Autoři:. Plánička, M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: U prutu čtvercového průřezu o straně h vyrobeného zedvoumateriálů,kterýjezatížensilou azměnou teploty T (viz obr. 1) vyšetřete a zakreslete reakce,rozloženívnitřnísíly N,napětí σaprodloužení l podél jeho osy, je-li dáno: a=0.5m, b=0.3m, c =0.m, h = 0mm, α 1 = 1. 10 5 C 1, α = 1.65 10 5 C 1, =1.5kN, T =40 C, E 1 =.1 10 11 Pa, E =1. 10 11 Pa. a b c E 1, α 1 E, α Obr.1 N [N] σ [MPa] l [mm] A a b c B C D 0.5 Obr. 0.46 1500 3.75 0.59 Jako první vyšetříme reakce, které vznikají vevetknutíprutu.vzhledemktomu,žeje prut namáhán pouze osovou silou, vzniká ve vetknutívbodě Apouzereakce.Jejísměr volmenapř.vsouladusobr..velikosttéto reakce určíme ze silové podmínky rovnováhy vesměruosyprutu =0 = =1500N. (1) V dalším kroku řešení vyšetříme rozložení vnitřních statických účinků vznikajících v libovolném řezu v důsledku působení vnějšího zatížení. Vzhledem k charakteru vnějšího zatížení bude v libovolném řezu kolmém na osu prutu vznikat pouze normálová vnitřní síla N. Její velikost určíme z rovnováhy vnitřních sil vřezusvnějšímiúčinkypojednéstraněřezu. Díky tomu, že se vnější zatížení podél prutu mění, nebude zřejmě možné hledanou vnitřní sílu N popsat podél celého prutu stejnou funkcí.zatímtoúčelemjevhodnérozdělitprutna příslušný počet částí tak, aby v každé části byla vnitřní síla popsána jedinou funkcí. Stejná úvaha bude nutná i při vyšetřování normálového napětí σ, kdy ale samozřejmě počet částí, na kterých bude napětí popsáno jedinou 1
Autoři:. Plánička, M. Zajíček, V. Adámek funkcí,nemusíobecněsouhlasitspočtemčástívpřípaděnormálovésíly N.Vtomtopřípadě je při vyšetřování N i σ nutné díky proměnnému zatížení a konstantnímu průřezu pruturozdělitprutpouzenačásti(část ACa CDnaobr.). Nyní tedy z podmínek rovnováhy mezi vnitřními účinky v daném řezu a vnějšími účinky pojednéstraněřezustanovímefunkce N 1 a N popisujícívnitřnísílyvjednotlivýchpolích prutu. Poloha obecného řezu, v němž budeme formulovat příslušné podmínky rovnováhy, bude přitom dána souřadnicí, kterou v každém poli kótujme například z volného konce prutu,vizobr.. PoleI: 0,c A B N () 1 Vedeme řez v obecném místě a zaorientujeme vnitřní sílu N 1 vesměruvnějšínormálykřezu(vizobr.3). Nyní formulujeme podmínku rovnováhy pro levou nebo pravou část prutu, z obou podmínek musíme získat stejnoufunkci N 1 (): Podmínka rovnováhy na levé části prutu: Obr.3 N () 1 N 1 ()=0 N 1 () = () N 1 () = 1500 1500=0N. Podmínka rovnováhy na pravé části prutu: N 1 ()=0. (3) Jakjezřejmé,pomocíoboupodmínekrovnováhyzískámeshodně N 1 ()=0N.Analogickýmzpůsobemvyšetřímevnitřnísíluvčásti AC,tj.funkci N (). PoleII: c,abc. A B N () N () D Podmínka rovnováhy na levé části prutu(viz obr. 4): N ()=0 N ()= =1500N. (4) Podmínka rovnováhy na pravé části prutu: N () =0 N ()==1500N. (5) Výsledné rozložení vnitřní síly N je zakresleno na obr.. Poznámka: Zápis vnitřních sil jako funkcí proměnné, Obr.4 tj. N 1 ()an (),jevtomtopřípaděpouzeformální, neboť, jak jsme si ověřili, vnitřní síla na daném intervalu je rovna příslušné konstantě, tj. N 1 ()=N 1 =0N, N ()=N =1500N.
