotu. 396 Kč Rozhlasový přijímač, jehož původní cena byla Kč, byl po technickém zdokonalení zdražen o 20 %. Později byl o 15 % z nové ceny zlevněn. Jaká byla jeho konečná cena? Kč Z jakého čísla je číslo 8 20%? Sedlák vzal do města tři pětiny svých úspor a z této částky utratil 18 %. Kolik procent všech uspořených peněz mu zbylo? 89,2 % Z 800 výrobků bylo 16 vadných. Kolik procent výrobků bylo bez vady? 98 % z 46

19 35. Kolik procent je 21 ze 105? 20 % Pětina žáků třídy je nemocná, 40 % žáků šlo na soutěž a ve třídě zůstalo 10 žáků. Kolik žáků má tato třída? 25 žáků Pro nově budovanou cestu musel být delší rozměr obdélníkového pozemku zkrácen o 7 % a kratší o 8 %. Jaké jsou nové rozměry pozemku a o kolik procent se zmenšila jeho plošná výměra? Původní rozměry pozemku byly 60 m a 30 m. Nové rozměry: 55,8 m, 27,6 m; výměra se zmenšila o 14,4 % Zvětšíme-li neznámé číslo o 4 %, dostaneme 780. Určete neznámé číslo % z neznámého čísla je o 12 méně než 23 % z téhož čísla. Určete neznámé číslo Cena ledničky byla dvakrát snížena. Nejprve o 15 %, později ještě o 5 % z nové ceny. Po tomto dvojím snížení cen se lednička prodávala za korun. Jaká byla původní cena? Kč Z vyrobených výrobků bylo 21 vadných, to je 1,4 %. Kolik výrobků je bez vady? Poměr, trojčlenka Poměr Poměr je matematický zápis ve tvaru zlomku, případně ve tvaru dělení. Např.: 7 : 5 (čteme sedm ku pěti) Jednotlivá čísla nazýváme členy poměru. Poměr může mít dva, ale i více členů. Má-li poměr více než dva členy, nazýváme ho poměr postupný. Poměr můžeme rozšiřovat a krátit, podobně jako zlomky. Platí zde i stejná pravidla, protože vlastně každý poměr můžeme napsat i ve tvaru zlomku. Poměr je v základním tvaru, jsou-li jeho členy čísla navzájem nesoudělná. Příklad 1: Poměr 2,4 : 7,2 uveďte do základního tvaru. Řešení: 2,4 : 7,2 /* z 46

20 Příklad 2: 24 : 72 /: 8 3 : 9 / : 3 1 : 3 Následující poměr uveďte do základního tvaru: 2 1 : 3 8 Řešení: 2 1 : 3 8 /* 24 (společný násobek jmenovatelů) 16 : Změna čísla v poměru: Změnit dané číslo v poměru, znamená vynásobit toto číslo poměrem ve tvaru zlomku. Příklad 3: Číslo 25 změňte v poměru 7 : 2 Řešení: = = 87,5 2 2 Výsledné číslo je 87,5. Je-li první člen poměru větší než druhý, jedná se o zvětšení. Je-li první člen poměru menší než druhý, jedná se o zmenšení Rozdělení čísla v poměru: Pokud máme dané číslo rozdělit v poměru, musíme nejprve jednotlivé členy poměru sečíst. Následně určíme hodnotu jednoho dílu, a to tak, že původní číslo dělíme získaným součtem. Na závěr spočteme hodnoty jednotlivých dílů, které vyjadřuje poměr. Příklad 4: Číslo 81 rozdělte v poměru 2 : 7 Řešení: = 9... počet dílů 81 : 9 = 9... hodnota jednoho dílu 2. 9 = hodnota odpovídající prvnímu členu poměru 7. 9 = hodnota odpovídající druhému členu poměru Dané číslo jsme tedy rozdělili na dvě čísla, a to 18 a 63. Jsou v poměru 2 : z 46

