Ztráta stability prost podep eného Timo²enkova prutu
|
|
- Milena Renáta Tesařová
- před 6 lety
- Počet zobrazení:
Transkript
1 Ztráta stability prost podep eného Timo²enkova prutu ƒeské vysoké u ení technické v Praze 12. zá í 2016 Vedoucí seminární práce: prof. Ing. Milan Jirásek, DrSc.
2 Osnova
3 Cíl práce Cíl práce Nalézt velikost axiální síly, která zp sobí ztrátu stability ideálního prost podep eného Timo²enkova prutu obecného pr ezu.
4 P edpoklady e²ení úlohy P edpoklady o prutu Prut je staticky ur it podep en (jako prostý nosník) St ednice nedeformovaného prutu je úse ka Prut je materiálov dokonale homogenní, materiál je z hlediska mechanických vlastností izotropní P i p sobení zatíºení se prut deformuje lineárn pruºn Zatíºení p sobící na prut Na prut p sobí pouze vn j²í axiální síla P Vztah mezi zatíºením a deformací prutu Pouºíváme zjednodu²ený vztah mezi zatíºením prutu a jeho deformací - Timo²enkovu teorii ohybu prutu
5
6 P edpoklady e²ení úlohy Zp sob analýzy ztráty stability prutu Pouºijeme teorii 2. ádu.
7 P edpoklady teorie Pr ezy p ímého prutu kolmé na deformovanou st ednici, se p i deformaci pooto í o ur itý úhel - z stávají rovinné Deformované pr ezy nemusí být kolmé na deformovanou st ednici - zobecn ní Eulerovy-Bernoulliovy teorie Pooto ení deformovaných pr ez od my²lené kolmice na deformovanou st ednici je d sledkem p sobení posouvajících sil Q
8 γ γ(x) = θ(x) + ϕ(x) = Q GA 0 ϕ θ θ = w (x) A 0 = A/m θ A - plocha pr ezu m - opravný smykový koecient Pro tvercový pr ez platí m 1.2 Pro kruhový pr ez m 1.11
9 Geometrické rovnice γ(x) = θ(x) + ϕ(x), (1) θ(x) = w (x), (2) κ(x) = ϕ (x), (3) kde κ je n kdy ozna ována jako pdeudok ivost st ednice.
10 Materiálové rovnice Q(x) = GA 0 γ(x), (4) M(x) = EI κ(x), (5) kde E je Young v modul pruºnosti a I je moment setrva nosti pr ezu.
11 Statická rovnice pro ohybový moment M M(x) = Pw(x). (6)
12 Statické rovnice pro posouvající sílu Q - Engesserova formulace Engesser 1889,1891 γ ϕ θ Q(x) = Pθ(x) = Pw (x) = M (x). θ Q Engesser
13 Statické rovnice pro posouvající sílu Q - Haringxova formulace γ ϕ θ Haringx Ztráta stability spirálových pruºin Q(x) = Pϕ(x). θ Q Heringx
14 Srovnání Haringxovy a Engesserovy formulace γ ϕ θ θ Q Heringx Q Engesser
15 Okrajové podmínky w(0) = w(l) = 0 M(x) = Pw(x) = EI ϕ (x) Pw(0) = EI ϕ (0) ϕ (0) = 0 Pw(L) = EI ϕ (L) ϕ (L) = 0
16 ídící rovnice podle Engesserovy formulace P GA 0 w (x) = w (x) ϕ(x), (7) Pw(x) = EI ϕ (x). (8)
17 Kritická síla podle Engesserovy formulace w C 2 0, L, w(0) = w(l) = 0, ϕ C 1 0, L, ϕ (0) = ϕ (L) = 0 w P + EI (1 P w = 0, (9) ) GA 0 w λw = 0, (10) λ = π2 L = P 2 EI (1 P. (11) ) GA 0
18 Kritická síla podle Engesserovy formulace P Eng = IGEA 0π 2 GA 0 L 2 + EI π 2, (12) Kritická síla m ºe v tomto p ípad být pouze kladná, tedy tlaková.
