Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 1



Podobné dokumenty
Test studijních předpokladů Varianta B3 FEM UO, Brno x 2 vyhovují všechna x R, pro která platí. E: 2y. je pro přípustné hodnoty a, b roven

Test studijních předpokladů Varianta B4 FEM UO, Brno

Test studijních předpokladů Varianta D4 FEM UO, Brno

Test studijních předpokladů Varianta B2 FEM UO, Brno

(x 3)(x + 2) 3 + x C: x 2. jsou všechna x R, pro která platí:

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto.

FVL UO, Brno 2017 str. 1

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Jsem-li nemocen, léčím se.

Test studijních předpokladů Varianta A1 FEM UO, Brno

jsou všechna reálná čísla, pro která platí: D: x ( ; 2) ( 2; 2) E: x ( 2; 2)

FVL UO, Brno 2018 str. 1

Přijímací test studijních předpokladů

jsou všechna reálná čísla, pro která platí: E: x ( ; 2) (2; )

FVL UO, Brno 2018 str. 1

Příklad 1. Kolik přirozených čísel menších než 1000 lze vytvořit z číslic 0, 1, 2, 4, 8, jestliže se číslice mohou opakovat?

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

Test studijních předpokladů Varianta C3 FEM UO, Brno

D: x ( ; 2) (2; ) E: x ( 2; 2

FVL UO, Brno 2016 str. 1

FVL UO, Brno 2017 str. 1

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!

Úlohy domácí části I. kola kategorie C

x jsou všechna reálná čísla x, pro která platí: log(x + 5) D: x ( 5; 4) (4; ) + x+6

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

MATEMATIKA VYŠŠÍ ÚROVEŇ

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Přijímací zkouška na MFF UK v Praze

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.

Soustavy rovnic a nerovnic

jsou všechna reálná čísla x, pro která platí: + x 6

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

. Určete hodnotu neznámé x tak, aby

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

MATEMATICKÉ DOVEDNOSTI

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

MATEMATIKA ZÁKLADNÍ ÚROVEŇ

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

Přijímací test studijních předpokladů

Matematický KLOKAN : ( ) = (A) 1 (B) 9 (C) 214 (D) 223 (E) 2 007

----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice

MATEMATIKA. základní úroveň obtížnosti DIDAKTICKÝ TEST MAGZD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! Didaktický test obsahuje 20 úloh.

Otázky z kapitoly Základní poznatky

CVIČNÝ TEST 23. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut.

Přijímací zkouška z matematiky 2017

Přijímací zkouška na MFF UK v Praze

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.

Cvičné texty ke státní maturitě z matematiky

MATEMATIKA vyšší úroveň obtížnosti

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

U každé úlohy je uveden maximální počet bodů.

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Rovnice s neznámou pod odmocninou a jejich užití

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

MATEMATIKA MAMZD16C0T01 DIDAKTICKÝ TEST SP-2 SP-2-A SPUO-2 SPUO-3-A

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Matematický KLOKAN 2007 kategorie Junior (A) 8 (B) 9 (C) 11 (D) 13 (E) 15 AEF? (A) 16 (B) 24 (C) 32 (D) 36 (E) 48

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Algebraické výrazy-ii

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2013

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

Matematika. Až zahájíš práci, nezapomeò:

MATEMATIKA V ÚPRAVĚ PRO NESLYŠÍCÍ DIDAKTICKÝ TEST 12 SP-3-T SP-3-T-A

MATEMATICKÉ DOVEDNOSTI

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

DOVEDNOSTI V MATEMATICE

Test č.2. Příjímací zkoušky z matematiky. Matematika s Jitkou - přijímačky na SŠ 1

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

MATEMATIKA základní úroveň obtížnosti

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

CVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Cvičné texty ke státní maturitě z matematiky

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A

CVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 16. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Druháci a matematika VII. Násobíme, dělíme do 20

CVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Test Zkušební přijímací zkoušky

DOVEDNOSTI V MATEMATICE

Transkript:

Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 1 Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): V týmu není Pavel nebo není Václav. A: V týmu je Pavel nebo není Václav. D: V týmu není Pavel ani Václav. B: Jestliže v týmu je Pavel, není v týmu Václav. E: V týmu není Pavel a je Václav. C: Jestliže v týmu není Pavel, je v týmu Václav. Příklad 2. Ve skoku do dálky Cyril nebyl horší než David, ale prohrál s Alfou. David porazil Evžena i Bohumila. Vyberte pravdivé tvrzení, které vyplývá z uvedených informací: A: Evžen byl poslední. D: Cyril obsadil 3. místo. B: Evžen nebyl poslední. E: Bohumil byl poslední. C: Alfa zvítězil. Příklad 3. Pohádkový Honza došel na křižovatku čtyř cest, z nichž pouze jedna vede k cíli. Na začátku každé z nich je cedule s nápisem (nápis na ceduli u 1. cesty vystihuje níže uvedená 1. věta, nápis na ceduli u 2. cesty vystihuje níže uvedená 2. věta,...): 1: Čtvrtá cesta není správná. 2: Tato cesta je správná. 3: Jestliže tato cesta není správná, pak je správná druhá cesta. 4: Tato cesta není správná. Z nápisů na cedulích je právě jeden nepravdivý. Která z cest vede k cíli? A: Třetí. D: Druhá. B: Čtvrtá. E: Nelze určit. C: První. Příklad 4. Jsou dány věty: Hana obdivuje některé herce (avšak nikoho jiného). Tomáš je herec. Vyberte tvrzení, které z výše uvedených vět logicky vyplývá: A: Pokud je Tomáš herec, Hana ho neobdivuje. B: Pokud je Tomáš herec, Hana ho obdivuje. C: Pokud Tomáš není herec, Hana ho neobdivuje. D: Hana obdivuje Tomáše. E: Hana neobdivuje Tomáše. Příklad 5. Pravidlo: Student může vykonat zkoušku tehdy a jen tehdy, splnil-li podmínky zápočtu. Vyberte logicky správný výklad tohoto pravidla: A: Student nesplnil podmínky zápočtu a nemůže vykonat zkoušku. B: Student splnil podmínky zápočtu a může vykonat zkoušku, nebo nesplnil podmínky zápočtu a zkoušku vykonat nemůže. C: Splní-li student podmínky zápočtu, může vykonat zkoušku. D: Jestliže student nemůže vykonat zkoušku, znamená to, že nesplnil podmínky zápočtu. E: Nesplní-li student podmínky zápočtu, nemůže vykonat zkoušku.

Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 2 Příklad 6. V níže uvedené tabulce jsou zobrazeny vzájemné výsledky týmů, které se zúčastnily jistého sportovního turnaje. Kritéria pro umístění jsou podle významu v tomto pořadí: počet bodů (za výhru tři body, za remízu jeden bod, za prohru nula bodů), výsledek vzájemného zápasu, vyšší počet vstřelených branek v celém turnaji. Kdo se umístil na druhém místě? Anglie Brazílie Česko Dánsko Finsko Anglie xxx 0:0 2:2 1:0 2:1 Brazílie 0:0 xxx 3:0 1:3 0:1 Česko 2:2 0:3 xxx 6:1 1:1 Dánsko 0:1 3:1 1:6 xxx 0:0 Finsko 1:2 1:0 1:1 0:0 xxx A: Anglie D: Česko B: Brazílie E: Finsko C: Dánsko Příklad 7. Určete 10 % z 3 5 a 20 % z 1 4. A: 0,05 a 0,05 D: 0,08 a 0,06 B: 0,06 a 0,04 E: 0,05 a 0,08 C: 0,06 a 0,05 Příklad 8. Které číslo patří na místo otazníku? A: 5 D: 6 B: 10 E: 8 C: 11 Příklad 9. V hotelu se ubytovalo 20 hostů. Česky jich mluvilo o čtyři více než anglicky. Jedním nebo žádným z těchto dvou jazyků mluvilo 15 hostů. Alespoň jedním z těchto dvou jazyků mluvilo 17 hostů. Kolik hostů mluvilo česky? A: 11 D: 13 B: 8 E: 14 C: 15 Příklad 10. Doplňte číslo na místo otazníku. A: 3 D: 5,5 B: 3,5 E: 4,5 C: 4

Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 3 Příklad 11. Na kterém z provazů zůstane uzel, zatáhnete-li za jeho konce? A: B: C: D: E: Příklad 12. Která z uvedených sítí není sítí krychle? Příklad 13. Kterým bludištěm vede nejkratší cesta? Příklad 14. Standardní hrací kostka (tj. součet ok na protilehlých stěnách je roven 7) se kutálí po vyznačené dráze. Která stěna bude vespod, až kostka dorazí na pole označené křížkem? Příklad 15. Bílé dílky skládačky jsou upevněny černými šroubky, v nichž se mohou otáčet. Jaký digitální kód lze vhodným otočením bílých dílků získat?

Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 4 Příklad 16. Doplňte obrázek, který logicky následuje. Příklad 17. Doplňte chybějící řádek do schématu: A: B: C: D: E: Příklad 18. Doplňte řadu: Příklad 19. Kolik čtverců bude v obrazci na pozici β? α β A: 31 B: 23 C: 21 D: 35 E: 34 Příklad 20. Který kód nepatří mezi ostatní? A: NKGTJMOYW B: EZKPBGNXL C: FTEOJGMIN D: INVRGDYHK E: NHFJORVMZ

Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 5 Příklad 21. Definičním oborem funkce y = 1 x (2 x)(x+1) jsou všechna x R, pro která platí A: x 1, 2) D: x 1, 2) B: x (, 1) (2, ) E: x 1, 1 2, ) C: x ( 1, 1 (2, ) Příklad 22. Výraz A: x x+y ( ) ( 2 x + 1 x+y 3 : y x + ) y x+y je pro přípustná x, y roven D: 2 B: 2 E: x+y C: 2x ( a 5 3 b 3 2 ) ( : a 3 b 5 2 Příklad 23. Výraz : a 3 2 b 7 3 a 1 3 a 2 1 b 2 3 a 3 1 A: ab 3 D: ab B: b a C: 3 a b ) je pro přípustné hodnoty a, b roven Příklad 24. Nerovnici x+1 3 + x+2 3 1 x vyhovují všechna x R, pro která platí A: x (, 0 6, ) D: x 1 B: x ( 1, 1) E: x (, 1 1, ) C: x 0, ) Příklad 25. Rovnici přímky procházející body A = [3, 2] a B = [1, 3] lze vyjádřit ve tvaru A: y = x 5 D: x = 3 2t, y = 2 + 4t, t R B: 2x + y 4 = 0 E: y = x + 2 C: 5x + 2y 11 = 0 Příklad 26. Průsečíky funkcí y = 3x 2 x 5 a y = 2x 2 3x + 3 jsou: A: P 1 = [0, 3], P 2 = [ 1, 1] D: P 1 = [ 2, 11], P 2 = [4, 39] B: P 1 = [1, 3], P 2 = [ 1, 8] E: P 1 = [2, 5], P 2 = [ 4, 47] C: P = [3, 19] E: a b Příklad 27. Dlužník splatil nejdříve 20 % půjčky, potom 15 % ze zbylé dlužné částky a ještě mu zbývá splatit 5 440 Kč. Jaká byla původní výše půjčky? A: 7 320 Kč D: 8 000 Kč B: 7 750 Kč E: 8 320 Kč C: 6 400 Kč Příklad 28. Ve firmě pracuje 170 zaměstnanců. Žen je o 30 % méně než mužů. Kolik pracuje ve firmě žen? A: 80 D: 70 B: 75 E: 100 C: 60 Příklad 29. Kolika způsoby mohu vybrat 3 různá čísla z 10 různých čísel (nezáleží-li na pořadí čísel)? A: 15 D: 220 B: 27 E: 720 C: 120 Příklad 30. Průzkum čtenářských zájmů ukázal, že ze sta žáků jich 60 čte časopis A, 50 časopis B, 50 časopis C, 30 časopis A i B, 20 časopis B i C, 30 časopisy A i C a 10 všechny tři časopisy. Kolik žáků nečte ani jeden z těchto časopisů? A: 0 D: 10 B: 15 E: 5 C: 20