3. Charakteristiky a parametry náhodných veličin

Rozměr: px
Začít zobrazení ze stránky:

Download "3. Charakteristiky a parametry náhodných veličin"

Transkript

1 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo charateristiy áhodé veličiy. Obecě je dělíme a parametry polohy a parametry variability. 3. Mediá a vatily Defiice 3. Nechť X je áhodá veličia a F je její distribučí fuce. 00p% vatilem této áhodé veličiy azveme číslo x p taové, že pro daé p œ (0, ) je F(x p ) p lim F( x) p. (3.) + x x p Něteré vatily mají speciálí ozačeí: x = x 0,5... mediá 50% vatil x 0,5... dolí vartil 5% vatil x 0, horí vartil 75% vatil x, =,,...,9... tý decil 0 x, =,,...,99... tý percetil 00 Pozáma 3. Předchozí charateristiu budeme využívat především v matematicé statistice. Přílad. Nechť X je áhodá veličia typu Bi(30;0,4). Jde tedy o biomicé rozděleí s parametry =30 a p=0,4. Podle předchozí části můžeme zjistit jedotlivé vatily: Kvatily 0% 0% 30% 40% 50% 60% 70% 80% 90% Dolí vartil je v tomto případě 0 a horí vartil je 4. Přílad. Zjistěme hodoty příslušých vatilů rozděleí N(0,). 5% 0% 5% 0% 5% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% -,64 -,8 -,04-0,84-0,67-0,5-0,39-0,5-0,3 0,00 0,3 0,5 0,39 0,5 0,67 0,84,04,8,64 3. Modus Defiice 3. Nechť X je disrétí áhodá veličia. Potom bod x azveme modusem áhodé veličiy X, jestliže pro ěj platí PX ( = x ) PX ( = y), y x. (3.) Nechť X je spojitá áhodá veličia s hustotou f. Potom bod x azveme modulem áhodé veličiy X, jestliže pro ěj platí f ( x ) f( x), x x. (3.3) V případě disrétí áhodé veličiy je modusem ejčetější hodota, v případě spojité áhodé veličiy hodota,v íž je hustota maximálí. V případě, že taovéto možosti astávají ve více ež v jedom bodě, jsou všechy taové body prohlášey modusem áhodé veličiy X.

2 Přílad Modusem áhodé veličiy N(0,) je hodota 0, eboť v této hodotě abývá hustota áhodé veličiy maximum.π. Modusem áhodé veličiy Bi(0;0,7) je ejčetější hodota tedy modus je rove Středí hodota áhodé veličiy Teto parametr je jede z ejdůležitějších parametrů, má velé využití v statisticých studiích, proto se jím budeme zabývat obšírěji. Defiice 3.3 Nechť X je áhodá veličia. Řeeme, že tato áhodá veličia má středí hodotu E(X), jestliže absolutě overguje řada resp. existuje itegrál: x. P( X = x ) = x. p, disrétí áhodá veličia EX = i i i i x. f ( x) dx, spojitá áhodá veličia.(3.4) Kovergece řady resp. existece itegrálu v (3.4) je podstatá! Bez důazu uvedeme ěterá tvrzeí o vlastostech středí hodoty! Věta 3. Vlastosti středí hodoty áhodé veličiy. Nechť X je áhodá veličia typu ostata. Potom její středí hodota E(X) existuje a je rova hodotě.. Nechť X je áhodá veličia, c > 0. Nechť dále existuje E(X). Potom áhodá veličia c.x má středí hodotu c. E(X) 3. Nechť X je áhodá veličia, echť dále X 0. Potom E(X) Nechť X, Y jsou áhodé veličiy, echť existuje E(X) a E(Y). Potom má áhodá veličia X + Y středí hodotu E(X) + E(Y). Pozáma 3. Vlastost. v předchozí větě se obecě azývá homogeita, vlastost 4. aditivita, dohromady tyto dvě vlastosti azýváme liearitou. Vlastost 3. se azývá ezáporost zobrazeí. Každé zobrazeí do prostoru azýváme obecě fucioářem. Středí hodota jao zobrazeí E :, je prostor áhodých veliči, je tedy lieárí a ezáporý fucioář a možiě áhodých veliči, teré mají středí hodotu. Přílady a staoveí středích hodot áhodých veliči uvedeme v další apitole. Bez důazu uvedeme důležité tvrzeí. Věta 3.3 Nechť X je áhodá veličia a g: -> je spojitá fuce. Potom g ë X je áhodá veličia, terá má středí hodotu právě, dyž existuje itegrál g(). t f( t) dt. Dále je Eg ( X) = gt. ftdt. Důaz: Provede apřílad v [],[].