Autoři:. Plánička, M. Zajíček, V. Adámek V následujícím kroku stanovíme velikosti napětí v jednotlivých částech prutu jako intenzitu příslušných vnitřních sil. PoleI: 0,c PoleII: c,abc σ 1 ()= N 1() A =0 A =0MPa. (6) σ = N () A = h =1500 0.0 =3.75 106 Pa=3.75MPa. (7) Rozložení napětí je opět zakresleno do obr.. Na závěr řešení vyšetříme rozložení posuvů podél prutu a jeho celkové prodloužení l. Rozložení prodloužení(posuvů) podél osy prutu stanovíme pomocí určení prodloužení prutuvcharakteristickýchbodech A,B,Ca D.Vzhledemktomu,žemezitěmitobody jevnitřnísílakonstantní(vizvyšetřenísil N 1 a N )aprutmákonstantníprůřezimechanické vlastnosti, bude prodloužení mezi těmito body rozloženo lineárně. Při stanovování lvjednotlivýchbodech A,B,Ca Dmusímejižbrátvúvahuivlivteplotyarozdílné vlastnosti obou materiálů. Jezřejmé,že l A =0(vetknutíprutu).Prodloužení(posuv) l B vbodě Burčíme jakoprodlouženíčásti ABvlivempůsobenísíly azměnyteploty T,tj. l B = N a E 1 A aα 1 T= a E 1 h aα 1 T= 1500 0.5 =.1 10 11 0.0 0.5 1. 10 5 40=.5 10 4 m=0.5mm Výslednéprodloužení(posuv) l C vbodě Curčímejakosoučetprodloužení l B aprodlouženíčásti BCvlivem a T,tj. l C = l B N b E A bα T= =.5 10 4 1500 0.3 1. 10 11 0.0 0.3 1.65 10 5 40=4.6 10 4 m=0.46mm anakonecprodloužení(posuv) l D vbodě Durčímejakosoučet l C aprodlouženíčásti CD vlivem změny teploty l D = l C cα T=4.6 10 4 0. 1.65 10 5 40=5.9 10 4 m=0.59mm (10) Výsledné rozložení prodloužení l je znázorněno na obr.. (8) (9) 3
Autoři:. Plánička, M. Zajíček, V. Adámek Příklad : Pro prut znázorněný na obr. 1 vyšetřete a nakreslete průběh účinků vnitřních sil podél prutu, průběh napětí podél prutu a průběh prodloužení prutu, je- -li dáno: a = 600mm, b = 500mm, c = 700mm, d 1 = 30mm, d =15mm, 1 =5kN, =70kN, E= 10 5 MPa. d 1 a c b d 1 N [kn] 45 σ [MPa] 63.7 l [mm] A 3 5 35.4 141.5 a B d 1 0.174 C c 1 Obr. b d 0.09 D 0 0 0 0.617 1 Obr.1 Při řešení zadaného příkladu je nutné nejprve vyšetřit všechny neznámé reakce, které spolu se zatížením splňují podmínky statickérovnováhytělesa.jakjevidětnaobr.1, všechnyvnějšízatěžujícíúčinky,síly 1 a,působínajednénositelce.jetedyzřejmé, žeidoposudneznámáreakce,kterápůsobívevetknutí,ležínadanénositelce-ose prutu. Její směr můžeme zvolit libovolně, dálevizvolbadleobr..prouvedenítělesa do stavu statické rovnováhy tedy postačujeurčitreakce zesilovépodmínky rovnováhy ve směru osy prutu 1 =0 = 1 = 45kN.(1) Pomocí metody řezu následně vyšetříme vnitřní silové účinky vyvolané vnějšími silami 1, a (reakce počítáme mezi vnější účinky). Splňuje-li těleso podmínky statické rovnováhy, rovnice(1), pak v libovolném myšleném řezu působí vnitřní síly, které uvádějí danou část tělesa do stavu statické rovnováhy. Vzhledem k vnějšímu zatížení je opět zřejmé, že i výslednice vnitřních silových účinků musí působit na stejné nositelce jako zátěžné síly. Směr vnitřní síly můžeme volit libovolně. Volme ji však tak, aby směřovala ve směru vnější normály k povrchu řezu. Tato síla, bude-li potom kladná, způsobuje v místě řezu tahové napětí. 4
Autoři:. Plánička, M. Zajíček, V. Adámek Mezi místy, kde působí osamělé silové účinky a místy, kde dochází ke změně průřezu, bude zřejmě možné popsat hledané vnitřní účinky různými funkcemi. V souladu s tímto rozdělímetělesona3části,vizobr.. PoleI: 0,b d N () 1 Proveďme tedy řez v libovolném místě intervalu (0,b)(vizobr.3).Potomzpodmínky rovnováhy mezi vnějšími a vnitřními silami platí Obr.3 N () 1 1 N 1 () 1 =0 N 1 ()= 1 =5kN, () nebo N 1 ()=0 N 1 ()= = 5kN.(3) Vnitřní síly na zbývajících intervalech určíme obdobně: PoleII: b,c RA N () N () 1 nebo N () 1 =0 N ()= 1 =5kN, (4) N ()=0 N ()= = 5kN. (5) Obr.4 PoleIII: c,ba RA N () 3 N 3 () 1 =0 N 3 ()= 1 = 45kN,(6) nebo N () 3 1 N 3 ()=0 N 3 ()= = 45kN. (7) Obr.5 Výsledné rozložení vnitřních sil podél osy prutu je zobrazeno na obr.. 5
