Konstrukce na základě výpočtu II
|
|
- Renata Lišková
- před 6 lety
- Počet zobrazení:
Transkript
1 3.3.1 Konstruke n zákldě výpočtu II Předpokldy: Př. 1: Jsou dány úsečky o délkáh,,. Sestroj úsečku o déle =. Njdi oený postup, jk sestrojit ez měřítk poždovnou úsečku pro liovolné konkrétní délky úseček,,. Zkonstruuj úsečku pro konkrétní délky = 6m, = 5m, = 4m. Změř její délku zkontroluj výsledek pomoí numerikého výpočtu. Umíme konstruovt pomoí podonýh trojúhelníků pokusíme se uprvit výrz n rovnost dvou poměrů: = / :. = rovnost poměrů dvou strn (pltí u podonýh trojúhelníků). Získnou rovnost můžeme využít víe způsoy. = úsečky o délkáh, tvoří modrý (n orázku šrfovný) trojúhelník, jemuž je podoný červený trojúhelník se strnmi,. Jednu dvojii strn tvoří strny o délkáh,, druhou strny o délkáh,. = úsečky o délkáh, tvoří modrý (n orázku šrfovný) trojúhelník, jemuž je podoný červený trojúhelník se strnmi,. Jednu dvojii strn tvoří strny o délkáh,, druhou strny o délkáh,. 1
2 Kontrol výpočtem: 6 5 = = = 7,5 m (stejná délk, kterou jsme nměřili). 4 Pedgogiká poznámk: Při postupu s tulí nehávám žákům čs, y podle slovního rozoru poměru smi nkreslili orázek. Že oěm způsoy získáme stejný výsledek, se opět můžeme přesvědčit překrytím orázků (ez výplní). Výrz = je délkou úsečky jejíž velikost se nzývá čtvrtá geometriká úměrná úseček o délkáh,,. Při čtvrté geometriké úměrné (i při mnoh dlšíh příkldeh) postupujeme ve dvou kroíh: Uprvíme zdný vzth n rovnost dvou poměrů. Njdeme vhodnou podonost trojúhelníků, kterými můžeme tkovou situi relizovt. Př. : Vyřeš příkld 4 ještě jednou s jink uprveným výhozím poměrem. Rovnost můžeme vydělit i délkou : = / :. = rovnost poměrů dvou strn (pltí u podonýh trojúhelníků). Získnou rovnost můžeme využít víe způsoy. = úsečky o délkáh, tvoří modrý (n orázku šrfovný) trojúhelník, jemuž je podoný červený trojúhelník se strnmi,. Jednu dvojii strn tvoří strny o délkáh,, druhou strny o délkáh,.
3 Druhá možnost. = úsečky o délkáh, tvoří modrý (n orázku šrfovný) trojúhelník, jemuž je podoný červený trojúhelník se strnmi,. Jednu dvojii strn tvoří strny o délkáh,, druhou strny o délkáh,. Pedgogiká poznámk: Většin žáků si smozřejmě všimne, že jsme získli dv stejné orázky jko v předhozím příkldu, le v opčném pořdí. Pokud do kone hodiny zývá méně než 15 minut, netrvám n tom, y žái dodělávli oě možnosti jdeme dál. Pedgogiká poznámk: U následujíího příkldu nstnou zel určitě kontroverze (spíše u mtemtiky zdtnějšíh žáků), ohledně toho, že jednotková úsečk má mít délku m. Je tře vysvětlit, že délk jednotkové úsečky může ýt zel liovolná (i velikost 1 m si lidé vyrli dle liosti) jediné, o je důležité, jsou poměry osttníh úseček vůči této zvolené déle. Největší rejply můžete neht rýsovt s jednotkovou úsečkou o déle 1 m s tím, že zytek si přepočítjí (úsečky pk mjí poloviční velikosti = m, =,5 m, y yl zhován jejih vzth k jednotkové déle). Př. 3: Je dán úsečk o jednotkové déle úsečky o délkáh,. Nrýsuj: ) úsečku o déle =, ) úsečku o déle d =, ) úsečku o déle e = +. Při rýsování používej úsečky délek = 4m, = 5m. Jednotkovou úsečku kresli o déle m. Výsledky zkontroluj numeriky. 1 ) úsečk o déle = Prolém: Pokud heme použít podonost trojúhelníků, potřeujeme n oou strnáh rovnosti poměry, shází všk jedn délk. Řešení: Známe délku jednotkové úsečky do rovnosti můžeme doplnit jedničku (kterou můžeme dělit dle liosti). 3
4 = = 1 = úsečky o délkáh, tvoří modrý 1 (n orázku šrfovný) trojúhelník, jemuž je podoný červený trojúhelník se strnmi, 1. Jednu dvojii strn tvoří strny o délkáh, 1, druhou strny o délkáh,. 1 Numeriká kontrol (dosdíme do vzthu velikosti úseček vypočteme velikost, protože počítáme v m, doszujeme z jednotkovou délku m): 4 8 = = m = 1,6m = 0,8 násoek jednotkové délky. 5 5 ) úsečku o déle d = Nejdříve uprvíme výrz: d = / : d = úsečky o délkáh, tvoří 1 modrý (n orázku šrfovný) trojúhelník, jemuž je podoný červený trojúhelník se strnmi d,. Jednu dvojii strn tvoří strny o délkáh d,, druhou strny o délkáh 1,. d = 1. d Numeriká kontrol: 1 d d 5 d 10m 5 násoek jednotkové délky = 1 4 = = =. ) úsečku o déle e = + Nejdříve uprvíme výrz: e e = + úsečky o délkáh, + tvoří modrý (n orázku šrfovný) trojúhelník, jemuž je podoný červený trojúhelník se strnmi e,. Jednu dvojii strn tvoří strny o délkáh +,, druhou strny o délkáh e,. = e + / : e =