21 Změna postupného poměru na jednoduché poměry: Z každého postupného poměru můžeme vytvořit jeden nebo více poměrů jednoduchých. Příklad 5: Je dán postupný poměr 2 : 5 : 7. Vytvořte z něj alespoň dva poměry jednoduché. Řešení: Vybereme kterékoliv dva členy poměru - tedy např. 2 : 5 a 2 : 7 Změna jednoduchých poměrů na postupný: Máme-li dva nebo více poměrů jednoduchých, můžeme z nich vždy vytvořit poměr postupný. Příklad 6: Jsou dány jednoduché poměry 2 : 7 a 3 : 8. Vytvořte z nich jeden poměr postupný. Řešení: Jednoduché poměry musíme nejprve upravit rozšířením nebo krácením tak, aby jeden z členů měly společný. Tedy např. 2 : 7 /*4 8 : 28 Nyní máme v obou poměrech člen 8 a toho využijeme: 8 : 28 3 : 8 Závěr: Hledaný postupný poměr může být 3 : 8 : Trojčlenka Jak už sám název napovídá, jedná se o výpočet, kde figurují tři členy; přesněji řečeno tři členy známe a čtvrtý budeme počítat. Jedná se o postup, který má obrovské praktické využití, proto ho musí každý bezpečně ovládat. Pokud řešíme příklad pomocí trojčlenky, vždy nejprve sestavíme zápis, a to tak, že stejné veličiny musí být pod sebou a neznámou doporučuji vždy ponechat ve druhém řádku. V dalším kroku rozhodneme, zda jsou veličiny ve vztahu přímé nebo nepřímé úměrnosti. Zobrazíme si pomocné šipky. Bez jakéhokoliv dlouhého uvažování tam, kde máme neznámou (ve druhém řádku), uděláme šipku směrem nahoru. Jedná-li se o úměrnost přímou, pak na druhé straně bude šipka stejným směrem (tedy též nahoru) a jedná-li se o úměrnost nepřímou, bude na druhé straně šipka opačným směrem (tedy dolů). Na základě šipek se stavíme výpočet, po jehož vyřešení obdržíme výsledek. Příklad 7: Tři kilogramy pomerančů stojí 66,- Kč. Kolik korun bude stát pět kilogramů pomerančů? Řešení: 3 kg pomerančů... 66,- Kč 5 kg pomerančů... x Kč (šipky by v tomto případě vedly obě vzhůru) z 46

22 5 x = 66. = x = 110,- Kč Pět kilogramů pomerančů bude stát 110,- Kč. Příklad 8: Pět zaměstnanců postaví přístřešek za 7 dní. Kolik zaměstnanců musíme na práci přibrat, má-li stavba být hotova už za 4 dny? Řešení: 5 zaměstnanců... 7 dní x zaměstnanců... 4 dny (šipky by v tomto případě vedly vlevo vzhůru a vpravo dolů) x = 5. = 8,75 4 x = 8,75 zaměstnance 8,75-5 = 3,75 Přibrat bychom tedy měli 3,75 zaměstnance, což znamená z praktických důvodů, že musíme přibrat ještě 4 zaměstnance Složená trojčlenka Jedná se vlastně o dva nebo více výpočtů spojených do jednoho. Místo použití složené trojčlenky můžeme většinou bez problémů použít dvakrát nebo vícekrát za sebou trojčlenku obyčejnou. Příklad 9: Šest dělníků opracuje za 5 směn 1020 součástek. Za jak dlouho opracuje 10 dělníků 2000 součástek při stejném výkonu? Řešení: 6 dělníků... 5 směn součástek 10 dělníků... x směn součástek Střední šipka - bez uvažování směrem vzhůru. Pak musíme rozhodnout, zda okrajové veličiny jsou s veličinou střední postupně ve vztahu přímé nebo nepřímé úměrnosti. Zde vychází u levé veličiny šipka dolů a u pravé šipka vzhůru x = 5.. = 5, x = 5,9 směny (přibližně) Deset dělníků opracuje 2000 součástek zhruba za 5,9 směny. Poměr, trojčlenka - procvičovací příklady 21 z 46

