Obsahy. Trojúhelník = + + 2



Podobné dokumenty
Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Slovní úlohy vedoucí na kvadratické rovnice

Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)

ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Témata absolventského klání z matematiky :

M - Pythagorova věta, Eukleidovy věty

5. P L A N I M E T R I E

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

Projekt OP VK č. CZ.1.07/1.5.00/ Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, a 0,1, 0,01, 0,001.. Čísla navzájem opačná

ZŠ ÚnO, Bratří Čapků 1332

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

Matematika - 6. ročník Vzdělávací obsah

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

ZŠ ÚnO, Bratří Čapků 1332

Pythagorova věta

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Digitální učební materiál

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Metodické pokyny k pracovnímu listu č Pythagorova věta

ZŠ ÚnO, Bratří Čapků 1332

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

} Vyzkoušej všechny povolené možnosti.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

GEODETICKÉ VÝPOČTY I.

Úlohy k procvičení kapitoly Obsahy rovinných obrazců

Slouží k opakování učiva 8. ročníku na začátku školního roku list/anotace

ZŠ ÚnO, Bratří Čapků 1332

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

V (c) = (30 2c)(50 2c)c = 1500c 160c 2 + 4c 3. V (c) = 24c 320.

Matematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l

Matematika Název Ročník Autor

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

9. Planimetrie 1 bod

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

M - Řešení pravoúhlého trojúhelníka

4.3.4 Základní goniometrické vzorce I

Jak by mohl vypadat test z matematiky

Gymnázium Jiřího Ortena, Kutná Hora

Mechanika teorie srozumitelně

( ) Zadání SPORT Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1

Modelové úlohy přijímacího testu z matematiky

CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

Analytická geometrie kvadratických útvarů v rovině

Kreslení elipsy Andrej Podzimek 22. prosince 2005

SEMINÁŘ K VÝUCE MATEMATIKA 1

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

Matematika pro 9. ročník základní školy

SEMINÁŘ K VÝUCE MATEMATIKA

MATEMATIKA - 4. ROČNÍK

May 31, Rovnice elipsy.notebook. Elipsa 2. rovnice elipsy. SOŠ InterDact Most, Mgr.Petra Mikolášková

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.

Rozpis výstupů zima 2008 Geometrie

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Modelové úlohy přijímacího testu z matematiky

4.3.3 Základní goniometrické vzorce I

Matematika. Až zahájíš práci, nezapomeò:

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

ANOTACE vytvořených/inovovaných materiálů

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

Využití Pythagorovy věty III

Test Zkušební přijímací zkoušky

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

Úlohy domácí části I. kola kategorie B

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ

Překvapivé výsledky hyperbolické geometrie

Pythagorova věta II

Základní škola Blansko, Erbenova 13 IČO

3. Racionální čísla = celá čísla + zlomky + desetinná čísla 4. Iracionální čísla = čísla, která nelze zapsat konečným desetinným rozvojem

CVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

Gymnázium Jiřího Ortena, Kutná Hora

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

PŘIROZENÁ ČÍSLA ÚPRAVA, KTERÁ NEMĚNÍ HODNOTU ČÍSLA

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je = + 444

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!

Digitální učební materiál

Transkript:

Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu je metr čtverečný m 2 Obsah budeme značit písmenem P. Často se také používá písmeno S, ale já mám radši P. :-) Trojúhelník = Obsah se spočítá jako součin strany a k ní příslušné výšky dělený dvěma. Pokud neznáme výšku, ale známe všechny tři strany, můžeme obsah trojúhelníku vypočítat dle Heronova vzorce (vizte dále). Heronův vzorec: = o, p, q strany trojúhelníka (pokud máme trojúhelník KLM, budou strany označeny k, l, m, pokud máme trojúhelník ABC, budou strany označeny a, b, c, atd.) s polovina obvodu trojúhelníku Pro trojúhelník na obrázku je tedy: = ++ 2 Stránka 1 z 9

Pravoúhlý trojúhelník U pravoúhlého trojúhelníku jsou výškami vlastně odvěsny (a, b). K jedné odvěsně je příslušnou výškou vždy druhá odvěsna. Násobíme-li tedy stranu, která je odvěsnou s k ní příslušnou výškou, násobíme tak vlastně dvě odvěsny. Z obrázku je také vidět, že pravoúhlý trojúhelník zaujímá vlastně polovinu obsahu obdélníku (pokud by odvěsny byly stejně dlouhé, zaujímal by takový trojúhelník polovinu obsahu čtverce) o stranách a, b. Příslušný vztah pro výpočet obsahu pravoúhlého trojúhelníku tedy je: = a, b odvěsny trojúhelníku Stránka 2 z 9

Čtverec = = Úhlopříčka: = Její délku lze vypočítat z Pythagorovy věty, jelikož úhlopříčka je vlastně přepona pravoúhlého trojúhelníku a strany o velikosti a jsou odvěsny. Platí: = + =2 =2 = 2 = 2 = Poslední úpravou jsme do výrazu vnesli trochu matematické kultury. Tím, že jsme přesunuli dopředu, je zřetelněji vidět, že již nepatří pod odmocninu. Předejme tím, obzvláště při psaní tužkou, případným nedorozuměním. Obdélník = Stránka 3 z 9

Kosočtverec Pokud se na obrázek dobře podíváme, zjistíme, že se obsah dá vypočítat jako. Pokud bychom totiž z kosočtverce vyjmuli trojúhelník (zprava ohraničený výškou ) a přesunuli ho doprava, dostali bychom obdélník o stranách a. Pozn.: Zelené čtverečky v obrázku značí pravé úhly. Výšku si můžeme vyjádřit pomocí funkce sinus. = = Obsah tedy můžeme spočítat = = = Obsah kosočtverce můžeme také vypočítat pomocí úhlopříček. = Stránka 4 z 9

Kosodélník Na obrázku je vyznačen kosodélník TUVW. Obsah se pak vypočítá = Přenesením zeleného trojúhelníku zleva doprava bychom totiž dostali obdélník o stranách a. U kosodélníku ABCD je znázorněno, že výška k příslušné straně nemusí vždy celá procházet uvnitř kosodélníku. Přesto i v tomto případě se obsah vypočítá jako součin strany a k ní příslušné výšky. = Pozn.: V tomto případě by byl názornější výpočet obsahu jako součinu strany b a k ní příslušné výšky. Můžete si to vyzkoušet. Stránka 5 z 9

Lichoběžník = + Uvedený vztah nespadl z nebe, ale také se dá za pomoci obrázku odvodit. Ani to není příliš obtížné. Pozn.: Zelený čtvereček v obrázku značí pravý úhel. Stránka 6 z 9

Kruh = poloměr kruhu pí (Ludolfovo číslo) Výpočet obsahu můžeme také zapsat pomocí průměru, který se obvykle značí. Jelikož =, zapíšeme vzorec pro výpočet obsahu jako: = 2 Nyní výraz v závorce umocníme (umocníme každý člen zlomku čitatele i jmenovatele). = = = = Z posledních tři výrazy se akorát liší ve způsobu zápisu. Každý ať si vybere takový, jaký mu nejvíc vyhovuje. U kruhu si také zmíníme vztah pro výpočet obvodu. Obvod kruhu (kružnice) se vypočítá: == poloměr kruhu (kružnice) = průměr kruhu (kružnice) Pokud si ze vzorce pro výpočet obvodu vyjádříme písmeno π (Ludolfovo číslo), zjistíme, co nám vlastně říká. = = Písmeno π nám tedy říká, kolikrát je obvod kruhu (kružnice) větší než jeho (její) průměr. Jak víme, je to přibližně 3,14krát. Stránka 7 z 9

Přesnou hodnotu čísla π však nelze zapsat, jelikož má nekonečný desetinný rozvoj za desetinnou čárkou je zkrátka nekonečně číslic. Může se nám stát, že sice vzorce pro výpočet obvodu a obsahu kruhu známe, ale nejsme si jisti, který z nich je pro obvod a který pro obsah. Zde nám pomůže takzvaná jednotková zkouška. Zkrátka dosadíme do vzorce za jednotlivá písmenka příslušné jednotky. Obvod: = Za dvojku a π jednotky nedosazujeme, zbývá tedy písmenko r. Poloměr je vlastně vzdálenost základní jednotkou je metr. Zápis bude tedy vypadat: = Pokud dosazujeme jednotky,píšeme veličinu v hranatých závorkách. Vidíme, že jednotkou je metr (případně centimetr, milimetr, kilometr, ), což je jednotka délky, nikoli plochy, jak je tomu u obsahu (vizte dále). Obsah: = = = = Jednotkou je metr čtverečný, což je jednotka plochy. Jedná se tedy o vzorec pro obsah. Stránka 8 z 9

Elipsa (plocha ohraničená elipsou) Jelikož elipsa je pouze ta obvodová čára, počítáme vlastně obsah plochy, kterou elipsa ohraničuje. Elipsa je vlastně taková sešlápnutá kružnice. Obsah, plochy, kterou vymezuje kružnice (kruh) se spočítá = =. Pokud se podíváme na obrázek, není těžké uhodnout, že obsah plochy ohraničené elipsou se pak spočítá jako: = = hlavní poloosa vedlejší poloosa pí (Ludolfovo číslo) E a F jsou ohniska elipsy. Součet vzdáleností bodu Q od ohnisek (na obrázku) je c 2 + d 2 a ten je stejný jako součet vzdáleností bodu R od ohnisek, c 1 + d 1. + = + Toto platí pro všechny body elipsy. Můžeme tedy říct: Pro všechny body elipsy platí, že součet vzdáleností od ohnisek je stejný (konstantní). Stránka 9 z 9