3 Pozáma 3. V předchozí větě je dá ávod ja počítat středí hodoty áhodých veliči typu X, (X a ) atd. Taovéto výpočty se provádí sutečě velmi často. Přílad 3. Házíme 3 x micí, jestliže pade 0 x líc zaplatíme 5 Kč, jestliže pade x líc zaplatíme Kč, jestliže pade x líc eplatíme ic a jestliže pade líc 3 x dostaeme 6 Kč. Zjistěte středí hodotu áhodé veličiy padutí líce a středí hodotu výhry! Řešeí: Podle (3.4) musíme ejdříve zjistit pravděpodobosti jedotlivých áhodých jevů padutí lícu x. Výsledy uvedeme v tabulce: 0 3 p 0,5 0,375 0,375 0,5 Tyto hodoty yí využijeme výpočtu středí hodoty áhodé veličiy X: E( X ) = 0.0,5 +.0, , ,5 =,5 Nyí budeme počítat středí hodotu výhry. Výpočet provedeme podle věty 3.3. Nejdříve si musíme upravit výše uvedeou tabulu: 0 3 Výhra při x padutí líce p 0,5 0,375 0,375 0,5 Tyto hodoty již umožňují vypočítat středí hodotu výhry: E( výhry ) = 5.0,5.0, , ,5 = 0,65 Průměrá výhra je tedy -0,65 Kč. 3.4 Rozptyl áhodé veličiy Defiice 3.4 Nechť X je áhodá veličia, pro terou existuje středí hodota. Jestliže má áhodá veličia (X E(X)) středí hodotu, potom VAR( X ) = E( X E( X )) (3.8) azveme rozptylem áhodá veličia X. Číslo σ ( X ) = VAR( X ) se azývá směrodatá odchyla áhodá veličia X. Věta 3.4 Vlastosti rozptylu áhodé veličiy Nechť áhodá veličia X má rozptyl VAR(X). Potom:. VAR(X) = E(X ) (E(X)) (3.9). Nechť dále a œ, potom VAR(a. X ) = a. VAR(X) (3.0) 3. Nechť b œ, potom VAR(X + b ) = VAR(X) (3.) Důaz těchto tvrzeí ebudeme opět provádět. Něteré další vlastosti rozptylu áhodých veliči budeme vyšetřovat v apitole věovaé ezávislosti áhodých veliči.

4 Uvedeme ještě ěteré další typy charateristi áhodých veliči. Přílady a výpočet taovýchto čísel poecháme a závěrečou část této apitoly. Poračováí příladu 3. a) Nejdříve budeme hledat rozptyl áhodé veličiy X. Přímo z tabuly pro staoveí rozděleí pravděpodobostí této áhodé veličiy vyplývá, že E( X ) = 0.0,5 +.0, , ,5 =,5 Využijeme yí vlastost (3.9) a zísáváme : VAR( X ) =,5, 5 =,5, 5 = 0, 5 b) Podobě yí budeme počítat rozptyl výhry: E výhra = ( 5).0,5 + ( ).0, , ,5 = 9,5 Využijeme yí opět vlastosti (3.9) VAR( výhra ) = 9,5 ( 0, 65) = 9,5 0,39065 = 8, Závěr : Náhodá veličia X má hodoty ( ) rozložey relativě ompatě ( tj. a malém itervalu ), proto je její rozptyl malý, zatímco áhodá veličia výhra má hodoty rozložey a podstatě širším itervalu, proto je její rozptyl podstatě větší. 3.5 Momety áhodé veličiy Defiice 3.5 Nechť X je áhodá veličia, œ Í. Potom číslo :. µ ( X ) = E( X ) (3.) azveme -tým mometem áhodé veličiy X, poud existuje.. ν ( X) = E( ( X E( X) ) ) (3.3) azveme -tým cetrálím mometem áhodé veličiy X, jestliže uvedeý výraz existuje µ ( X ) 3. δ ( X ) = (3.4) σ ( X ) azveme -tým ormovaým mometem áhodé veličiy X, mají li všechy výrazy smysl 4. Specielě 3. ormovaý momet azýváme oeficiet šimosti áhodé veličiy X α3( X ) = δ3( X ) (3.5) 5. Specielě dále určujeme oeficiet špičatosti áhodé veličiy X jao α ( X) = δ ( X) 3 (3.6) 4 4 Tyto dva oeficiety hrají velou roli ( respetive jejich tzv. výběrové tvary ) při vyšetřováí ormality dat. Normalita dat je velmi důležitý a záladí pojem. Moho záladích metod je a tomto pojmu založeo apř. regrese, orelace, testováí statisticých hypotéz parametricých, ANOVA atd.

5 3.6 Výpočet středí hodoty a rozptylu ěterých záladích typů áhodých veliči Disrétí áhodé veličiy 3.6. Degeerovaé rozděleí a) E(X) = x 0. = x 0 ; b) VAR(X) = x 0. (x 0 ) = 0 a) EX = xp. + x.( p), 3.6. Alterativí rozděleí b) VAR X = ( x p+ x p ) ( x p+ x p )...., Je li specielě x = a x = 0 je potom a) E(X) = p b) VAR(X) = p.(-p) = p. q Biomicé rozděleí i i i i a) E( X) = i.. p.( p) =. p.. p.( p) = 0 i i j j = p... p.( p) = p..( p+ ( p) ) = p. j= 0 j b) i i i i VAR( X) = i p... p.( p) =. p.. p.. i.. p.( p) + 0 i 0 i i i! i i + i.. p.( p) =. p.. p +. p+. p.( p) = 0 i ( i )!.( i)! i ( ) ( i ) = p.. p +.( ). p.. p.( p) = p. p. = p..( p) = pq.. i Poissoovo rozděleí i λ j λ. e λ λ λ λ a) EX = i. = λ. e. = λ. e. e = λ 0 i! j= 0 j! b) i λ i λ i λ i λ λ. e λ. e λ. e λ. e VAR( X ) = i λ. = λ.. λ. i. + i. = i! i! i! i! i j λ λ λ λ = λ. λ + e. λ. i. = λ. λ + e. λ. ( j+ ). = ( i )! j! = =. + + = λ λ e λ λ λe λ e λ λ λ λ λ λ

6 Spojité áhodé veličiy Rovoměré rozděleí b a+ b a) EX = xf. ( xdx ) = x. dx= b a a b a+ b b) VARX = x. f( xdx ) xf. ( xdx ) = x. dx = b a a a+ b a ab. + b =.( a + ab. + b ) = Cauchyho rozděleí a a) = = π a + x posledě psaý itegrál ale eexistuje. EX xf. ( xdx ) x.. dx, Proto eexistuje ai středí hodota tohoto rozděleí b) Protože eexistuje středí hodota, emůže existovat ai rozptyl Normálí rozděleí a) x µ substituce t. σ EX = xf. ( xdx ) = x.. e dx= x µ = ( σ. t+ µ ).. e. σdt= σ.. π = t σ.. π σ t t = σ. t.. e. σ dt+ µ.. e. σ dt = 0 + µ.= µ σ.. π σ.. π ( x µ ) substituce. σ b) VAR( X ) = ( x µ ). f ( x) dx = ( x µ ).. e dx = x µ = σ.. π = t σ t t t... { }... lim. = σ t e σdt = σ te + e dt = σ π =. π. π N. π = σ Je zřejmé, že středí hodota rozděleí N(0,) je tedy rova 0 a rozptyl tohoto rozděleí je rove.

7 3.7 Smíšeé momety áhodých veliči V této části se zaměříme a případy, dy je uto vyšetřovat více áhodých veliči, teré jsou spolu spojeé v áhodém vetoru buď pomocí sdružeé hustoty ebo pomocí sdružeé pravděpodobostí fuce. Defiice 3.6 Nechť = (X, X,,X ) je áhodý vetor. Nechť dále X. X,..., X r, de r i 0 r r a ri = r, je áhodá veličia, terá má středí hodotu. Potom smíšeým mometem r E X X X. tého řádu áhodých veliči X, X,,X azveme hodotu ( r ). r,..., r Pozáma 3.3 a) V případě, že áhodý vetor = (X, X,,X ) je disrétí se sdružeou pravděpodobostí fucí P, hodota smíšeého mometu r tého řádu rova : r E X. X,..., X = x. x... x. P( X = x, X = x,..., X = x ) (3.7) r r r r r x, x,..., x v uvedeém součtu sčítáme samozřejmě přes všechy možé tice, v ichž je sdružeá pravděpodobostí fuce eulová. b) V případě, že áhodý vetor = (X, X,,X ) je spojitý se sdružeou hustotou f, je hodota smíšeého mometu r tého řádu rova : r r r r r r (.,..., ) = (,,..., )... (3.8). E X X X x x x f x x x dxdx dx Sdružeé momety áhodých veliči budeme vyšetřovat především v situacích, dy je uté zoumat vliv jedotlivých áhodých veliči ( prvů áhodého vetoru ) a sebe. Toto zoumáí budeme provádět především v ásledující apitole a potom dále v matematicé statistice.

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charatersty a parametry áhodýh velč Úolem této aptoly je zavést pomoý aparát, terým budeme dále popsovat pomoí jedoduhýh prostředů áhodé velčy. Taovýmto aparátem jsou tzv. parametry ebo haratersty áhodé

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D. 3. část: Teorie hromadé obsluhy Ig. Michal Dorda, h.d. Zálady teorie pravděpodobosti Náhodý pous je děj, jehož výslede eí ai při dodržeí všech předepsaých podmíe předem zám. Náhodý jev je výsledem áhodého

Více

1. Přirozená topologie v R n

1. Přirozená topologie v R n MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1 3. cvičeí Přílady. (a) (b) (c) ( ) ( 3 ) = Otestujeme itu 3 = 3 = = 0. Je vidět, že posloupost je elesající, tedy z Leibize řada overguje, ( ) Řada overguje podle Leibizova ritéria, ebot je zjevě erostoucí.

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy Pravděpodobost a statistika Výpisky z cvičeí Odřeje Chocholy Ja Štětia 9. listopadu 9 Cviˇceí 3.9.9 Úloha: Máme 4 kostky. Ω = {a, b, c, d}, Ω = 6 4 A = 6 5 4 3 P(A) = 6 5 4 3 6 4 Naejvýš l kostek: m...

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Číselné charateristiy náhodných proměnných Charateristiy náhodných proměnných dělíme nejčastěji na charateristiy polohy a variability. Mezi charateristiy polohy se nejčastěji

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu

Více

Náhodné jevy, jevové pole, pravděpodobnost

Náhodné jevy, jevové pole, pravděpodobnost S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

7. Odhady populačních průměrů a ostatních parametrů populace

7. Odhady populačních průměrů a ostatních parametrů populace 7. Odhady populačích průměrů a ostatích parametrů populace Jak sme zišťovali v kapitole. e možé pro každou populaci sestroit možství parametrů, které i charakterizue. Pro účely základího pozáí e evýzaměší

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

4. Opakované pokusy a Bernoulliho schema

4. Opakované pokusy a Bernoulliho schema 4 Opové pousy Beroulliho schem Pozám: V ěterých příldech v odstvcích 2 3 jsme počítli prvděpodobosti áhodých jevů, teré byly výsledem opoví áhodého pousu Npř házeí dvěm micemi je stejé jo dv hody jedou

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

Matematická statistika (Opravená a rozšířená verze textu přednášky z LS 2001/2002)

Matematická statistika (Opravená a rozšířená verze textu přednášky z LS 2001/2002) Matematicá statistia (Opraveá a rozšířeá verze textu předášy z LS 00/00) Záladí literatura: @D Jaroš Fratiše a oletiv : Pravděpodobost a statistia, VŠCHT, 998. @D Jarušová Daiela : Pravděpodobost a matematicá

Více

P. Girg. 23. listopadu 2012

P. Girg. 23. listopadu 2012 Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt

Více

n-rozměrné normální rozdělení pravděpodobnosti

n-rozměrné normální rozdělení pravděpodobnosti -rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národí iformačí střediso pro podporu vality Problémy s uazateli způsobilosti a výoosti v praxi Dr.Jiří Michále, CSc. Ústav teorie iformace a automatizace AVČR Uazatel způsobilosti C p Předpolady: ormálí

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové: Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

(3n + 1) 3n Příklady pro samostatnou práci

(3n + 1) 3n Příklady pro samostatnou práci ... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/mvt http://cmpfelkcvutcz/ avara/psi

Více

Masarykova univerzita Přírodovědecká fakulta

Masarykova univerzita Přírodovědecká fakulta Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení S1P áhodá roměá vybraá rozděleí PRAVDĚPODOBOST A STATISTIKA áhodá roměá vybraá rozděleí S1P áhodá roměá vybraá rozděleí Vybraá rozděleí diskrétí P Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

2 Diferenciální počet funkcí více reálných proměnných

2 Diferenciální počet funkcí více reálných proměnných - 6 - Difereciálí počet fucí více proměých Difereciálí počet fucí více reálých proměých 1 Spoitost, limity a parciálí derivace Fuce více reálých proměých Defiice Pod reálou fucí reálých proměých rozumíme

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru. Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Statistika pro metrologii

Statistika pro metrologii Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých

Více

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace: . cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

Matematická analýza I

Matematická analýza I 1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická

Více

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

Testujeme hypotézu: proti alternativě. Jednoduché třídění: Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více