5 Numeriká kontrol: 4 16 e = e = = d = 1,78m = 0,89 násoek jednotkové délky Pedgogiká poznámk: Délk jednotkové úsečky m je volen kvůli jednoduššímu rýsování i kvůli otížnější početní kontrole. Př. 4: Je dán odélník o strnáh,. Sestroj čtvere o stejném oshu. Pedgogiká poznámk: Můžeme konstruovt všehny vzdálenosti, jejihž vzth se nám podří uprvit n poměr velikostí strn podonýh trojúhelníků (i s využitím jednotkové délky). Shrnutí: Při konstrukíh můžeme využívt i jiné plnimetriké vzore. 5
Konstrukce na základě výpočtu I
.4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli
Konstrukce na základě výpočtu I
..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,
( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:
4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové
4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.
4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi
Podobnosti trojúhelníků, goniometrické funkce
1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší
4.4.3 Kosinová věta. Předpoklady:
443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
Tangens a kotangens
4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku
2.7.7 Obsah rovnoběžníku
77 Osh rovnoěžníku Předpokldy: 00707 Osh (znčk S): kolik míst útvr zujímá, počet čtverečků 1 x 1, které se do něj vejdou, kolik koerce udeme muset koupit, ychom pokryli podlhu, Př 1: Urči osh čtverce o
3.4.12 Konstrukce na základě výpočtu II
3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou
Konstrukce na základě výpočtu III
3.3.3 Konstruk n záklě výpočtu III Přpokly: 0303 Př. : J án oélník o strnáh,. Sstroj čtvr o stjném oshu. Řšní přhozíh příklů vyházlo z vzorů popíšm si zání vzorm. Osh oélníku: S =, osh čtvr S = hlám élku
4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny.
4.3.9 Sinus ostrého úhlu I Předpokldy: 040308 Správně vyplněné hodnoty funke z minulé hodiny. α 10 20 30 40 50 60 70 80 poměr 0,17 0,34 0,50 0,64 0,77 0,87 0,94 0,98 Funke poměr se nzývá sinus x (zkráeně
1.7.4 Výšky v trojúhelníku II
1.7.4 Výšky v trojúhelníku II Předpokldy: 010703 Opkování z minulé hodiny Výšk trojúhelníku: úsečk, která spojuje vrhol trojúhelníku s ptou kolmie n protější strnu. 0 0 v v 0 Př. 1: Nrýsuj trojúhelník
2.7.9 Obsah lichoběžníku
79 Osh lihoěžníku Předpokldy: 00708 Př : Trojúhelník A má osh jednotek Urči oshy trojúhelníků A n ) A ) A ) A Vzore pro osh trojúhelníku: S = osh trojúhelníku se změní, pokud se změní uď strn neo k ní
2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507
58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní
3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204
3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn
4.2.1 Goniometrické funkce ostrého úhlu
.. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α
. V trojúhelníku ABC platí 180. Součet libovolného vnitřního úhlu a jemu odpovídajícího vnějšího úhlu je úhel přímý. /
TROJÚHELNÍK Trojúhelník, vlstnosti trojúhelníků Trojúhelník ABC je průnik polorovin ABC, BCA, CAB; přitom ody A, B, C jsou různé neleží v jedné příme. Trojúhelník ABC zpisujeme symoliky ABC. Symoliky píšeme:
( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205
3..6 Pythgoro ět, Euklidoy ěty II Předpokldy: 305 V kždém proúhlém trojúhelníku s oděsnmi, přeponou pltí: =, =, =, kde je ýšk n přeponu, jsou úseky přepony přilehlé ke strnám,. Kždou z předhozíh ět je
( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308
731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost
Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná
Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem
( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.