23 1. Plán má měřítko 1 : Jakými rozměry bude na plánu zakreslena ovocná zahrada, má-li ve skutečnosti délku 425 m a šířku 240 m? 17 cm a 9,6 cm Šest strojů zpracuje zásobu materiálu za 15 směn. Za kolik směn zpracuje tuto zásobu materiálu osm stejných strojů? 11,25 směny ,5 kg jablek stojí 81 Kč. Kolik stojí 2,5 kg? 45 Kč Na těleso působí dvě navzájem kolmé síly F1, F2, které jsou v poměru 3:4. Menší síla (F 1) má velikost 12 N. Najděte výslednici F početně i graficky. F = 20 N Jestliže píce vystačí 300 kusům dobytka na dva týdny, kolika kusům vystačí na tři týdny? 200 kusům dělníků by vykonalo práci za 30 dnů. Práce má být hotová za 20 dnů. Kolik dělníků se musí na práci přibrat? 3 dělníci Počet žáků, kteří do školy dojíždějí, k počtu žáků, kteří docházejí pěšky, je dán poměrem 2 : 7. a) Kolik žáků má škola, když dojíždějících je 96? b) Kolik procent žáků školy dojíždí (zaokrouhlete na jedno desetinné místo)? Ve škole je 432 žáků, dojíždí jich 22,2 % kg pomerančů se má rozdělit na dvě části tak, aby byly v poměru 12,6 : 9. Určete hmotnosti obou částí. 50 kg a 70 kg Čtyři dělníci vyhloubí příkop za 18 dní. Kolik dělníků musíme přidat do pracovní skupiny, aby byl příkop hotov už za 12 dní? 2 dělníky Rodina Novákova měla roční spotřebu cukru 60 kg. Rozhodla se ji v následujícím roce snížit v poměru 5 : 8. Skutečná spotřeba však činila 45 kg. O kolik procent byla plánovaná spotřeba překročena? 20 % Směs s bodem tuhnutí -32 C můžeme připravit smísením vody, lihu a glycerínu v poměru objemů 4,3 : 4,2 : 1,5. Kolik vody a lihu je třeba přidat ke 4,5 litrům glycerínu, aby vznikla směs s daným bodem tuhnutí? 12,9 litru vody, 12,6 litru lihu z 46

24 12. Tři stejně výkonní sklenáři opravili okna školní budovy za 32 hodin. Za kolik hodin by tuto opravu provedli čtyři stejně výkonní sklenáři? 24 hodin Číslo 40 rozdělte v poměru 3 : díl... 15; 2. díl Jaká je výměra obdélníkové zahrady, když plot kolem celé zahrady měří 160 m a sousední strany jsou v poměru 3 : 2? m K upečení bábovky ze 4 vajec je potřeba 160 g tuku, 240 g mouky, 200 g cukru. Kolik g tuku, mouky a cukru je potřeba na upečení bábovky ze 3 vajec? 120 g tuku, 180 g mouky, 150 g cukru Za 0,75 hodiny se vyfrézuje 36 zubů. Kolik minut trvá vyfrézování 50 zubů? 62,5 minuty Na záhonu kvetou bílé a žluté narcisy. Bílých je o 12 více než žlutých. Poměr počtu bílých a počtu žlutých je 7 : 4. Kolik kvete na záhonu narcisů celkem? 44 narcisů Počet odpracovaných hodin dvou dělníků při stejné hodinové mzdě byl v poměru 5 : 7. Vypočtěte, kolik každý z nich dostal po 15% srážce daně, jestliže hrubá mzda pro oba dělníky činí Kč. První vydělal Kč, druhý vydělal Kč Na plánu v měřítku 1 : je zanesen pozemek tvaru obdélníka o rozměrech 2 cm, 4 cm. Vypočtěte, kolik hektarů je výměra pole. 0,5 ha Zemědělské družstvo zaselo na 192 ha oves, ječmen, žito a pšenici v poměru 1 : 1,4 : 1,8 : 2,2. Kolik hektarů každého druhu obilí zaseli? 30 ha ovsa, 42 ha ječmene, 54 ha žita, 66 ha pšenice Dva stroje vyrobí za 50 hodin výrobků. Kolik strojů potřebujeme přikoupit, abychom za 30 hodin vyrobili výrobků? 23 strojů Šest lidí splní určitý úkol za 12 hodin. Kolik času by potřebovalo na tuto práci 9 lidí? 8 hodin Číslo 6 zvětšete tak, aby bylo s hledaným číslem v poměru 3 : Barva se míchá s ředidlem v poměru 5 : 2. Kolik bude potřeba barvy a kolik ředidla, má-li být výsledné směsi 1,4 litru? 1 litr barvy a 0,4 litru ředidla z 46