19 ídící rovnice podle Haringxovy formulace Pϕ(x) = GA 0 (x)(ϕ(x) + w (x)), (13) Pw(x) = EI (x)ϕ (x). (14)
20 Kritická síla podle Haringxovy formulace w C 2 0, L, w(0) = w(l) = 0, ϕ C 1 0, L, ϕ (0) = ϕ (L) = 0 w + P(P + GA 0) IGEA 0 w = 0, (15) w λw = 0, (16) λ = π2 L 2 = P(P + GA 0) IGEA 0. (17)
21 Kritická síla podle Haringxovy formulace GA 0 ± G 2 A 2 + 4π2 0 P Har = L IGEA 2 0, (18) 2 Kritická síla je kladná i záporná, tedy tlaková i tahová
22 Porovnání Eulerovy, Engesserovy a Haringxovy tlakové kritické síly pro E/G = 3
23 Porovnání Eulerovy, Engesserovy a Haringxovy tlakové kritické síly pro E/G = 20
24 Tahová kritická síla P Har = GA 0 ± G 2 A 2 + 4π2 0 L IGEA 2 0, 2 P Har GA 0.
25 Tahová kritická síla G = P Har GA 0 ( E 1 2(1 + ν), 0 < ν < 0, 5 G = 2 1 ) E 3 σ Har P Har A 0 ( 1 ( 1 ɛ Har ) ) E
26 Tahová kritická síla James M. Kelly Tension Buckling in Multilayer Elastomeric Bearings
27 Tahová kritická síla S. Caddemi, I. Calió, F. Cannizzaro Tensile and compressive buckling of columns with shear deformation singularities
28 Sendvi ové nosníky a panely
29 Kritická síla podle Engesserovy formulace Huang, Zhang, Rong Buckling Analysis of of Axially Functionally Graded and Non-Uniform Beams Based on Timoshenko Theory M 4 (x)w (4) (x) + M 3 (x)w (3) (x) + M 2 (x)w (x) + M 1 (x)w (x) = 0. (19) M 1 (x) = P [ ( ) ( ) ( ) ] EI (x) + 2EI (x) + EI (x), GA 0 GA 0 GA 0 (20)
30 ídící rovnice podle Haringxovy formulace Pϕ(x) = GA 0 (x)(ϕ(x) + w (x)), (21) Pw(x) = EI (x)ϕ (x). (22)
31 Kritická síla podle Haringxovy formulace w C 1 0, L, w(0) = w(l) = 0, ϕ C 2 0, L, ϕ (0) = ϕ (L) = 0 ( ) P (EI (x)ϕ (x)) 2 = GA 0 (x) + P ϕ(x). (23)
32 Kritická síla podle Haringxovy formulace - varia ní formulace H = {ϕ; L 0 (ϕ ) 2 dx <, ϕ (0) = 0, ϕ (L) = 0} L 0 EI (x)ϕ (x)v (x)dx P 2 L P L ϕ(x)v(x)dx (24) GA 0 (x) ϕ(x)v(x)dx = 0 v(x) H.
33 Kritická síla podle Haringxovy formulace - varia ní formulace P = l ± ( L ) 0 ϕ2 0 ϕ L 1 L ϕ 0 GA 2 EI (ϕ ) L 0. (25) 1 ϕ GA 2 0
34 Kritická síla podle Haringxovy formulace - MKP Úlohu e²me metodou kone ných prvk na H p, kde H p H s bázovými funkcemi ψ i (x), x 0, L a i = 1...n. Platí tedy n ϕ a = α i ψ i, i = 1...n, (26) i=1 kde α i jsou neznámé reálné koecienty. L 0 EI (x)ϕ a(x)ψ i(x)dx P 2 L P L GA 0 (x) ϕ a(x)ψ i (x)dx (27) ϕ a (x)ψ i (x)dx = 0 ψ i (x).
35 Kritická síla podle Haringxovy formulace - Kvadratický problém vlastních ísel - linearizace Ku + P 2 Mu + PRu = 0. (28) v 2 = u, v 1 = Pu Kv 2 PMv 1 Rv 1 = 0 tedy Pv 2 = v 1, KPv 2 = Kv 1
36 Kritická síla podle Haringxovy formulace - Kvadratický problém vlastních ísel - linearizace Získáváme tedy soustavu rovnic pro neznámé vektory v 1 a v 2 ( ) ( ) R K M 0 v = P v, K 0 0 K kde v = (v 1 v 2 ) T.
