0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola báňská Technická univerzita Ostrava
Osnova přednášky Náhodný jev, pravděpodobnost náhodného jevu Náhodná veličina: diskrétní spojitá Základní pojmy teorie : Rozdělení : Parametrické Neparametrické (empirické) Pravděpodobnostní funkce Hustota rozdělení Distribuční funkce Aproximace omezených rozdělení, histogramy Náhodná veličina v pravděpodobnostním výpočtu Pravděpodobnostní vyjádření náhodných veličin 1 / 22
Pravděpodobnost Náhodným jevem se rozumí opakovatelná činnost prováděná za stejných (nebo přibližně stejných) podmínek, jejíž výsledek je nejistý a závisí na náhodě. Příklady mohou být například házení kostkou, střelba do terče nebo losování loterie. Pravděpodobnost náhodného jevu je číslo, udávající s jakou jistotou lze daný náhodný jev očekávat. Míra náleží do uzavřeného intervalu <0, 1>, kde nula znamená, že událost nemůže nastat a jednička, že jev je jistý. Lze vyjádřit i procentuálně (po vynásobení 100) V teorii spolehlivosti konstrukcí např. kde P f P s P f... pravděpodobnost, že nastane porucha P s... pravděpodobnost, že konstrukce zůstane zachovaná Základní principy teorie 2 / 22 1
Náhodná veličina Náhodná veličina je libovolná reálná funkce X definovaná na množině elementárních jevů ω pravděpodobnostního prostoru Ω. Náhodná veličina je určena rozdělením. Spojité a diskrétní veličiny: Náhodné veličiny lze rozdělit na nespojité (diskrétní) a spojité. Diskrétní veličiny mohou nabývat pouze početný počet hodnot (konečný i nekonečný), zatímco spojité veličiny nabývají hodnoty z intervalu (konečného nebo nekonečného). Obor všech hodnot náhodné veličiny se nazývá definičním oborem. Příklad: Výskyt daného jevu lze označit hodnotou 1. Pokud k výskytu daného jevu nedojde, náhodné veličině se přiřadí hodnota 0. Jedná se tedy o diskrétní náhodnou veličinu, která nabývá pouze hodnoty 0 nebo 1. Základní principy teorie 3 / 22
Náhodná veličina P (x ) 0,180 0,165 Pravděpodobnostní funkce hodu kostkou Rozdělení diskrétní náhodné veličiny 0,150 0,135 0,120 0,105 0,090 0,075 0,060 0,045 0,030 0,015 0,000 1 2 3 4 5 6 x Rozdělení spojité náhodné veličiny Základní principy teorie 4 / 22
Rozdělení, pravděpodobnostní funkce Rozdělení náhodné veličiny je pravidlo, kterým se každému jevu popisovanému touto veličinou přiřadí určitá pravděpodobnost. Rozdělení náhodné veličiny lze získat, pokud se každé hodnotě diskrétní náhodné veličiny, popř. intervalu hodnot spojité náhodné veličiny, přiřadí pravděpodobnost s pomocí pravděpodobnostní funkce P(x). Znalost pravděpodobnostní funkce lze použít k výpočtu. Např. pravdě- x podobnost, že náhodná veličina X leží mezi hodnotami x 1 a x 2 se určí: P 2 x x x Px 1 2 x xx 1 P(x) x 1 P(x 1 ) x 2 P(x 2 )...... x n P(x n ) Základní principy teorie 5 / 22
Distribuční funkce diskrétní veličiny Pomocí pravděpodobnostní funkce lze zavést tzv. distribuční funkci vztahem: F x P X x Distribuční funkce je neklesající a je spojitá zleva. Hodnoty distribuční funkce leží v rozsahu x 1 0 F Pro diskrétní náhodnou veličinu X lze pro libovolné reálné číslo x vyjádřit distribuční funkci vztahem F x tx P t Vlastnosti Jestliže hodnoty náhodné veličiny leží v intervalu <a,b), pak F(a) = 0 a F(b) = 1. Základní principy teorie 6 / 22
Pravděpodobnostní a distribuční funkce hodu kostkou P (x ) 0,180 Pravděpodobnostní funkce hodu kostkou Pravděpodobnostní funkce 0,165 0,150 0,135 0,120 0,105 0,090 0,075 0,060 0,045 F (x ) 1,000 Distribuční funkce hodu kostkou 0,030 0,015 0,800 0,000 1 2 3 4 5 6 x 0,600 0,400 0,200 Distribuční funkce 0,000 1 2 3 4 5 6 x Základní principy teorie 7 / 22
Hustota rozdělení Rozdělení spojité náhodné veličiny se určuje prostřednictvím funkce, kterou označujeme jako hustota rozdělení (hustota ). Je-li (x) hustota spojité náhodné veličiny X, pak platí kde Ω je definiční obor veličiny X. xdx 1 (Pro hodnoty x mimo definiční obor Ω je hustota nulová). Ze znalosti hustoty (x) lze určit pravděpodobnost, že náhodná veličina X bude mít hodnotu z intervalu <x 1,x 2 >, tedy P 2 x X x x 1 2 dx x x 1 Základní principy teorie 8 / 22
Distribuční funkce spojité veličiny Pro spojitou náhodnou veličinu s hustotou (x) lze definovat distribuční funkci vztahem F x t dt Vlastnosti Platí, že F 0 a F 1. Distribuční funkci lze použít k výpočtu, neboť P x X x Fx F 1 2 2 x1 Lze dokázat, že mezi hustotou (x) a distribuční funkcí F(x) platí vztah x x df dx Základní principy teorie 9 / 22
Distribuční funkce spojité veličiny Pravděpodobnostní funkce Distribuční funkce Základní principy teorie 10 / 22
Parametrická rozdělení spojité náhodné veličiny Důležitá spojitá rozdělení : Rovnoměrné rozdělení Normální rozdělení (Gaussovo rozdělení) Exponenciální rozdělení Laplaceovo rozdělení 0.02 0.015 0.01 0.005 Std Variable 1 Mean Std 240 260 280 300 320 340 360 Logistické rozdělení Charakteristiky rozdělení náhodné veličiny - Maxwellovo rozdělení parametry (např. střední hodnota a směrodatná Studentovo rozdělení odchylka) Fischerovo-Snedecorovo rozdělení χ² rozdělení (Chí kvadrát) Pravděpodobnostní vyjádření náhodných veličin 11 / 22
Parametrická rozdělení spojité náhodné veličiny Obecný vzorec funkce hustoty normálního (Gaussova) rozdělení... střední hodnota... směrodatná odchylka f x 1 2 2, x e 2 2 0,1 0,09 0,08 0,07 1 n n i 1 ln x i s=0.5 s=0.75 s=1 Obecný vzorec funkce hustoty lognormálního rozdělení f ln x 1 2 2, x x e 2 2 0,06 0,05 0,04 0,03 0,02 0,01 0 1 lnx i n i 1 0,1 1,1 2,1 3,1 4,1 5,1 n 2 Pravděpodobnostní vyjádření náhodných veličin 12 / 22
(Ne)parametrické rozdělení Parametrická rozdělení popsány analytickou funkcí např. obecný vzorec funkce hustoty normálního (Gaussova) rozdělení Parametry - charakteristiky rozdělení náhodné veličiny (např. střední hodnota a směrodatná odchylka) f x 1 2 2, x e 2 2 Nominální napětí v pásnici 0.025 Neparametrické (empirické) rozdělení 0.02 Std Mean Std Mez kluzu 0.015 0.025 Std Mean Std 0.01 0.02 0.005 0.015 140 160 180 200 220 240 260 0.01 0.005 220 240 260 280 300 320 340 360 380 400 420 definovány na základě měření, často i dlouhodobých Pravděpodobnostní vyjádření náhodných veličin 13 / 22
Omezení definičního oboru rozdělení spojité náhodné veličiny Neomezený obor rozdělení náhodné spojité veličiny Omezený obor rozdělení náhodné spojité veličiny Pravděpodobnostní vyjádření náhodných veličin 14 / 22
Omezení definičního oboru rozdělení Omezení rozsahu definičního oboru rozdělení z důvodu počítačové interpretace: Rozsah datových typů: Celočíselné typy: Byte (8 bitů 1 bajt) 0 až 255 Integer (16 bitů 2 bajty) -32768 až +32767 Word (16 bitů 2 bajty) 0 až 65 535 Integer (32 bitů 4 bajty) -2.147.483.648 až 2.147.483.647 Typy s plovoucí čárkou: Float (32 bitů 4 bajty) ±3,4.10-38 až 3,4. 10 38 Double (64 bitů 8 bajtů) ±1,7.10-308 až 1,7. 10 308 Long double (80 bitů 10 bajtů) ±3,4.10-4932 až 3,4. 10 4932 Pravděpodobnostní vyjádření náhodných veličin 15 / 22
Aproximace omezených rozdělení, histogramy 1. Původní (originální) rozdělení 2. Diskrétní (discrete) rozdělení 3. Čistě diskrétní (pure discrete) rozdělení 4. Po částech rovnoměrné rozdělení Pravděpodobnost (četnost) 1. 2. Intenzita 3. 4. Pravděpodobnostní vyjádření náhodných veličin 16 / 22
Náhodná veličina v pravděpodobnostním výpočtu Stochastické vyjádření náhodné veličiny - variabilní hodnotou (matematickým popisem náhodných vlastností): Pravděpodobnostní funkcí Rozdělením Histogramem Pravděpodobnostní vyjádření náhodných veličin 17 / 22
Histogram omezeného rozdělení Histogram omezeného diskrétního (discrete) rozdělení Pravděpodobnostní vyjádření náhodných veličin 18 / 22
Histogram omezeného rozdělení Histogram aproximace parametrického rozdělení omezeným diskrétním (discrete) rozdělením Pravděpodobnostní vyjádření náhodných veličin 19 / 22
Histogram čistě diskrétního rozdělení Histogram čistě diskrétního (pure discrete) rozdělení Pravděpodobnostní vyjádření náhodných veličin 20 / 22
Struktura datového souboru s definicí histogramu Textový soubor s příponou *.dis (distribution), jenž obsahuje údaje následujícího tvaru: [Description] (1. oddíl datového souboru) Identification= volitelný popis datového souboru Type= Pure Discrete Discrete Continuous (typ empirického rozdělení) [Parameters] (2. oddíl datového souboru) Min= minimální funkční hodnota Max= maximální funkční hodnota Bins= celkový počet tříd daného histogramu Total= součet četností ve všech třídách [Bins] (3. oddíl datového souboru) četnost v 1. třídě četnost ve 2. třídě atd.... Pravděpodobnostní vyjádření náhodných veličin 21 / 22
Závěry Přednáška: byla zaměřena na základní pojmy teorie, které souvisejí s pravděpodobností náhodného jevu, ukázala možnosti pravděpodobnostního vyjádření náhodné veličiny, zmínila omezení definičního oboru rozdělení v pravděpodobnostních výpočtech vlivem aproximace rozdělení náhodných veličin, stručně zmínila způsoby definice histogramu náhodné veličiny v datových souborech pravděpodobnostních výpočtů. Závěry 22 / 22
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Děkuji za pozornost!