25 25. Jestliže la'b'l : labl = 2 : 3 a délka úsečky AB je 24 cm, kolik pak bude velikost úsečky A'B'? 16 cm Tři stejně výkonná čerpadla naplní nádrž za 72 minut. Za kolik minut se naplní nádrž osmi stejně výkonnými čerpadly? 27 minut Na plánu města zhotoveném v měřítku 1 : má parcela tvaru lichoběžníku délku základen 40 mm a 56 mm a výšku 30 mm. Vypočtěte skutečnou výměru této parcely m Mocniny a odmocniny pro učební obory Mocniny a odmocniny 1. Mocniny s přirozeným mocnitelem Def.: Mocninou a b nazýváme přirozené číslo, které je součinem b činitelů rovných číslu a. Zapisujeme: a b = a. a. a..... a b-krát Pro čísla a, b, r, s platí: a r. a s = a r+s (a.b) r = a r. b r (a:b) r = a r : b r (a r ) s = a rs a r : a s = a r-s Umocňujeme-li kladné číslo lichou mocninou, je výsledek kladný. Umocňujeme-li záporné číslo lichou mocninou, je výsledek záporný. Umocňujeme-li kladné číslo sudou mocninou, je výsledek kladný. Umocňujeme-li záporné číslo sudou mocninou, je výsledek kladný. POZOR! (-2) 4 = = -16 Ukázkové příklady: Příklad 1: Řešení: L = = 285 P = = 545 Uvedená rovnost tedy neplatí. Příklad 2: 24 z 46

26 Řešení: = 54 Příklad 3: Řešení: = Mocniny s celým exponentem Na rozdíl od předchozí kapitoly, kdy jsme v exponentu mocniny uvažovali pouze přirozené číslo, nyní si přídáme i nulu a celá čísla záporná. Nejprve tedy exponent nula. V tomto případě platí, že jakékoliv číslo umocněné na nultou je vždy jedna. a 0 = 1 Máme-li v exponentu číslo záporné, můžeme se ho zbavit tak, že celou mocninu, ale s kladným exponentem, napíšeme do jmenovatele zlomku, jehož čitatel bude jedna. a n 1 = n a Ukázkový příklad: Příklad 4: Vypočti: (-4) -2-0,5-4 Řešení: ( 4) 0,5 = + = ,5 4 1 = , = ( 4) 16 = Mocniny a odmocniny - procvičovací příklady z 46

27 2. Vypočti: Vypočti: / Vypočti: (1/4) Zapsáno po řádcích shora: ; ; ; 625; 625; 625; 25; 25; Vypočti: Vypočti: / Vypočti: / z 46

28 10. Vypočti: / Vypočti: (-7) / Zapsáno po řádcích shora: ; 6561; 6561; 81; 81; 81; 9; 9; Vypočti: / Vypočítej: / Vypočti: /4 27 z 46

29 19. Vypočti: (0,2) Vypočti: / Zapsáno po řádcích shora: ; 256; 256; 16; 16; 16; 4; 4; Vypočti: / Vypočti: Vypočti: ( 0,564) z 46