37 Kritická síla podle Haringxovy formulace - Kvadratický problém vlastních ísel - itera ní e²ení Guo, Lin a Wang Numerical Solutions for Large Sparse Quadratic Eigenvalue Problems Ku = P(λM + R)u. (29) 1) λ = λ 0 P = P 0 2) λ = P 0 P = P 1... n) λ n P n < ɛ
38 Záv ry Záv ry
39 D kuji za pozornost
Dolní odhad síly pro ztrátu stability obecného prutu
ƒeské vysoké u ení technické v Praze 9. února 216 Vedoucí seminární práce: doc. RNDr. Ivana Pultarová, Ph.D. prof. Ing. Milan Jirásek, DrSc. Osnova 1 2 Cíl práce Cíl práce Nalézt velikost síly, která zp
1 Ohyb desek - mindlinovské řešení
1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové
Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
Filigránová stropní deska
RIB RIBTEC RTslab Program 2015 RIB Software AG V15.0 16012015 Filigránová stropní deska Projektinfo Autor: RIB Soubor: C:\Users\Public\Documents\RIB\RIBTEC\Demo\RIBtec\RTslab\Deska s vyložením.xpl Definice
Ztráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
Martin NESLÁDEK. 14. listopadu 2017
Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které
Práce s dokumentem. 1. Úvod do konstruování. 2. Statistické zpracování dat. 4. Analýza zatíºení a nap tí. Aktuální íslo revize: REV_40
Aktuální íslo revize: REV_0 Práce s dokumentem Jednotlivé opravy (revize) jsou v dokumentu Errata ozna eny popiskem REV_a íslo revize ƒíslování revizí je provedeno chronologicky asov, tak jak p icházely
PRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
12. Prostý krut Definice
p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí
na tyč působit moment síly M, určený ze vztahu (9). Periodu kmitu T tohoto kyvadla lze určit ze vztahu:
Úloha Autoři Zaměření FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 2. Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Martin Dlask Měřeno 11. 10., 18. 10., 25. 10. 2012 Jakub Šnor SOFE Klasifikace
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 28. listopadu 2017, 9:2011:20 ➊ (8 bod ) Lze nebo nelze k rozhodnutí o stejnom rné konvergence ady ( 1) n+1 x ln(n) n 6 + n 2 x 4 na intervalu
nazvu obecnou PDR pro neznámou funkci
Denice. Bu n N a Ω R d otev ená, d 2. Vztah tvaru F (x, u(x), Du(x),..., D (n 1) u(x), D (n) u(x)) = 0 x Ω (1) nazvu obecnou PDR pro neznámou funkci u : Ω R d R Zde je daná funkce. F : Ω R R d R dn 1 R
FAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše
Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 6. prosince 2016, 13:2015:20 ➊ (8 bod ) Vy²et ete stejnom rnou konvergenci ady na mnoºin R +. n=2 x n 1 1 4n 2 + x 2 ln 2 (n) ➋ (5 bod ) Detailn
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A 18. dubna 2016, 11:2013:20 ➊ (1 bod) Nalezn te kritický bod soustavy generujících rovnic e x 6y 6z 2 + 12z = 13, 2e 2x 6y z 3 = 6. Uºijte faktu,
Lineární stabilita a teorie II. řádu
Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A st eda 19. listopadu 2015, 11:2013:20 ➊ (3 body) Pro diferenciální operátor ˆL je mnoºina W q denována p edpisem W q = { y(x) Dom( ˆL) : ˆL(y(x))
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu.
Jméno: P íjmení: Datum: 7. ledna 28 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Rotující nádoba Otev ená válcová nádoba napln ná do poloviny vý²ky
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)
Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].
Pruty nam ahan e na vzpˇ er Martin Fiˇser Martin Fiˇ ser Pruty nam ahan e na vzpˇ er
Obsah Úvod Eulerova teorie namáhání prutů na vzpěr První případ vzpěru zde Druhý případ vzpěru zde Třetí případ vzpěru zde Čtvrtý případ vzpěru zde Shrnutí vzorců potřebných pro výpočet Eulerovy teorie
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A
Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Kontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx.
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. Výpo et obsahu rovinných ploch a) Plocha ohrani ená k ivkami zadanými v kartézských sou adnicích. Obsah S rovinné plochy ohrani ené dv ma spojitými
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
SENDVIČOVÉ KONSTRUKCE Zdeněk Padovec
SENDVIČOVÉ KONSTRUKCE Zdeněk Padovec Sendviče ohybově namáhané konstrukce úspora hmotnosti potahy (skiny) namáhané na ohyb, jádro (core) namáhané smykem analogiekiprofilu 20.4.2015 MECHANIKA KOMPOZITNÍCH
2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.
obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku
1 Modelování pružného podloží
1 MODELOVÁNÍ PRUŽNÉHO PODLOŽÍ 1 1 Modelování pružného podloží Úloha mechaniky zemin Modely pružného podloží interakce podloží se základovými konstrukcemi Boussinesqův model (pružný poloprostor) [2]: homogenní
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Tematické okruhy otázek ke státním závěrečným zkouškám DIDC
LINIOVÉ DOPRAVNÍ STAVBY (STAVBY KOLEJOVÉ DOPRAVY) 1. Navrhování železniční trasy (geometrické parametry koleje, vozidlo a kolej, průjezdný průřez, trasování) 2. Navrhování tělesa železničního spodku (navrhování
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. VZPĚR VZPĚR
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. ZÁŘÍ 2013 Název zpracovaného celku: VZPĚR VZPĚR U všech předcházejících druhů namáhání byla funkce součásti ohroţena překročením
2. referát (Pruºnost a pevnost I.)
2. referát (Pruºnost a pevnost I.) 1 Zadání. 1 aº 16 Zadána je prutová konstrukce dle obrázku 1 sestávající se ze t í prut. Oba krajní pruty jsou vzhledem k symetrii ozna eny íslem 2, prost ední prut pak
Teorie her pro FJFI ČVUT řešené úlohy
Tyto úlohy volně doplňují přednášky z kursu teorie her. Rozsah látky a použité značení odpovídá slajdům dostupným na stránce věnované výuce. Γ S S Γ 3 o = o = o 3 = vítězná o o Γ u u(o ) = u(o ) = u(o
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Zkou²ková písemná práce. 1 z p edm tu 01MAB4
Zkou²ková písemná práce. 1 z p edm tu 01MAB4 25/05/2017, 9:00 11:00 ➊ (9 bod ) Nech je dvojrozm rná Lebesgueova míra generována vytvo ujícími funkcemi φ(x) = Θ(x)x 2 a ψ(y) = 7y. Vypo t te míru mnoºiny
Semestrální práce z p edm tu URM (zadání), 2014/2015:
Semestrální práce z p edm tu URM (zadání), 2014/2015: 1. Vyzna te na globusu cestu z jihu Grónska na jih Afriky, viz Obrázek 1. V po áte ní a cílové destinaci bude zapíchnutý ²pendlík sm ující do st edu
Optimalizace vláknového kompozitu
Optimalizace vláknového kompozitu Bc. Jan Toman Vedoucí práce: doc. Ing. Tomáš Mareš, Ph.D. Abstrakt Optimalizace trubkového profilu z vláknového kompozitu při využití Timošenkovy hypotézy. Hledání optimálního
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
5 Navrhování vyztužených zděných prvků
5 Navrhování vyztužených zděných prvků 5.1 Úvod Při navrhování konstrukcí z nevyztuženého zdiva se často dostáváme do situace, kdy zděný konstrukční prvek (stěna, pilíř) je namáhán zatížením, vyvolávajícím
Statika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
Podmínky k získání zápočtu
Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné
5. Aplikace výsledků pro průřezy 4. třídy.
5. plikace výsledků pro průřez 4. tříd. eff / eff / Výsledk únosnosti se používají ve tvaru součinitele oulení ρ : ρ f eff kde d 0 Stěn namáhané tlakem a momentem: Základní případ: stlačovaná stěna: výsledk
Železobetonové nosníky s otvory
Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Železobetonové nosníky s otvory 2 Publikace a normy Návrh výztuže oblasti kolem otvorů specifická úloha přesný postup nelze dohledat v závazných normách
7. Základní formulace lineární PP
p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
Zjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
13. Kvadratické rovnice 2 body
13. Kvadratické rovnice 2 body 13.1. Rovnice x 2 + 2x + 2 m = 0 (s neznámou x) má dva různé reálné kořeny, které jsou oba menší než tři, právě a) m (1, 17), b) m = 2, c) m = 2 m = 5, d) m 2, 5, e) m >
Část 5.8 Částečně obetonovaný spřažený ocelobetonový sloup
Část 5.8 Částečně obetonovaný spřažený ocelobetonový sloup P. Schaumann, T. Trautmann University o Hannover J. Žižka České vysoké učení technické v Praze 1 ZADÁNÍ V příkladu je navržen částečně obetonovaný
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)
Jednotný programový dokument pro cíl regionu (NUTS2) hl. m. Praha (JPD) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován Evropským
Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty
Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:
Transformace Aplikace Trojný integrál. Objem, hmotnost, moment
Trojný integrál Dvojný a trojný integrál Objem, hmotnost, moment obecne ji I Nez zavedeme transformaci dvojne ho integra lu obecne, potr ebujeme ne kolik pojmu. Definice Necht je da no zobrazenı F : R2
Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus
Zkoušková písemná práce č 1 z předmětu 1RMF čtvrtek 16 ledna 214, 9: 11: ➊ 11 bodů) Ve třídě zobecněných funkcí vypočítejte itu x ) n n2 sin 2 P 1 n x) ➋ 6 bodů) Aplikací Laplaceovy transformace vypočtěte
Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů
Jedenácté cvičení bude vysvětlovat tuto problematiku: Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů
5. Aplikace diferenciálního a integrálního po tu v jedné dimenzi ZS 2017/18 1 / 32
5. Aplikace diferenciálního a integrálního po tu v jedné dimenzi Tomá² Sala MÚ UK, MFF UK ZS 2017/18 5. Aplikace diferenciálního a integrálního po tu v jedné dimenzi ZS 2017/18 1 / 32 5.1 Funkce spojité
LANOVÁ STŘECHA NAD ELIPTICKÝM PŮDORYSEM
LANOVÁ STŘECHA NAD ELIPTICKÝM PŮDORYSEM 1 Úvod V roce 2012 byla v rámci projektu TA02011322 Prostorové konstrukce podepřené kabely a/nebo oblouky řešena statická analýza návrhu visuté lanové střechy nad
7. Stropní chlazení, Sálavé panely a pasy - 1. část
Základy sálavého vytápění (2162063) 7. Stropní chlazení, Sálavé panely a pasy - 1. část 30. 3. 2016 Ing. Jindřich Boháč Obsah přednášek ZSV 1. Obecný úvod o sdílení tepla 2. Tepelná pohoda 3. Velkoplošné
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
Obsah. Zpracoval Ctirad Novotný pro matmodel.cz.
Obsah 1 Viskoelasticita 2 1.1 Modely viskoelastického materiálu...................... 2 1.1.1 Maxwell v model............................ 4 1.1.2 Kelvin v model............................. 5 1.1.3 Maxwell
Telefon: Zakázka: Kindmann/Krüger Položka: Pos.2 Dílec: Stropní nosník
RIB Software SE BALKEN V18.0 Build-Nr. 31072018 Typ: Ocel Soubor: Plastická únosnost.balx Informace o projektu Zakázka Popis Položka Prvek Kindmann/Krüger Plastická únosnost Pos.2 Stropní nosník Systémové
Náhradní ohybová tuhost nosníku
Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.
Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)
1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...
. Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.
Prostorové konstrukce. neznámé parametry: u, v w. (prvky se středostranovými uzly)
Konečné prvk pro řešení 3D úloh Prostorové konstrukce neznámé parametr: u, v w volba různého počtu uzlů a neznámých v uzlech možnost zakřivených hran prvků (prvk se středostranovými uzl) Opakování: Geometrické
Sylabus přednášek OCELOVÉ KONSTRUKCE. Princip spolehlivosti v mezních stavech. Obsah přednášky. Návrhová únosnost R d (design resistance)
Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K34OK 4 kredity ( + ), zápočet, zkouška Prof. Ing. František Wald, CSc., místnost B 63. Úvod,
Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk
České vysoké učení technické v Praze Stavební fakulta Katedra mechaniky Fuzzy množiny, fuzzy čísla a jejich aplikace v inženýrství Jaroslav Kruis, Petr Štemberk Obsah Nejistoty Teorie pravděpodobnosti
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
Přednáška 10. Kroucení prutů
Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení
Uložení potrubí. Postupy pro navrhování, provoz, kontrolu a údržbu. Volba a hodnocení rezervy posuvu podpěr potrubí
Uložení potrubí Postupy pro navrhování, provoz, kontrolu a údržbu Volba a hodnocení rezervy posuvu podpěr potrubí Obsah: 1. Definice... 2 2. Rozměrový návrh komponent... 2 3. Podpěra nebo vedení na souosém
( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku
ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu
Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání
Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Klasifikace rámů a složitějších patrových konstrukcí
Klasifikace rámů a složitějších patrových konstrukcí Klasifikace závisí na geometrii i zatížení řešit pro každou kombinaci zatížení!! 1. Konstrukce řešené podle teorie 1. řádu (α > 10): F α 10 Pro dané
Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné