SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek
|
|
- Alois Šmíd
- před 8 lety
- Počet zobrazení:
Transkript
1 SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek
2 Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální Pravoúhlé souřadnice [x, y, z] Eliptické (zeměpisné) souřadnice [λ, φ, H] S-JTSK, S-42 lokální Prostorové / rovinné Typické případy lokalizace V prostoru (6DOF) [x, y, z, pitch, roll, yaw] V rovině (3DOF) [x, y, φ]
3 Popis orientace v prostoru
4 Využití lokalizace Vizualizace polohy mobilního robotu Informace o aktuální pozici a orientaci mobilního robotu pro operátora Autonomní chování mobilního robotu Navigace mobilního robotu Lokalizace měřených dat mobilním robotem Tvorba map prostředí a vizualizace polí (teplota / ionizující záření / atd.)
5 Využití vizualizace polohy
6 Využití autonomní chování?
7 Využití tvorba map
8 Získání lokalizačních údajů Možnosti přímého měření pozice a orientace mobilního robotu jsou omezené Ve většině případů je nutné použít nepřímou metodu výpočtu lokalizačních údajů Snímače vhodné pro účel lokalizace jsou nepřesné a málo robustní Nutnost kombinovat více různých přístupů získání lokalizačních údajů pro zvýšení přesnosti a robustnosti (datová fúze)
9 Základní dělení lokalizace (1) Podle stupňů volnosti 3DOF, 6DOF, Podle prostředí vnější (mimo budovy)/vnitřní (v budově) Podle znalosti vztažného bodu absolutní (např. GNSS)/relativní (např. odometrie) Podle plošné působnosti lokální/globální (např. GNSS) Podle znalosti mapy lokalizace v mapě/bez mapy
10 Základní dělení lokalizace (2) Podle okamžiku vyhodnocení online/offline Podle nutnosti úpravy prostředí vyžadující/nevyžadující úpravu prostředí Podle dynamiky prostředí statické/dynamické (detekce, filtrace změny) Podle způsobu realizace pasivní/aktivní (řízení za účelem zlepšení lokalizace)
11 Základní dělení lokalizace (3) Podle počtu robotů jeden/více Podle místa vyhodnocení interně (v robotu)/externě (mimo robot) Podle typu algoritmu jednokrokový/iterační
12 Absolutní lokalizační metody
13 Absolutní lokalizační metody Primárně měřenou veličinou je vzdálenost (pro určení pozice), nebo úhlové natočení (orientace) Klíčovou vlastností těchto metod je, že nekumulují chyby (výpočet lokalizačních dat nemá integrační/sumační charakter)
14 Satelitní navigace Dodává přímo souřadnice robotu (x, y, z) ve zvoleném souřadném systému, případně i dvě jeho statické rotace (α, β) (DGNSS) Absolutní metoda nevyžadující úpravu prostředí, vhodná jen pro vnější prostředí Nevyžaduje výpočetně náročné zpracování mimo GNSS přijímač Vhodné pro určení globální polohy Po startu je nutná inicializace Problém ztráty signálu
15 Trimble BD982 GPS + GLONASS + GALILEO přijímač Přesnost: 8/15 mm (horiz./vert.), 0,1 (azimut) Latence: < 20 ms Frekvence měření: 50 Hz Hmotnost: 92 g Spotřeba: 2,3 W Rozměry: 100 x 85 x 12 mm Rozhraní: Ethernet, CAN, RS-232
16 Magnetometr Pomocí tříosého magnetometru lze získat průmět vektoru intenzity magnetického pole Země do jednotlivých na sebe kolmých os Problém závislosti inklinace (-65 v ČR) a deklinace (+5 v ČR) na zeměpisné poloze Měření ovlivňováno magneticky měkkými i tvrdými materiály a elmg. rušením
17 Mapa magnetické deklinace
18 Akcelerometr Pomocí tříosého akcelerometru schopného měřit i statická zrychlení (např. kapacitní princip) lze získat průmět tíhového vektoru G do jednotlivých na sebe kolmých os v případě, že na akcelerometr nepůsobí zrychlení způsobené jeho nerovnoměrným pohybem
19 Rozklad vektoru do složek
20 Využití AC magnetického pole V prostoru kolem vysílače je vytvořeno časově proměnné magnetické pole a na základě tohoto pole se vyhodnocuje poloha a orientace vůči základně
21 Polhemus G4
22 Integrační lokalizační metody
23 Dead reckoning Matematická metoda založená na postupné integraci (sumaci) přírůstků pohybu robotu (známé rychlosti a jeho natočení) Měří se 1. nebo 2. derivace polohy/orientace Problém narůstající chyby od počátku lokalizace s narůstajícím počtem kroků (integrování/sumace chyb) Vhodné pouze pro dočasné použití (omezeno vzdáleností nebo časem)
24 Odometrie Lokalizace robotu na základě znalosti změn natočení jeho kol Varianty: aktivní/pasivní Vychází z modelu podvozku robotu (diferenciální, Ackermanův, )
25 Odometrie s = s 1+ s 2 2 φ = s 1 s 2 b φ t = φ t 1 + φ x = s sin φ t 1 + φ 2 y = s cos φ t 1 + φ 2 x t = x t 1 + x y t = y t 1 + y
26 Odometrie zdroje chyb Nedostatečná adheze kol k podkladu prokluz/smyk kol Přesnost (např. linearita) a rozlišení samotného snímače polohy hřídele kola nebo motoru Omezená rychlost vyhodnocovací elektroniky (vypadávání impulsů z enkodéru, ) Algoritmus vyhodnocování polohy, jeho rychlost a vliv zaokrouhlování
27 Odometrie zdroje chyb Vůle v převodech (při umístění snímače polohy na hřídeli motoru) Proměnný průměr kol při opotřebení, zátěži Nerovnosti povrchu, překážky (model počítá s ideálně rovným povrchem)
28 Modifikace odometrie Informace o úhlu natočení není počítána z úhlu natočení kol, ale může být brána z inerciálních snímačů (gyroskopy), případně z magnetometru
29 Využití gyroskopu φ = ω y sinφ + ω z cosφ tanθ + ω x θ = ω y cosφ ω z sinφ ψ = ω y sinφ + ω z cosφ secθ φ = ω y sinφ + ω z cosφ tanθ + ω x dt θ = ω y cosφ ω z sinφ dt ψ = ω y sinφ + ω z cosφ secθ dt
30 Využití inerciálních snímačů Kardanový inerciální navigační systém Snadné vyhodnocování veličin Náročná mechanická konstrukce
31 Využití inerciálních snímačů Bezkardanový inerciální navigační systém (strapdown) Nevyužívá mechanicky stabilizovanou základnu Všechny snímače jsou pevně spojeny s pohybujícím se objektem Náročnější zpracování dat (např. nutnost správně odečíst vektor tíhového zrychlení G podle aktuálního úhlového natočení akcelerometru)
32 xsens MTi-G Kombinace GNSS (GPS) a IMU Statická přesnost: <0,5 (roll/pitch), <1 (yaw) Dynamická přesnost: <1 (RMS) Rozlišení: 0,05 Max. rychlost poskytování dat: 120/512 Hz Přesnost polohy: 2,5 m (CEP)
33 Iterační metody
34 Iterační metody Iterative Closest Point (ICP) Nalezení korespondujících bodů (bodů s nejmenší vzdáleností) E T x, T y, ω = R ω P + T P n i Vhodné pro odstranění translační složky Iterative Matching Range Point (IMRP) Stejný postup jako u ICP, jiné pravidlo korespondence Vhodné pro odstranění rotační složky Iterative Dual Correspondence (IDC) Kombinace ICP (pro translační složku) a IMRP (pro rotační složku)
35 ICP algoritmus 1. Aplikace transformace z předchozí iterace 2. Nalezení korespondujících bodů 3. Výpočet transformace (minimalizace čtverce vzdáleností) 4. Aplikace transformace Zdroj: R. Bedroš: Modul lokalizace mobilního robotu pro systém Player
36 Velodyne HDL64E Počet laserů/detektorů: 64 Počet měřených bodů: /s Zorné pole: 360/27 (horiz./vert.) Rozsah měření: 50 až 120 m Frekvence měření: 5 až 15 Hz Přesnost měření (1σ): 2 cm, 0,1 Vlnová délka laserů: 905 nm Spotřeba: 30 W Rozhraní: Ethernet 100 Mbit/s, RS-232
37 Pravděpodobnostní lokalizace
38 Pravděpodobnostní lokalizace Vše je náhodnou veličinou data ze snímačů, parametry robotu tedy i pozice a orientace robotu Odhad pozice není jeden bod ale funkce pravděpodobnosti
39 Pravděpodobnostní lokalizace
40 Přehled zdrojů dat
41 Dostupné primární veličiny (1) Enkodéry poloha kol (φ 1, φ 2 ) (x, y, α) d dt (v x, v y, ω α ) d dt (a x, a y, ε α ) Tachodynamo rychlost kol (x, y, α) dt (v x, v y, ω α ) (ω 1, ω 2 ) (v x, v y, ω α ) d (a dt x, a y, ε α ) Magnetometr vektor intenzity magn. pole (H x, H y, H z ) ( H, α, β) d dt (ω α, ω β ) d dt (ε α, ε β ) Gyroskop úhlová rychlost (α, β, γ) dt (ω α, ω β, ω γ ) d dt (ε α, ε β, ε γ )
42 Dostupné primární veličiny (2) Akcelerometr vektor celkového zrychlení (x, y, z) dt (v x, v y, v z ) dt (a x, a y, a z ) (a x, a y, a z ) ( A, α, β) GNSS polohový vektor (x, y, z) d dt (v x, v y, v z ) d dt (a x, a y, a z ) Diferenciální GNSS 2x polohový vektor (x 1, y 1, z 1 ), (x 2, y 2, z 2 ) ( A, α, β) d (ω dt α, ω β ) d (ε dt α, ε β ) Laserový skener mračno bodů ( M i,1, λ i,1, φ i,1 ), ( M i,2, λ i,2, φ i,2 ) (x, y, z, α, β, γ)
SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek
SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální
MĚŘENÍ VELIČIN POHYBU V APLIKACÍCH MOBILNÍ ROBOTIKY
Centrum pro rozvoj výzkumu pokročilých řídicích a senzorických technologií MĚŘENÍ VELIČIN POHYBU V APLIKACÍCH MOBILNÍ ROBOTIKY Ing. Tomáš Jílek, Ph.D. (VUT v Brně) Obsah semináře úvod metody měření a jejich
SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP
SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP Bronislav Koska*, Tomáš Křemen*, Vladimír Jirka** *Katedra speciální geodézie, Fakulta stavební ČVUT v Praze **ENKI, o.p.s. Obsah Porovnání metod sběru
Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí
Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý
plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015
SLAM Simultaneous localization and mapping Ing. Aleš Jelínek 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 Obsah Proč sebelokalizace,
Transformace dat mezi různými datovými zdroji
Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace
Mechanika
Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Stanovení odtokových poměrů na vozovce a v jejím blízkém okolí metodou mobilního laserového skenování
Název diagnostiky: Stanovení odtokových poměrů na vozovce a v jejím blízkém okolí metodou mobilního laserového skenování Datum provedení: září 2012 Provedl: Geovap, spol. s r. o. Stručný popis: Zaměření
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH VLASTNOSTÍ MECHANISMU TETRASPHERE Vypracoval: Jaroslav Štorkán Vedoucí práce: prof. Ing. Michael Valášek, DrSc. CÍLE PRÁCE Sestavit programy pro kinematické, dynamické
III. MKP vlastní kmitání
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací
Úvod do mobilní robotiky AIL028
Lokalizace zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor05/cs 21. listopadu 2005 1 Tank Auto 2 Relativní versus absolutní Kalmanův filtr Lokalizace Kde to jsem? Obsah sledování pozice (position
Pohyb holonomního robota bludištěm
Pohyb holonomního robota bludištěm Hlavní charakteristiky robota : Koncepce: holonomní robot řízený třemi DC motory Celkové rozměry : výška 200 mm, průměr 350 mm Napájení: Akumulátory, 6x LiON Sony 18650,
1. Regulace otáček asynchronního motoru - skalární řízení
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
ZÁKLADY ROBOTIKY Úvod do mobilní robotiky
ZÁKLADY ROBOTIKY Úvod do mobilní ky Ing. Josef Černohorský, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren
Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Projekt TA ČR č. TA01020457: Výzkum, vývoj a validace univerzální technologie pro potřeby moderních
ZPRACOVÁNÍ LOKALIZAČNÍCH DAT A JEJICH PŘESNOSTI PROCESSING OF LOCALIZATION DATA AND ITS ACCURACY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM
WORLD GEODETIC SYSTEM 1984 - WGS 84 MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM Pro projekt CTU 0513011 (2005) s laskavou pomocí Ing. D. Dušátka, CSc. Soustava základních geometrických a
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 3/7 Výpočet lokálního geoidu pro body
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Dokumentace ke knihovně InsDevice
UNIVERZITA OBRANY Dokumentace ke knihovně InsDevice Výsledek řešení projektu PRO K-209 Petr Františ 4.1.2012 Programátorská dokumentace pro použití knihovny InsDevice určené k začlenění podpory inerciálních
Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická
Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra
Zadání: Vypočtěte polohu těžiště, momenty setrvačnosti a deviační moment k centrálním osám a dále určete hlavní centrální momenty setrvačnosti, poloměry setrvačnosti a natočení hlavních centrálních os
Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse
ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE PŘÍPRAVA STEREODVOJICE PRO VYHODNOCENÍ Příprava stereodvojice pro vyhodnocení
Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Semestrální projekt Vyhodnocení přesnosti sebelokalizace Vedoucí práce: Ing. Tomáš Jílek Vypracovali: Michaela Homzová,
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VK CZ.1.07/2.2.00/
Robotika Tvorba map v robotice - MRBT 3. března 2015 Ing. František Burian Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 v pojetí mobilní
ZÁKLADY ROBOTIKY Kinematika a topologie robotů
ZÁKLADY ROBOTIKY Kinematika a topologie Ing. Josef Černohorský, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
ESTIMACE ORIENTACE MULTIKOPTÉR
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
Kontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21
OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...