4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme
Hledání hyperbol
759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,
3.2.1 Shodnost trojúhelníků I
3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud
4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I
4..7 Zvedení funkcí sinus cosinus pro orientovný úhel I Předpokldy: 40, 40, 404, 406 Prolém s definicí funkcí sin ( ) cos( ) : Definice pomocí prvoúhlého trojúhelníku je π možné použít pouze pro ( 0 ;90
( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.
76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0
5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):
5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit
7.5.8 Středová rovnice elipsy
758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,
KVADRATICKÁ FUNKCE (vlastnosti, grafy)
KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,
Výfučtení: Goniometrické funkce
Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt
2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
7.3.7 Přímková smršť. Předpoklady: 7306
737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni
ANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Hyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
4.4.3 Další trigonometrické věty
443 Další trigonometriké věty Předpoklady: 440 Věty, které ojevíme v této hodině, mohou usnadnit některé výpočty, ale je možné se ez nih (na rozdíl od kosinové a sinové věty) oejít Pedagogiká poznámka:
3.2.7 Příklady řešené pomocí vět pro trojúhelníky
..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí
Obsah rovinného obrazce
Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce
Středová rovnice hyperboly
757 Středová rovnice hperol Předpokld: 7508, 75, 756 Př : Nkresli orázek, vpočti souřdnice vrcholů, ecentricitu urči rovnice smptot hperol se středem v počátku soustv souřdnic, pokud je její hlvní os totožná
2.8.5 Lineární nerovnice s parametrem
2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první
63. ročník matematické olympiády III. kolo kategorie A. Ostrava, března 2014
63. ročník mtemtické olympiády III. kolo ktegorie Ostrv, 23. 26. řezn 204 MO . Nechť n je celé kldné číslo. Oznčme všechny jeho kldné dělitele d, d 2,..., d k tk, y pltilo d < d 2
Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
Integrály definované za těchto předpokladů nazýváme vlastní integrály.
Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,
Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1
Orázková mtemtik D. Šfránek Fkult jerná fyzikálně inženýrská řehová 7 115 19 Prh 1.sfrnek@seznm.z strkt Názorná ovození záklníh geometrikýh vět známýh ze stření školy. 1 Úvo N stření škole se mehniky používjí
Smíšený součin
7..14 Smíšený součin Předpokldy: 713 Je dán ronoěžnostěn LMNOPR. R O P N M L Jeho ojem umíme spočítt stereometrikým zorem: V = S. p Ronoěžnostěn je tké určen třemi ektory, : R O P N M L jeho ojem musí
5.1.5 Základní vztahy mezi body přímkami a rovinami
5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin
56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
5.1.5 Základní vztahy mezi body, přímkami a rovinami
5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin
Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN
Řešte dný nosník: m, m, m, F kn, F kn yhom nl kompletně slové účnky půsoíí n nosník, nejprve vyšetříme reke v uloženíh. ek určíme npříkld momentové podmínky rovnováhy k odu. F F F ( ) ( ) F( ) 8 ( ) 5
Logaritmické rovnice I
.9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme
PODOBNÁ ZOBRÁZENÍ 1. SHODNOST TROJÚHELNÍKŮ 2. PRÁVOÚHLÝ TROJÚHELNÍK
PODOBNÁ ZOBRÁZENÍ Kždá stejnolehlost je podonost ne oráeně! Podonost má vždy koefiient podonosti kldný znčíme jej k k >0 k R zhovává rovnoěžnost podonost shodnost nevlstní podonost úhly poměry Dělíme ji
Větu o spojitosti a jejich užití
0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě
( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
Lineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
7 Analytická geometrie
7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.
2.4.7 Shodnosti trojúhelníků II
2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní
Reprezentovatelnost částek ve dvoumincových systémech
Reprezentovtelnost částek ve dvoumincových systémech Jn Hmáček, Prh Astrkt Máme-li neomezené množství mincí o předepsných hodnotách, může se stát, že pomocí nich nelze složit některé částky Pro jednoduchost
Spojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
2.9.11 Logaritmus. Předpoklady: 2909
.9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).
3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
1.3.5 Řešení slovních úloh pomocí Vennových diagramů II
1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu
( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312
.. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní
3.2.11 Obvody a obsahy obrazců I
..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku
5.2.4 Kolmost přímek a rovin II
5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k
(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
Rovinné obrazce. 1) Určete velikost úhlu α. (19 ) 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 )
Rovinné orze 1) Určete velikost úhlu α. (19 ) 32 103 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 ) x d y x y 3) Vypočítejte osh orze znázorněného ve čtverové síti. (2 500 m 2 ) C A B
Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.
Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno
Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku? ?
Přijímí řízení kemiký rok 07/08 B. stuium Kompletní znění testovýh otázek mtemtik Koš Znění otázk Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 6 6? 6 86 8. Které
3. APLIKACE URČITÉHO INTEGRÁLU
APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít
Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz
PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)
Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
5.2.8 Vzdálenost bodu od přímky
5..8 Vzdálenost bodu od přímky ředpokldy: 507 edgogická poznámk: Tříd počítá smosttně. tnáct minut před koncem se sejdeme n příkld 4 ), který pk řešíme společně. Vzdálenost bodů, je rovn délce úsečky,
2.9.16 Přirozená exponenciální funkce, přirozený logaritmus
.9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]
TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.
TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její
DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník
Rovinná napjatost tenzometrická růžice Obsah:
5. leke Rovinná npjtost tenzometriká růžie Osh: 5. Úvod 5. Rovinná npjtost 5. Tenzometriká růžie 4 5.4 Posouzení přípustnosti nměřenýh hodnot deforme resp. vyhodnoenýh npět 7 strn z 8 5. Úvod Při měření
3.1.3 Vzájemná poloha přímek
3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné
FUNKCE SINUS A KOSINUS
203 FUNKCE SINUS A KOSINUS opis způsou použití: teorie k smostudiu (i- lerning) pro 3. ročník střední škol tehnikého změření, teorie ke konzultím dálkového studi Vprovl: Ivn Klozová Dtum vprování: 2. prosine
8.2.7 Geometrická posloupnost
87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob
Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny
Technická dokumentace Ing. Lukáš Procházka
Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím
1.3.6 Řešení slovních úloh pomocí Vennových diagramů I
1.3.6 Řešení slovníh úloh pomoí Vennovýh igrmů I Přepokly: 010304, řešení rovni Pegogiká poznámk: Řešení slovníh množinovýh úloh pomoí Vennovýh igrmů mně přije zjímvé přínosné z těhto ůvoů: je o první
Neurčité výrazy
.. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu
Repetitorium z matematiky
Rovnie, nerovnie jejih soustvy (lineární, kvdrtiké, irionální) Reetitorium z mtemtiky Podzim Ivn Vulová A) Rovnie jejih řešení Mnoho fyzikálníh, tehnikýh jinýh úloh lze mtemtiky formulovt jko úlohu tyu:
Digitální učební materiál
Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce
Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.
Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
Nerovnosti a nerovnice
Nerovnosti nerovnice Doc. RNDr. Leo Boček, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávcích příležitostí pro ndné žáky studenty v přírodních vědách mtemtice s využitím online prostředí, Operční
Výpočet obsahu rovinného obrazce
Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh
Jak oslabit PC, aby algoritmus: neměl paměťové nároky PC, povede k vyřazení hodnoty z domény proměnné! e f. e f. a b. a b. byl silnější než AC?
N půli esty od AC k PC Progrmování s omezujíími podmínkmi Jk oslit PC, y lgoritmus: neměl pměťové nároky PC, neměnil grf podmínek, yl silnější než AC? Testujeme PC jen v přípdě, když je šne, že to povede
7.2.10 Skalární součin IV
7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně
ALGEBRA, ROVNICE A NEROVNICE
ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu
( ) 1.5.2 Mechanická práce II. Předpoklady: 1501
1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením
Křivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,
ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých
GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU
Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,