30 28. Vypočti: / Vypočti: / Druhá a třetí mocnina a odmocnina Určování druhé mocniny Druhou mocninu jakéhokoliv čísla můžeme určit: 1. Výpočtem - a 2 = a. a 2. Pomocí tabulek n n2 n n2 n n2 n n z 46

31 z 46

32 z 46

33 z 46

34 U desetinných čísel pracujeme s číslem bez ohledu na desetinnou čárku (případně si ho zaokrouhlíme tak, aby se v číslu vyskytovaly nejvýše tři číslice - počítané od první nenulové zleva), ve výsledku oddělíme dvojnásobný počet desetinných míst než mělo původní zaokrouhlené číslo. Příklad: 0, zaokrouhlíme: 0, určíme = oddělíme 6 desetinných míst, proto výsledek je 0, U velkých čísel pracujeme s číslem bez ohledu na nuly na konci (případně si ho zaokrouhlíme tak, aby číslice od čtvrté pozice zleva byly nulové), k výsledku připíšeme dvojnásobný počet nul než mělo původní zaokrouhlené číslo. Příklad: zaokrouhlíme: určíme = z 46

35 - připíšeme 12 nul, proto výsledek je Na kalkulačce Můžeme postupovat obdobným způsobem jako při určování z Tabulky, případně pokud máme dokonalejší kalkulačku, můžeme původní číslo zadat rovnou. Výsledek ale může kalkulačka udat např. (viz výše uvedený příklad) ve tvaru 6, , což ve skutečnosti znamená 6, a převedeno do klasického čísla tedy musíme u čísla 6,100 9 posunout desetinnou čárku o 16 míst vpravo. Pozn.: Pokud je exponent záporný, posouváme desetinnou čárku vlevo. Týká se to umocňování velmi malých desetinných čísel. Určování druhé odmocniny 1. Pomocí tabulek n 2. odm. n 2. odm. n 2. odm. n 2. odm , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , z 46

36 45 6, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,24 35 z 46

37 106 10, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , z 46

38 167 12, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , z 46

39 228 15, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,623 Máme-li číslo velmi malé, pak ho zaokrouhlíme tak, aby počet číslic od první nenulové zleva byl nejvýše tři a zároveň celkový počet desetinných míst u zaokrouhleného čísla byl sudý. Pak určíme druhou odmocninu ze vzniklého čísla bez ohledu na desetinnou čárku. Ve výsledku nakonec posuneme desetinnou čárku o tolik míst vlevo, kolik představuje polovina počtu desetinných míst u zaokrouhleného čísla. Příklad: Určete 0, zaokrouhlíme na 0, určíme 25 = 5 - posuneme desetinnou čárku o 4 místa vlevo, proto výsledek je 0,000 5 Máme-li číslo naopak hodně velké, zaokrouhlíme ho tak, aby mělo od čtvrté pozice zleva určitě samé nuly a zároveň aby počet nul byl sudý (pokud to nelze dosáhnout, zaokrouhlíme tak, aby už na třetí pozici zleva byla nula). Pak určíme druhou odmocninu z čísla, které vznikne po pomyslném oddělení sudého počtu nul a ve výsledku posuneme desetinnou čárku doprava o tolik míst, kolik představuje polovina počtu oddělených nul. Příklad: Určete zaokrouhlíme na určíme 25 = 5,00 - posuneme desetinnou čárku o 5 míst vpravo, proto výsledek je Pomocí kalkulačky - postup lze použít opět stejný jako při určování z Tabulek, opět ale musíme vzít v úvahu, že kalkulačka může vytvořit výsledek ve tvaru c. 10 n. Určování třetí mocniny Postupy jsou stejné jako u druhé mocniny, pouze nebereme dvojnásobek nul nebo desetinných míst, ale trojnásobek. n n3 n n3 n n3 n n z 46

Variace. Poměr, trojčlenka

Variace. Poměr, trojčlenka Variace 1 Poměr, trojčlenka Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Poměr Poměr je matematický zápis

Více

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

M - Příprava na 2. čtvrtletku pro třídu 1MO

M - Příprava na 2. čtvrtletku pro třídu 1MO M - Příprava na 2. čtvrtletku pro třídu 1MO Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno jako studijní materiál pro třídu 2K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

M - Příprava na 1. čtvrtletku pro třídu 1MO

M - Příprava na 1. čtvrtletku pro třídu 1MO M - Příprava na 1. čtvrtletku pro třídu 1MO Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

M - Příprava na 1. zápočtový test - 1DP, 1DVK

M - Příprava na 1. zápočtový test - 1DP, 1DVK M - Příprava na 1. zápočtový test - 1DP, 1DVK Autor: Mgr. Jaromír JUŘEK Kopírování materiálu povoleno pouze se souhlasem autora. Jiné využití než pro studenty autora povoleno pouze s uvedením odkazu na

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

POVINNÝ DOMÁCÍ ÚKOL PROCENTA, POMĚR, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

POVINNÝ DOMÁCÍ ÚKOL PROCENTA, POMĚR, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST POVINNÝ DOMÁCÍ ÚKOL PROCENTA, POMĚR, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Datum odevzdání: 26. 10. 2015 na samostatném papíře (NE do sešitu) (1) Na konci sezony byla zlevněna bunda z 2 100 Kč na 1 800 Kč. O kolik

Více

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára 9... ZLOMKY A RACIONÁLNÍ ČÍSLA Pojem zlomku Zlomek zápis části celku a b a je část, b je celek, zlomková čára Každé číslo zapsané zlomkem lze vyjádřit jako číslo desetinné 7 Zlomková čára je dělící čára

Více

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

Více

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený

Více

M - Matematika - třída 1ODK - celý ročník

M - Matematika - třída 1ODK - celý ročník M - Matematika - třída 1ODK - celý ročník Obsahuje učivo školního roku 2005/2006 VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Lomené algebraické výrazy

Lomené algebraické výrazy Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

M - Matematika - třída 1DOP - celý ročník

M - Matematika - třída 1DOP - celý ročník M - Matematika - třída 1DOP - celý ročník Učebnice obsahující učivo celého 1. ročníku VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky 0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná

Více

Gymnázium. Přípotoční Praha 10

Gymnázium. Přípotoční Praha 10 Gymnázium Přípotoční 1337 101 00 Praha 10 led 3 20:53 Přípravný kurz Matematika led 3 21:56 1 Datum Téma 9.1.2019 Číselné výrazy-desetinná čísla, zlomky, počítání se zlomky, zaokrouhlování, druhá mocnina

Více

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - TERCIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

M - Algebraické výrazy

M - Algebraické výrazy M - Algebraické výrazy Určeno jako studijní text pro studenty dálkového studia a jako shrnující textpro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel.

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel. Mocniny Mocnina je matematická funkce, která (jednoduše řečeno) slouží ke zkrácenému zápisu násobení. Místo toho abychom složitě psali 2 2 2 2 2, napíšeme jednoduše V množině reálných čísel budeme definovat

Více

5 čitatel zlomková čára 13 jmenovatel

5 čitatel zlomková čára 13 jmenovatel Aritmetika sekunda 1 Zlomky Celek a jeho část Zlomek je speciální zápis čísla v podílovém tvaru. Zlomek obsahuje čitatele a jmenovatele, kteří jsou od sebe odděleni zlomkovou čarou. Zlomek pět třináctin

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

čitatel jmenovatel 2 5,

čitatel jmenovatel 2 5, . ZLOMKY Zlomek má následující tvar čitatel jmenovatel Příkladem zlomku může být například zlomek, tedy dvě pětiny. Jmenovateli se říká jmenovatel proto, že pojmenovává zlomek. Pětina, třetina, šestina

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK M - Příprava na 1. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu dovoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí. Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná

Více

Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)

Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 2 9 9:02 Trojčlenka označuje postup při řešení úloh

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚVOD ZÁKLADNÍ POČETNÍ ÚKONY A ZKOUŠKY ZÁKLADNÍ POČETNÍ ÚKONY A ZKOUŠKY ZÁPIS, DIKTOVÁNÍ A KONTROLA ZAOKROUHLOVÁNÍ ČÍSEL

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka 4. Desetinná čísla 4.1. Řád desetinného čísla V praktickém životě nehovoříme jen o 5 kg jablek, 8 metrů, 7 0 C, ale můžeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých čísel existují

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?

Více

Napsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzenti:

Napsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzenti: Použité symboly: Motivace k probíranému učivu na praktickém příkladu Úvahové úlohy nebo otázky poukazující na další souvislosti probírané látky s běžným životem Připomenutí učiva, na které nová látka navazuje

Více

M - Příprava na 1. čtvrtletku - třídy 1P, 1VK

M - Příprava na 1. čtvrtletku - třídy 1P, 1VK M - Příprava na 1. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 1. čtvrtletní písemnou práci. Obsahuje učivo ze záříaž listopadu. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK M - Příprava na 2. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo listopadu až ledna. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ ŘÍJEN LISTOPAD PROSINEC

Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ ŘÍJEN LISTOPAD PROSINEC Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Počítání s neúplnými čísly 1

Počítání s neúplnými čísly 1 Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, Trojúhelníky a čtyřúhelníky, Výrazy I, Hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC

Více

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi: Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 Autor Ing. Antonín Kučera

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení

Více

PŘIROZENÁ ČÍSLA ÚPRAVA, KTERÁ NEMĚNÍ HODNOTU ČÍSLA

PŘIROZENÁ ČÍSLA ÚPRAVA, KTERÁ NEMĚNÍ HODNOTU ČÍSLA PŘIROZENÁ ČÍSLA ÚPRAVA, KTERÁ NEMĚNÍ HODNOTU ČÍSLA Přičtení nebo odečtení NULY Násobení nebo dělení JEDNIČKOU ZÁKLADNÍ POČETNÍ OPERACE A JEJICH VLASTNOSTI Sčítání Libovolná záměna sčítanců (komutativnost)

Více

Soustavy rovnic pro učební obory

Soustavy rovnic pro učební obory Variace 1 Soustavy rovnic pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy rovnic

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Logaritmy a věty o logaritmech

Logaritmy a věty o logaritmech Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice

Více

6. POČÍTÁNÍ SE ZLOMKY

6. POČÍTÁNÍ SE ZLOMKY . ROZŠIŘOVÁNÍ ZLOMKŮ Hodnota zlomku se nezmění, vynásobíme-li jeho čitatele i jmenovatele stejným nenulovým číslem. Této úpravě se říká rozšiřování zlomků. 0 0 0 0 0 0 0 0 0 0 00 0 KRÁCENÍ ZLOMKŮ Hodnota

Více

Variace. Lineární rovnice

Variace. Lineární rovnice Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je

Více

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku. 5. Racionální čísla 5.1. Vymezení pojmu racionální číslo Dělením dvou celých čísel nemusí vyjít vždy číslo celé, např.: 6 : 3 = 2, ale podíl 2 : 3 není celé číslo. Vznikla tedy potřeba rozšíření celých

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

Soustavy rovnic pro učební obor Kadeřník

Soustavy rovnic pro učební obor Kadeřník Variace 1 Soustavy rovnic pro učební obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například:

Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například: ARNP 1 2015 Př. 5 Základní operace s přirozenými čísly Přesná definice přirozeného čísla je složitá spokojíme se s tím, že o libovolném čísle dokážeme rozhodnout, zda je, či není přirozeným číslem (5,

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

Matematika. 18. října Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

Matematika. 18. října Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Matematika Ondřej Pártl Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze 8. října 206 Ondřej Pártl (FJFI ČVUT) Matematika 8. října 206 / 72 Obsah Čísla 0 20, desítky, sčítání,

Více

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především

Více

1. Pojem celé číslo. 2. Zobrazení celých čísel. Číselná osa :

1. Pojem celé číslo. 2. Zobrazení celých čísel. Číselná osa : C e l á č í s l a 1. Pojem celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek, 8 korun apod). Desetinná čísla

Více

Početní operace se zlomky

Početní operace se zlomky Početní operace se zlomky 1. Sčítání a. zlomků - upravíme zlomky na stejného jmenovatele (rozšiřováním, v některých případech krácením) hledáme společný násobek všech jmenovatelů (nejlépe nejmenší společný

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Dělení celku na části v poměru

Dělení celku na části v poměru Dělení celku na části v poměru Příklad : Rozděl číslo 12 v poměru 2 : 3. Řešení : Celek musíme rozdělit na 2 + 3 = 5 dílů. Jeden díl má velikost 12 : 5 = 2,4 První člen poměru představuje dva díly a proto

Více

Slovní úlohy na procenta

Slovní úlohy na procenta Slovní úlohy na procenta 1. Krev činí v lidském těle přibližně 7,6 % hmotnosti těla. Kolik kg krve je v těle dospělého člověka, který má hmotnost 80 kg? Kolik procent hmotnosti bude činit krev v těle téhož

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Souhrnná prezentace. 14. října 2015. Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

Souhrnná prezentace. 14. října 2015. Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Souhrnná prezentace Ondřej Pártl Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze 4. října 205 Ondřej Pártl (FJFI ČVUT) Souhrnná prezentace 4. října 205 / 70 Obsah Čísla 0 20,

Více

M - Pythagorova věta, Eukleidovy věty

M - Pythagorova věta, Eukleidovy věty M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1 2a) Desetinná čísla celá část desetinná část příklady k procvičení 1. Zapište číslo a) 5 celých 4 desetin, 8 setin b) 8 set 4 desítky 7 jednotek 1 desetina 8 tisícin c) 2 miliony 8 tisíc 9 tisícin. 2.

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

2.5.15 Trojčlenka III

2.5.15 Trojčlenka III .5.15 Trojčlenka III Předpoklady: 0051 Př. 1: Doplň tabulku, která udává vzdálenost, kterou je možné ujít za různé doby velmi rychlou chůzi. Kolik kilometrů ujdeme touto rychlostí za 1 hodinu? doba chůze

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

1. ČÍSELNÉ OBORY

1. ČÍSELNÉ OBORY ČÍSELNÉ OBORY 1. ČÍSELNÉ OBORY Číselným oborem rozumíme číselnou množinu, na které jsou definovány bez omezení početní operace sčítání a násobení, tj. číselný obor je vzhledem k těmto operacím uzavřený.

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

2. Mocniny 2.1 Mocniny a odmocniny

2. Mocniny 2.1 Mocniny a odmocniny . Mocniny. Mocniny a odmocniny 8. ročník. Mocniny a odmocniny Příklad : Vyjádřete jako mocninu : a)... b) (- ). (- ). (- ). (- ). (- ). (- ) c)...a.a.a.a.b.b.b.b d)..a.b e) a. a. a. a Příklad : Vyjádřete

Více

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun. 1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:

Více

DRUHÁ MOCNINA A ODMOCNINA. Irena Sytařová

DRUHÁ MOCNINA A ODMOCNINA. Irena Sytařová DRUHÁ MOCNINA A ODMOCNINA Irena Sytařová Vzdělávací oblast Rámcového vzdělávacího programu Matematika a její aplikace je rozdělena na čtyři tématické okruhy. V tématickém kruhu Číslo a proměnná si ţák

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

Matematika pro 5. ročník

Matematika pro 5. ročník Matematika pro 5. ročník Na této stránce najdete nové učivo, se kterým jste se v průběhu minulých ročníků ještě nesetkali. Pokud si chcete zopakovat počítání se zlomky,písemné sčítání o odčítání, písemné

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz? Téma : Výrazy, poměr (úprava výrazů, podmínky řešitelnosti, algebraické vzorce, hodnota výrazů, poměr, měřítko na mapě) Příklady Zápis výrazů ) Zapište jako výraz: a) součet trojnásobku libovolného čísla

Více