Mechanismy - úvod. Aplikovaná mechanika, 8. přednáška
Mechanismy - úvod Mechanismus je soustava těles, spojených navzájem vazbami. Mechanismus slouží k přenosu sil a k transformaci pohybu. posuv rotace Mechanismy - úvod Základní pojmy. člen mechanismu rám
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných
5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk
5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk Teoretická geodézie 4 FSV ČVUT 2017/2018 LS 1 Celková orientace zemského tělesa, tj. precese-nutace+pohyb pólu+vlastní rotace,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING
Střední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
MODIFIKOVANÝ KLIKOVÝ MECHANISMUS
MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Mechatronické systémy struktury s asynchronními motory
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
Triangulace a trilaterace
Výuka v terénu z vyšší geodézie Triangulace a trilaterace Staré Město pod Sněžníkem 2015 1 Popis úlohy V rámci úlohy Triagulace budou metodami klasické geodézie (triangulace, trilaterace, astronomické
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor)
Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) 22.
Mechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
Moderní technologie v geodézii
Moderní technologie v geodézii Globální navigační satelitní systémy (GNSS) 3D skenovací systémy Globální navigační satelitní systémy (GNSS) Globální navigační satelitní systémy byly vyvinuty za účelem
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Další metody v geodézii
Další metody v geodézii Globální navigační satelitní systémy (GNSS) 3D skenovací systémy Fotogrammetrie Globální navigační satelitní systémy (GNSS) Globální navigační satelitní systémy byly vyvinuty za
PŘÍLOHA. nařízení Komise v přenesené pravomoci,
EVROPSKÁ KOMISE V Bruselu dne 12.10.2015 C(2015) 6823 final ANNEX 1 PART 9/11 PŘÍLOHA nařízení Komise v přenesené pravomoci, kterým se mění nařízení Rady (ES) č. 428/2009, kterým se zavádí režim Společenství
VÝSLEDKYVÝVOJEAUTONOMNÍ MAPOVACÍVZDUCHOLODĚ
VÝSLEDKYVÝVOJEAUTONOMNÍ MAPOVACÍVZDUCHOLODĚ Ing. B. Koska, Ph.D., Ing. J. Jon Katedra speciální geodézie Fakulta stavební České vysoké učení technické v Praze Telč Listopad 2014 Obsah Seznámení s projektem
SOUČASNOST A BUDOUCNOST INERCIÁLNÍCH MEMS SENZORŮ
SOUČASNOST A BUDOUCNOST INERCIÁLNÍCH MEMS SENZORŮ Abstrakt: Jan Čižmár Univerzita obrany, Kounicova 65, 662 10 Brno jan.cizmar@unob.cz Nejrůznější mikro-elektro-mechanické (mikrosystémové) senzory jsou
PROJEKT TVORBY NOVÉHO VÝŠKOPISU ČESKÉ REPUBLIKY
ČESKÝ ÚŘAD ZEMĚMĚŘICKÝ A KATASTRÁLNÍ ZEMĚMĚŘICKÝ ÚŘAD PROJEKT TVORBY NOVÉHO VÝŠKOPISU ČESKÉ REPUBLIKY Mgr. Petr Dušánek ZÚ - zeměměřický odbor Pardubice 1 OBSAH PREZENTACE Litemapper 6800 Stručný popis
ZPRACOVÁNÍ LOKALIZAČNÍCH DAT A JEJICH PŘESNOSTI PROCESSING OF LOCALIZATION DATA AND ITS ACCURACY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Michael Valášek Vedoucí práce: doc. Ing. Václav Bauma, CSc.