Autoři:. Plánička, M. Zajíček, V. Adámek Nyní můžeme přistoupit k vyšetření napětí v jednotlivých částech prutu. Při jejich stanovení uvažujme, že vnitřní síly jsou rovnoměrně rozložené po jednotlivých průřezech. Potom bude platit: PoleI: 0,b PoleII: b,c PoleIII: c,ba σ 1 ()= N 1() A 1 = 4N 1() πd σ ()= N () A = 4N () πd 1 = 141.5 MPa (8) = 35.4 MPa (9) σ 3 ()= N 3() A = 4N 3() πd 1 = 63.7 MPa (10) Ve vztazích(8) až(10) odpovídá kladná hodnota tahovému napětí a záporná tlakovému napětí.průběhnapětípodélosyprutujeopětzobrazennaobr.. Pro úplné splnění zadání příkladu nám ještě zbývá stanovení prodloužení prutu. Protože na jednotlivých částech prutu 1, a 3 je vždy poměrná deformace konstantní, můžeme prodloužení těchto částí vypočítat jako l 1 = σ 1() E b=0.3537mm, l = σ () (c b)=0.0354mm, E l 3 = σ 3() (ab c)= 0.174mm. (11) E Uvážíme-li,ževzhledemkvetknutílevéstranyprutuvbodě Ajeprodloužení l A =0, můžeme pro prodloužení v ostatních bodech prutu psát: BodB: =ab c BodC: =b BodD: =0 l B = l 3 = 0.174mm (1) l C = l 3 l = 0.09mm (13) l D = l 3 l l 1 =0.617mm. (14) Průběh prodloužení mezi těmito body je lineární, viz obr. 6
Autoři:. Plánička, M. Zajíček, V. Adámek Příklad 3: Ocelovýprutkruhovéhoprůřezu d=15mmal 0 =800mmjevyrobenzocelismodulem pružnosti E= 10 5 MPaasmezíkluzu Re=40MPa.Jakoumaimálnísilou může být zatížen, má-li být bezpečnost vůči mezi kluzu k = 1.5? Jaké bude poměrné prodloužení ε a absolutní prodloužení prutu l? Zadaná hodnota meze kluzu Re a k ní vztažená hodnota součinitele bezpečnosti k vypovídá o tom, že se jedná o houževnatý materiál. V takovém případě pak určíme dovolené napětí jako σ D = Re k =40 =160MPa. (1) 1.5 Toto napětí odpovídá maimální síle, kterou lze ocelový prut namáhat a jejíž velikost určíme ze vztahu = σ D A=σ D πd 4 =160 3.14 15 4 =8.74kN. () Dálepomocíhodnoty σ D apomocíhookeovazákonaprojednoosounapjatosturčímeodpovídající poměrnou deformaci a pomocí ní absolutní prodloužení Příklad 4: ε= σ D E = 160 10 5=8 10 4 (3) l=ε l 0 =0.64mm. (4) Stanovte průměr d článku řetězu(viz obr. 1), je- -lidovolenézatíženířetězu =50kN.Řetězje 00 11 00 11 vyrobenzoceliomezikluzu Rp0.=500MPa, 01 01 součinitelbezpečnostimábýt k=. d Obr.1 Vzhledem ke geometrii článku řetězu(viz obr. 1) přenáší každý ze dvou průřezů článku sílu.tatovnějšísílavyvolávnitřnísílu N=, kteréodpovídánapětí σ= N A. (1) Z pevnostní podmínky plyne, že toto napětí musí být nejvýše rovno dovolenému napětí σ D,tj. σ= σ D, () 7
Autoři:. Plánička, M. Zajíček, V. Adámek kde hodnotu dovoleného napětí určíme ze vztahu Podosazení(1)a(3)do()můžemepsát σ D = Rp0. k. (3) N A = Rp0. k A = Rp0. k A= k Rp0.. (4) Jezřejmé,žeobsahprůřezu Amůžemevyjádřitjako A= πd.potomzrovnice(4)plyne 4 k d= =11.8mm =11.3mm. (5) πrp0. Příklad 5: Pomocí dvou zděří mají být spojena dvě absolutně tuhá tělesa tak, aby mezi nimi vznikla přítlačná síla =.10 4 N (viz obr. 1). Vzdálenost absolutně tuhých kolíkůje l=300mm.jakámusíbýtvzdálenost otvorů nezatížených zděří, je-li dáno: h=30mm, b=5mm, E= 10 5 Nmm. Předpokládejme, že se vliv přítlačné síly rovnoměrně přenese na horní a dolní zděř. Sílu 1 působícínajednuzděřlzepotom určit jako 000000000000000 111111111111111 0000000000000000 1111111111111111 0000000000000000 1111111111111111 r d 000 111 000 111 000 111 000 111 b l Obr.1 1 = =1 104 N. (1) Abymohlavobouzděříchvzniknouttakovásíla,musísekaždázděřprodloužito l. Označíme-lipůvodnídélkuzděřepředdeformací l 0,lzepropoměrnéprodloužení εpsát l=εl 0 = ε(l l). () Vzhledemktomu,žeje l << l,můžeme lvůčidélce lzanedbatarovnici()takpřepsat do tvaru l=εl= σ E l= 1l =0.1mm. (3) Ebh Vzdálenostotvorůzděřípředmontážímusítedybýt l 0 =99.9mm. h 8