Michael Valášek Vedoucí práce: doc. Ing. Václav Bauma, CSc. Zadání bakalářské práce Mechanismus vztlakové klapky křídla 1. Proveďte rešerši možných konstrukčních řešení vztlakové klapky křídla 2. Seznamte
KMS cvičení 6. Ondřej Marek
KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m
Modelování blízkého pole soustavy dipólů
1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento
Úvod do mobilní robotiky AIL028
zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 24. října 2005 1 Krokové motory Stejnosměrné motory Bezkartáčkové motory Elektrické zapojení 2 Optické enkodéry Potenciometry
Zaměření vybraných typů nerovností vozovek metodou laserového skenování
Zaměření vybraných typů nerovností vozovek metodou laserového skenování 1. Účel experimentů V normě ČSN 73 6175 (736175) Měření a hodnocení nerovnosti povrchů vozovek je uvedena řada metod k určování podélných
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,
Pohyb mechanismu Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Doba studia : asi,5 hodiny Cíl přednášky : uvést studenty do problematiky mechanismů, seznámit
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
Ing. Oldřich Šámal. Technická mechanika. kinematika
Ing. Oldřich Šámal Technická mechanika kinematika Praha 018 Obsah 5 OBSAH Přehled veličin A JEJICH JEDNOTEK... 6 1 ÚVOD DO KINEMATIKY... 8 Kontrolní otázky... 8 Kinematika bodu... 9.1 Hmotný bod, základní
Úvod do mobilní robotiky AIL028
SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce
11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky
Specializovaný kurs U3V Současný stav a výhledy digitálních komunikací 11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky 7.4.2016 Jiří Šebesta Ústav radioelektroniky
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
M5. ODHAD A ŘÍZENÍ ORIENTACE MULTIKOPTÉRY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘÍCÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
Souřadnicové výpočty I.
Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok
Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma
Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady a grafická vizualizace k určení souřadnicových systémů výrobních strojů Autor: Doc. Ing. Josef Formánek, Ph.D.
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec
BUDOVÁNÍ PŘESNÉHO BODOVÉHO POLE A GEOMETRICKÉ VLASTNOSTI VIRTUÁLNÍCH REALIZACÍ S-JTSK
GNSS SEMINÁŘ 2018 BUDOVÁNÍ PŘESNÉHO BODOVÉHO POLE A GEOMETRICKÉ VLASTNOSTI VIRTUÁLNÍCH REALIZACÍ S-JTSK 21. ročník semináře Družicové metody v geodézii a katastru Brno, GNSS SEMINÁŘ 2018 Úvod Problematika:
Metodika převodu mezi ETRF2000 a S-JTSK varianta 2
Výzkumný ústav geodetický topografický a kartografický v.v.i. Stavební fakulta ČVUT v Praze Metodika převodu mezi ETRF a S-JTSK varianta Jan Kostecký Jakub Kostecký Ivan Pešek GO Pecný červen 1 1 Úvod
ω JY je moment setrvačnosti k ose otáčení y
ZÁKLADNÍ USPOŘÁDÁNÍ MECHANICKÝCH GYROSKOPŮ POUŽITÝCH NA LETADLE 3 2 1 ω 3 2 1 ω 3 ω Kardanův ávěs ω a) 4 Groskop se dvěma stupni volnosti 3 b) Groskop se třemi stupni volnosti Groskop se otáčí úhlovou
MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE
26. mezinárodní konference DIAGO 27 TECHNICKÁ DIAGNOSTIKA STROJŮ A VÝROBNÍCH ZAŘÍZENÍ MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE Jiří TŮMA VŠB Technická Univerzita Ostrava Osnova Motivace Kalibrace měření Princip
Kinematika tuhého tělesa
Kinematika tuhého tělesa Pet Šidlof TECHNICKÁ UNIVERZITA V LIERCI Fakulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ESF CZ.1.07/2.2.00/07.0247 Reflexe požadavků
GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY
GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY VOJENSKÝ GEOGRAFICKÝ A HYDROMETEOROLOGICKÝ ÚŘAD Popis a zásady používání světového geodetického referenčního systému 1984 v AČR POPIS A ZÁSADY POUŽÍVÁNÍ V AČR
Mobilní mapovací systém
Mobilní mapování Mobilní mapovací systém terminologický slovník VUGTK: zařízení určené k bezkontaktnímu podrobnému měření z mobilního prostředku, které se využívá k inventarizaci nemovitého majetku, monitorování
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku
4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního
Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice
Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů
Technická diagnostika, chyby měření
Technická diagnostika, chyby měření Obsah přednášky Technická diagnostika Měřicí řetězec Typy chyb měření Příklad diagnostiky: termovize ložisko 95 C měření 2/21 Co to je? Technická diagnostika Obdoba
ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ
ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače