XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...

Podobné dokumenty
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Pasivní tvarovací obvody RC

Univerzita Tomáše Bati ve Zlíně

1 Elektromagnetická vlna

Derivace funkce více proměnných

Parciální funkce a parciální derivace

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Matematika v automatizaci - pro řešení regulačních obvodů:

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

4.5.8 Elektromagnetická indukce

Maxwellovy a vlnová rovnice v obecném prostředí

Laplaceova transformace Modelování systémů a procesů (11MSP)

10 Lineární elasticita

Analogový komparátor

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

9 Viskoelastické modely

Elektromagnetické stínění. Jiří Dřínovský UREL, FEKT, VUT v Brně

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

4. Střední radiační teplota; poměr osálání,

Tlumené kmity. Obr

Přednáška 1. Elektrické zařízení vs Elektrický obvod. Obvodové veličiny. Časové průběhy obvodových veličin

MATEMATIKA II V PŘÍKLADECH

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Hlavní body. Úvod do vlnění. Harmonické vlny. Energie a intenzita vlnění. Popis, periodicita v čase a prostoru Huygensův princip, odraz a lom vlnění

3B Přechodné děje v obvodech RC a RLC

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

EKONOMETRIE 6. přednáška Modely národního důchodu

Kmitání tělesa s danou budicí frekvencí

7.4.1 Parametrické vyjádření přímky I

FYZIKA I. Pohyb těles po podložce

x udává hodnotu směrnice tečny grafu

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu

Diferenciální rovnice 1. řádu

Skupinová obnova. Postup při skupinové obnově

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

4.5.8 Elektromagnetická indukce

Základní otázky pro teoretickou část zkoušky.

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.

Základy fyziky + opakovaná výuka Fyziky I

MECHANICKÉ KMITÁNÍ TLUMENÉ

2. MĚŘICÍ ZESILOVAČE A PŘEVODNÍKY

5 GRAFIKON VLAKOVÉ DOPRAVY

REAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast

Fyzikální praktikum II - úloha č. 4

Dynamika hmotného bodu. Petr Šidlof

Jméno a příjmení holka nebo kluk * Třída Datum Škola

Schéma modelu důchodového systému

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

Úloha VI.3... pracovní pohovor

Modely veličin spojitých v čase funkce spojité v čase

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

Práce a výkon při rekuperaci

Vliv funkce příslušnosti na průběh fuzzy regulace

Úloha V.E... Vypař se!

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

FAKULTA APLIKOVANÝCH VĚD

14. Soustava lineárních rovnic s parametrem

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský

2. ZÁKLADY TEORIE SPOLEHLIVOSTI

Numerická integrace. b a. sin 100 t dt

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Inverzní kinematická a statická úloha manipulátoru AGEBOT

FINANČNÍ MATEMATIKA- ÚVĚRY

ROTORŮ TURBOSOUSTROJÍ

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Univerzita Tomáše Bati ve Zlíně

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

2.2.2 Měrná tepelná kapacita

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

Demonstrace principů NMR

4. MĚŘENÍ PROUDU, MĚŘENÍ KMITOČTU A FÁZE

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

HODNOCENÍ EXPOZICE V OKOLÍ PŘÍSTROJŮ IPL. Pavel Buchar

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

6. Optika. Konstrukce vlnoploch pro světlo:

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

4. Napjatost v bodě tělesa

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy

Matematická analýza III.

Nakloněná rovina I

1.8. Mechanické vlnění

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = =

Transkript:

XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová rychlos...8 XI-5 Fázory při popisu rovinné harmonické elekromagneické vlny a konsana šíření...8 XI-6 Charakerisická impedance prosředí...0 XI-7 Výkon přenášený rovinnou harmonickou elekromagneickou vlnou...0 XI-8 Výkon přeměněný na eplo... XI-9 Bilance činného výkonu v prosoru s rovinnou elekromagneickou vlnou... XI-0 Určení konsany šíření, měrného úlumu, fázové konsany a charakerisická impedance prosředí...4 XI- Odvození rovnice pro popis rovinné elekromagneické vlny...8

XI- Nesacionární elekromagneické pole Nesacionární elekromagneické pole je obecně popsáno dvojicí základních Maxvellových rovnic. Tyo rovnice jsou formálně podobné a symerické, vyjadřují základní zákony plané pro elekromagneické pole. První rovnice [] je zobecněný Ampérův zákon celkového proudu v diferenciálním varu, na levé sraně má veličinu magneického pole inenziu H a v členu, kerý předsavuje husou akzvaného posuvného proudu, je časová změna veličiny elekrického pole elekrické indukce D. Teno zákon vyjadřuje důležiou skuečnos, že časově proměnné magneické pole je buzeno časovou změnou elekrického pole: [] ro H J + D Druhá rovnice [] je Faradayův indukční zákon v diferenciálním varu, kerý má na levé sraně veličinu elekrického pole inenziu E a na pravé sraně časovou změna veličiny magneického pole magneickou indukce B. Tao rovnice vyjadřuje skuečnos, že časově proměnné elekrické pole je buzeno časovou změnou magneického pole: [] ro E B Elekrické a magneické pole jsou duální složky elekromagneického pole. Kde exisuje časově proměnné pole jedné formy, exisuje i časově proměnné pole druhé formy. maemaického hlediska voří uvedené rovnice sousavu dvou parciálních diferenciálních rovnic, ve kerých je poče neznámých veličin zdánlivě věší než dvě. V ěcho rovnicích se vyskyuje celkem pě veličin. Tři veličiny popisující rozložení elekrického pole: Inenzia elekrického pole E, elekrická indukce D a proudová husoa J. Dvě veličiny popisují rozložení magneického pole: Inenzia magneického pole H a magneická indukce B. Jednolivé veličiny elekrického a magneického pole však nejsou navzájem nezávislé. Jsou vázány akzvanými maeriálovými rovnicemi : Ohmovým zákonem v diferenciálním varu : [3] J σ E Rovnicí respekující vliv magneizace maeriálu : [4] B µ H Rovnicí respekující vliv polarizace maeriálu : [5] D ε E S ohledem na vzájemné vazby si můžeme při řešení sousavy vybra jednu veličinu popisující elekrické pole a jednu veličinu popisující magneické pole. Například inenziu elekrického pole E a inenziu magneického pole H. Všechny osaní veličiny v sousavě je možno pomocí ěcho dvou snadno vyjádři. Po akové úpravě dosaneme skuečně sousavu dvou rovnic o dvou neznámých veličinách : E a H [6] ro H σ E + ε E [7] ro E µ H

Formální zápis rovnic však v žádném případě neznamená, že řešení uvedené sousavy bude jednoduchý problém s vždy jednoznačně exisujícím řešením. Nejedná se oiž o algebraické rovnice, je o sousava parciálních diferenciálních rovnic, ve kerých je vždy jedna veličina skrya ve vekorové funkci zvané roace. Roace v sobě zahrnuje parciální derivace podle prosorových souřadnic. Druhá veličina se vyskyuje ve formě časové derivace. Řešení hledáme pro konkréní problém s uvážením určiých okrajových podmínek. Každá formálně zapsaná veličina elekrického a magneického pole ve vzazích [6],[7] obecně předsavuje vekorovou funkci prosoru a času. To znamená, že veličiny mohou v každém bodě prosoru nabýva různé velikosi a směru a v závislosi na čase se mohou měni podle obecných časových funkcí. Pro vekorovou funkci, kerá by popisovala prosorové rozložení inenziy elekrického pole, se dá například formálně napsa : [8] E( xy,, z, ) E x ( xy,, z, ) x 0 + E y ( xy,, z, ) y 0 + E z ( xy,, z, ) z 0 Podle éo rovnice je každému bodu prosoru v určiém čase přiřazen vekor E, kerý je možno rozděli na složky ve směru souřadných os. Každá složka je popsána odpovídající skalární funkcí : Ex,Ey,Ez. Každá z ěcho funkcí je samozřejmě funkcí prosorových souřadnic a času. Xo,Yo,o jsou jednokové vekory ve směru souřadných os. (viz obrázek ) Obrázek XI- Rovinná harmonická elekromagneická vlna Když se při řešení rovnice omezíme pouze na určiý specifický var pole a na určié funkce udávající časovou závislos, můžeme nají řešení sousavy[6],[7] jednodušším způsobem. Jedno speciální a velice důležié řešení v neohraničeném prosoru se nazývá rovinná harmonická elekromagneická vlna. Obrázek V omo případě je celý problém z hlediska prosorového rozložení veličin zásadně zjednodušen dvěma podmínkami(o jsou uměle zvolené podmínky ale povedou na řešení, keré má velké prakické aplikace): a) množiny všech možných prosorových rozložení elekromagneického pole si vybereme jenom akové, ve kerém má vekor inenziy elekrického pole složku v jednom směru, například ve směru osy x ( viz obrázek ). b) Vybraná složka inenziy elekrického pole E X se nemění ve všech směrech, ale pouze ve směru osy z, což se dá zapsa v podobě: [9] E x ( z, ) [0] E x fxy (, )

Jinými slovy o znamená, že na libovolné rovině vedené z určiého bodu na ose z rovnoběžně s osami x,y má inenzia elekrického pole pouze složku ve směru osy x, inenzia elekrického pole je na celé éo rovině konsanní. Její velikos je závislá pouze na poloze roviny vůči ose z. Při akové volbě směru inenziy elekrického pole poom vyplyne z vlasnosí Maxvellových rovnic a edy z vlasnosi elekromagneického pole skuečnos, že inenzia magneického pole má pouze složku ve směru osy y a ao složka se mění aké pouze ve směru osy z (viz obrázek 3). Tao skuečnos je ukázána v čási, kde jsou odvozeny rovnice rovinné elekromagneické vlny. Obrázek 3 Maemaicky se dá ao skuečnos zapsa v podobě: [] H y ( z, ) [] H y fxy (, ) éo volby geomerického rozložení veličin elekromagneického pole vyplývá název : Rovinná elekromagneická vlna. hlediska časové změny veličin elekromagneického pole je celý problém dále zjednodušen ím, že neuvažujeme libovolný časový průběh veličin, ale pouze harmonický průběh. Popis časové závislosi obsahuje pouze harmonické funkce ( sin, cos). Tao volba umožní při řešení diferenciálních rovnic zavedení fázorů a odsranění závislosi na čase. Touo úpravou zbude pouze jediná proměnná veličina - souřadnice z. I ao podmínka se odráží v názvu celého problému, mluvíme o rovinné harmonické elekromagneické vlně. Poznámka: Mohlo by se zdá, že ak velké zjednodušení povede k výsledům, keré nebudou prakicky použielné, opak je však pravdou. eoreického hlediska má rovinná harmonická elekromagneická vlna velký význam. V praxi se var pole v podobě rovinných vlnoploch časo vyskyuje. Je omu ak například u elekromagneické vlny v dosaečné vzdálenosi od zdroje vlnění. Harmonický časový průběh aké nemusí znamena velké omezení v obecnosi. Budeme-li uvažova lineární prosředí, plaí princip superpozice, obecný časový průběh lze rozloži na jednolivé harmonické složky a počía odděleně. Posup řešení sousavy rovnic pro veličiny elekromagneického pole s respekováním omezení pro rovinnou vlnu je uvedeno v kapiole XI-. Výsledkem celého řešení jsou poom dvě základní rovnice: Časové a prosorové rozložení inenziy elekrického pole E je popsáno vzahem : [3] E x ( z, ) E m e α z sin ω βz + φ 0 Podobný vzah plaí i pro časové a prosorové rozložení inenziy magneického pole H: [4] H y ( z, ) H m e α z sin ω βz φ z + φ 0 Na ěcho rovnicích je parno, že splňují z geomerického hlediska vyýčené podmínky (9),(0),(),() a skuečně se jedná o harmonické časové průběhy. Fyzikální význam veličin, keré se vyskyují v rovnicích [3],[4], je popsán v kapiole 3.

XI- Vlasnosi rovinné elekromagneické vlny Při zkoumání vlasnosí rovinné elekromagneické vlny a rovnic pro veličiny elekromagneického pole, keré ji popisují, si můžeme přesavi, že jsme pozorovael, kerý se může volně pohybova v prosoru a v každém mísě má možnos sledova inenziu elekrického a magneického pole E a H. Máme k dispozici anénu, kerá nám umožní vysledova směr veličin elekromagneického pole a osciloskop, na kerém můžeme pozorova velikos a časový průběh veličin. Pozorování budeme provádě na rovinách rovnoběžných s osami x,y, keré jsou znázorněny na obrázku 4. Obrázek 4 Pozorování začneme na rovině, kerá prochází počákem, bodem z=0 (vlevo na obrázku 4). Když budeme anénu v prosoru naáče ak, abychom nalezli směr, ve kerém bude nejvěší ampliuda měřených veličin a současně i směr, ve kerém směřují vekory veličin pole, zjisíme zcela jisě, že inenzia elekrického pole E má pouze složku ve směru osy x a inenzia magneického pole H pouze složku ve směru osy y. To bude plai v kerémkoliv mísě zvolené roviny (rovinná vlna). Na osciloskopu uvidíme časový průběh veličin, keré dosaneme z rovnice (3),(4) po dosazení za z=0 (obrázek 5): Obrázek 5 E x ( z 0, ) E m sin ω + φ [5] 0 [6] H y ( z 0, ) H m sin ω φ z + φ 0 Tyo časové průběhy budou v libovolném bodě vyýčené roviny(z=0) zcela sejné, veličiny pole oiž nejsou závislé na souřadnici x a y a je o parno i v rovnicích (3),(4),(5),(6). Jako pozorovael se edy můžeme pohybova nahoru, dolů, doleva i doprava do libovolné vzdálenosi, aniž bychom na osciloskopu pozorovali jakoukoliv změnu. Na rovnicích (5),(6) a obrázku 5 vidíme, že se jedná o obyčejné harmonické průběhy s ampliudami Em,Hm, keré se mění s úhlovým kmiočem ω. Úhel φo udává okamžiou hodnou inenziy elekrického pole v bodě z=0 a čase =0. Je o jakási vzažná hodnoa, na základě keré lze poom vypočía inenziu elekrického a magneického pole v libovolném čase a mísě : E x ( z 0, 0) E m sin( φ [7] 0 )

Poznámka: V dalším exu bude ukázáno, že veličiny E a H jsou na sobě závislé, navíc jsou v celém prosoru popsané jednoznačnými rovnicemi [3],[4]. Sačí nám proo zná hodnou jedné z ěcho veličin právě v jednom bodě a v jednom časovém okamžiku, abychom z oho určili, jaká hodnoa bude v jiném bodě a v jiném časovém okamžiku pro libovolnou z veličin. Je li například φo=π/, nabývá inenzia elekrického pole v bodě z=0 a čase =0 svého maxima, keré je rovno její ampliudě. Pro φo=0 je inenzia elekrického pole v čase =0 a bodě z=0 nulová. Úhel φz udává fázové (časové) zpoždění průběhu inenziy magneického pole H za inenziou elekrického pole E. rovnic (6) a (7) neplyne, jak by bylo možno eno úhel urči a na čem závisí, o bude předměem podrobnějšího rozboru. Už v éo chvíli se však dá říci, že eno fázový posuv je podobný fázovému posuvu mezi napěím a proudem v elekrickém obvodu s indukčnosí. V akovém obvodu předbíhá napěí elekrický proud. Navíc zjednodušeně plaí, že napěí je inegrální veličina ve vzahu k inenziě elekrického pole a proud je inegrální veličina ve vzahu k inenziě magneického pole. Velikos úhlu je závislá na charakeru prsředí. Bude ukázáno, že v dielekrickém(bezezráovém) maeriálu je eno úhel nulový, v dokonalém vodiči je roven 45. ajímavý jev nasane, když se jako pozorovael přemísíme na rovinu, kerá prochází bodem z=z (obrázek 4). V omo případě uvidíme na osciloskopu časové průběhy, keré jsou popsané rovnicemi (8),(9). Vzniknou z rovnic (3), (4) po dosazení z=z. Jsou o opě harmonické průběhy, ale od průběhů na rovině z=0 se poněkud liší : [8] [9] E m e α E x z, H m e α H y z, z z sin ω βz + φ 0 sin ω βz. φ z + φ 0 obrázek 6 Porovnáme-li časový průběhy inenziy E na nové rovině (z=z) s původním průběhem inenziy E na rovině z=0 (viz obrázek 6) uvidíme, že se časový průběh zpozdil o úhel β*z a jeho ampliuda poklesla e - α * z krá. oho vyplývá význam koeficienů β a α. Konsana α se nazývá měrný úlum. Měrný úlum udává, o kolik se na dané vzdálenosi ulumí ampliuda veličin elekromagneického pole. Měrný proo, že po vynásobení určiou vzdálenosi udává velikos exponenu v lumícím členu rovnice. Konsana β se nazývá fázová konsana a udává měrný fázový posun na jednoku délky. Po vynásobení určiou vzdálenosí udává úhel, o jaký se na éo vzdálenosi časově zpozdí průběh veličin elekromagneického pole. jednodušeně si lze předsavi, že oo zpoždění je dané skuečnosí, že do nějakého vzdálenějšího mísa ( v našem případě do bodu z) doleí elekromagneická vlna s určiým časovým zpožděním a na své cesě zraí něco ze své ampliudy - rochu se ulumí. Konsany α a β jsou závislé na paramerech prosředí a kmioču vlnění. Rovnice (8) a (9) podobně jako v případě úhlu φz ješě nedává návod, jak skuečně urči velikos konsan α a β, o bude aké předměem dalšího rozboru.

Když budeme jako pozorovael posupova k dalším rovinám v kladném směru osy z, jak je naznačeno na obrázku 4, uvidíme časové průběhy, keré budou mí sále menší ampliudu a budou čím dál ím více fázově zpožděny ve vzahu k časovému průběhu v bodě z=0. Na rovině v bodě z=z (viz obrázek 4) se může například sá, že budou veličiny pole kmia s opačnou fází To bude ehdy, když bude plai : Obrázek 7 [0] β z π (průběh viz obrázek 7). Když posoupíme ješě dál, může se například sá, že na rovině z=z3 (viz obrázek 4) uvidíme časový průběh, kerý splyne s průběhem pro z=0 (bude s ním ve fázi). To se sane ehdy, když bude plai : β z 3 [] (průběh viz obrázek 7). π Taková vzdálenos z3 se nazývá vlnová délka a označuje se λ [] π λ z 3 β S ohledem na oo značení leží rovina z=z ve vzdálenosi, kerá je rovna polovině vlnové délky. Vlnová délka je vzdálenos dvou vlnoploch, na kerých kmiají veličiny elekromagneického pole se sejnou fází. XI-3 obrazení rovinné elekromagneické vlny v prosoru Doposud jsme veličiny elekromagneického pole zobrazovali jako časový průběh v určié zadané vzdálenos od počáku souřadnic ( viz obrázek 5,6,7). V rovnicích (3) až (9) byla vzdálenos z považována za paramer a čas za proměnnou veličinu. Když se na yo rovnice podíváme z opačné srany a budeme považova čas za paramer a souřadnici z za proměnnou veličinu, můžeme si rovnice (3) a (4) zobrazi jako prosorové rozložení veličin E a H pro různé, po sobě jdoucí časové okamžiky. Tímo posupem uvidíme harmonické rozložení veličin v prosoru (rovinnou vlnu), kerá se v závislosi na čase sěhuje v kladném směru osy z. S posupující vzdálenosi se navíc vlna lumí. Tok výkonu (Poyningův vekor) je dán vekorovým součinem vekorů inenziy elekrického a magneického pole E a H : [3] S E H Výsledný Poyningův vekor musí bý kolmý na vekor E i H. V našem případě má vekor E pouze složku E X a vekor H pouze složku H Y, svírají edy pravý úhel a vekor S musí nuně mí pouze složku S, což je složka ve směru pohybu vlny.

XI-4 Fázová rychlos Obrázek 8 geomerického uspořádání rovinné vlny je parno, že na rovinách rovnoběžných s osami x a y jsou veličiny elekromagneického pole orienovány ve směru : Ex, Hy. Když si jednu akovou rovinu vybereme (viz obrázek 8), jsou v každém mísě éo roviny v jednom konkréním okamžiku veličiny pole všude sejně veliké. Když například na jedné rovině nabývají svého maxima, s určiým časovým zpožděním nabudou svého maxima i na rovině sousední, ležící napravo ve směru pohybu vlny. Když yo roviny, na kerých jsou veličiny ve sejné fázi, nazveme vlnoplochy, můžeme si poom předsavi, že se yo vlnoplochy pohybují v prosoru rychlosí, kerá se nazývá fázová rychlos. Bude ukázáno, že velikos fázové rychlosi je obecně závislá na paramerech prosředí a kmioču. Pro elekromagneickou vlnu ve vakuu(vzduchu) je fázová rychlos rovna rychlosi svěla. Dvě mísa se sejnou fází (vlnoplochy) mají mezi sebou vzdálenos, kerá je rovna vlnové délce: λ π β Můžeme si předsavi, že vlnoplocha uo vzdálenos urazí za čas, pro kerý plaí : ω π ( o je perioda, se kerou se v jednom mísě opakují sejné hodnoy, za eno čas do nějakého mísa doleí další vlnoplocha se sejnou fází). Pro fázovou rychlos - rychlos s jakou se v prosoru pohybují vlnoplochy ( roviny se sejnou fází) edy plaí : [4] v f λ π β π ω ω β XI-5 Fázory při popisu rovinné harmonické elekromagneické vlny a konsana šíření Při řešení sousavy parciálních diferenciálních rovnic (6),(7). se s výhodou používá fázorů. Fázor je komplexní veličina, vekor v komplexní rovině, kerý je obrazem harmonicky časově proměnné veličiny. Při zavedení fázorů předpokládáme, že se všechny veličiny mění se sejným kmiočem, časová závislos je u všech sejná a je možné jí odsrani. Fázor jako komplexní číslo v sobě obsahuje dva údaje, kerými se dvě harmonicky proměnné veličiny od sebe navzájem liší a o je ampliuda a vzájemný fázový posun. Ampliuda je reprezenována absoluní hodnoou fázoru, fázový posuv je obsažen v argumenu fázoru. Celá ao ransformace do komplexní roviny je založena na vzahu : [5] e j α cos α + jsin( α) Po zavedení fázorů při odvození vlnové rovnice se objeví dvě další důležié komplexní veličin. Je o konsana šíření a charakerisická impedance prosředí. Konsana šíření k v sobě obsahuje měrný úlum a fázovou konsanu, o jejichž významu

jsme již mluvili: [6] k β jα Pro fázor, kerý reprezenuje inenziu elekrického pole plaí: [7] E x () z E 0 e j k z E m e j φ 0 e j ( β j α) z E m e α z e j φ 0 β z V definiční rovnici se vyskyuje ješě jeden fázor, označený jako Eo, kerý předsavuje hodnou fázoru pro z=0. [8] E 0 E m e j φ 0 Na rovnicích (6),(7),(8) je parno, že fázor v sobě zahrnuje všechny důležié prvky, keré jednoznačně popisují rozložení inenziy elekrického pole a keré jsou obsaženy i v časovém průběhu( rovnice 3) : je o ampliuda Em, konsany α a β, úhel φo. Fázor je pouze funkcí proměnné z, čas zde již nefiguruje. Mezi časovou závislosí inenziy elekrického pole a fázorem plaí zpěný ransformační vzah (9), pro kerý lze snadno dokáza s použiím rovnic 5-8., že plaí : [9] [30] [3] [3] [33] E x ( z, ) Im E x z E x ( z, ) Im E m e j φ 0 ( e j ω ) Im E 0 e j ( e α z e j βz e ) j ω E x ( z, ) E m e α z Im e j ω ( βz + φ 0) k z e j ω E x ( z, ) E m e αz Im cos + ω βz + φ 0 + jsin ω E x ( z, ) E m e α z sin ω βz + φ 0 βz + φ 0 Výsledkem je skuečně časový průběh, kerý byl popsán v rovnici (3). cela analogicky plaí pro fázor inenziy magneického pole H : [34] H y () z H 0 e j k z H 0 e j ( β j α) z H 0 e α z e j βz pro fázor v Ho v bodě z=0 [35] ( ) H 0 H m e j φ 0 φ z a pro zpěnou ransformaci do časové roviny :

[36] H y ( z, ) Im H y z ( e j ω ) Im H 0 e j k z e j ω H m e α z sin ω βz φ z + φ 0 XI-6 Charakerisická impedance prosředí Charakerisická impedance prosředí je velice důležiá veličina, kerá udává vzah mezi inenziou elekrického a magneického pole. Má podobnou úlohu jako impedance ve sřídavých obvodech, je definována jako podíl fázorů veličin, jednokou je Ohm. Vzah pro impedanci vyplyne při řešení sousavy rovnic (),() po zavedení fázorů. e sousavy se nejprve vypoče jedna neznámá veličina( například E) a zpěně se dosazení pro výpoče druhé veličiny. To bude ukázáno v čási. [37] E x H y E 0 e j k H 0 e j k z z E 0 H 0 E m e H m e j j φ 0 ( φ 0 φ z ) E m e j φ z e j φ z H m Charakerisická impedance jako komplexní číslo v sobě nese dva údaje. Absoluní hodnoa impedance udává podíl ampliud inenziy elekrického a magneického pole, úhel vlnové impedance udává vzájemné fázové naočení mezi fázory E a H, popřípadě úhel fázového zpoždění mezi časovými průběhy E a H. XI-7 Výkon přenášený rovinnou harmonickou elekromagneickou vlnou Výkon přenášený elekromagneickým polem je obecně charakerizován Poyningovým vekorem. Poyningův vekor předsavuje plošnou husou výkonu. Podle definice je o výkon přenášený jednokou plochy kolmé ke směru šíření. Pro Poyningův vekor plaí vzah : [38] S E H Kde E a H jsou vekory inenzi elekrického a magneického pole. Když budeme chí vypočía celkový výkon, kerý prochází určiou plochou A, je nuné sečís kolmé průměy Poyningova vekoru v různých mísech plochy, řeši edy inegrál : [39] P S da V rovinné vlně má E pouze složku Ex a H pouze složku Hy. Poyningův vekor, kerý musí bý podle definice vekorového součinu kolmý na oba součiniele, musí mí proo pouze složku Sz. Pro okamžiou hodnou Poyningova vekoru v libovolném mísě na rovině z=kons plaí vzah : [40] S z ( z, ) E x ( z, ) H y ( z, ) Okamžiá hodnoa výkonu nemá příliš velké prakické použií. Daleko důležiější je sřední hodnoa přenášeného výkonu a edy sřední hodnoa Poyningova vekoru, kerou lze vypočía podobně jako činný výkon v elekrickém obvodu: [4] S sr () z Re E x ()H z y () z

Pozn.: Teno vzah vyplývá z vlasnosí fázorových veličin, jeden z fázorů v naznačeném součinu musí bý komplexně sdružený, jinak by neměl součin fázorů náležiý fyzikální smysl. Po dosazení za fázory E a H poom plaí : [4] [43] S sr () z S sr () z e α z e j( φ 0 β z φ z ) Re E me α z e j φ 0 β z E m e α z H m e α z H m cos( φ z ) E m H m e αz cos( φ z ) [44] S sr () z E m e αz cos( φ z ) H m e αz cos( φ z ) Srovnáme-li vzahy ve vzorcích (4)-(44) s definičním vzahem pro činný výkon v elekrickém obvodu, vidíme, že jsou zcela idenické. U rovinné vlny se však navíc vyskyuje člen udávající lumení ampliudy v závislosi na souřadnici z. [45] P UI Re UI cos φ U m I m cos φ U m I m cos( φ) XI-8 Výkon přeměněný na eplo Obrázek 9 Při průchodu elekromagneické vlny prosředím s nenulovou vodivosí je v každém bodě prosoru proudová husoa úměrná velikosi inenziy elekrického pole v omo mísě (Viz Ohmův zákon v diferenciálním varu, rovnice (3)). V našem souřadném sysému se edy vyvoří elekrický proud, kerý eče ve směru osy x. Elekrický proud procházející vodivým prosředím vyvolá Joulovy zráy - čás výkonu přenášeného elekromagneickou vlnou se přemění v eplo. Když si vykneme ve vzdálenosi z kvádr, kerý bude mí podsavu o ploše S a výšku hrany h (obrázek 9) a když budeme předpokláda, že velikos podsavy je naolik malá, že inenzia elekrického pole na ní zůsává konsanní rovná inenziě v bodě na rovině z, poeče podsavou proud : [46] I () J x ( z, ) S σ E x ( z, ) S σ E m e α z sin ω βz + φ 0 S

Efekivní hodnoa proudu ekoucího kvádrem bude : [47] I ef σ E m e α z S Ohmický odpor, kerý by měl vyknuý kvádr ve směru průchodu proudu je : [48] R h σ S Výkon, kerý se v kvádru přemění na eplo bude: [49] P RI ef σ E m e αz S h e vzahu (49) se dá snadno urči objemová husoa zrá ( výkon, kerý se přemění v jednoce objemu na eplo) : [50] pz () P V P S h σ E m e αz XI-9 Bilance činného výkonu v prosoru s rovinnou elekromagneickou vlnou Obrázek 0 Energeickou bilanci je nuno provádě v uzavřeném objemu, pro jednoduchos o může bý kvádr s jednokovými čelními plochami jako na obrázku 0. K sanovení, jak velký výkon do kvádru přieče a jaký na druhé sraně odeče nám pomůže Poyningův vekor. Poyningův vekor předsavuje plošnou husou výkonu, procházejícího určiou plochou. V případě rovinné vlny s naší orienací vekorů má pouze směr osy z, edy směr šíření elekromagneické vlny a je ve všech bodech libovolné roviny, rovnoběžné s x,y, konsanní.

Do uzavřeného objemu kvádru vsoupí podle rovnice (44) čelní šedě vyznačenou jednokovou plochou (z=0) sřední výkon: (viz obrázek 0) [5] Pz ( 0) S sr ( z 0) A m S sr ( z 0) E m cos( φ z ) adní šedě vyznačenou plochou z=z na druhé sraně vysoupí výkon : [5] P( z z ) S sr z ()A m S sr () z E m e α z cos( φ z ) Osaními plochami kvádru nemůže žádný výkon vsoupi, ani vysoupi., proože jsou vůči orienaci Poyningova vekoru rovnoběžné. Když porovnáme vsupující a vysupující výkon, vidíme, že jsou sejné pouze pro α=0 (nulový činiel měrného úlumu bezezráové prosředí) Když od sebe vsupní a výsupní sřední výkon odečeme, výsledek musí bý roven podle zákona zachování energie výkonu, kerý se v daném objemu zraí ( přemění na eplo) [53] Pz ( 0) P( z z) E m ( αz ) cos φ z e Když umíme podle rovnice (50) vypočía zráy v jednoce objemu, dokážeme je vypočía i v celém objemu vyknuého kvádru a měly by se rovna hodnoě ze vzahu (53) : [54] P θ p dv A m 0 z pz () dz 0 z σ E m e αz dz σ E m 4α ( e αz ) Porovnáme-li edy vzahy (53) a (54), měly by se rovna členy, keré jsou vyknuy v rovnici (55), osaní čási obou vzahů jsou sejné : [55] cos( φ z ) σ 4 α Dokáza, že je levá a pravá srana rovnice (55) sejná se nám podaří, když uvážíme, že plaí následující rovnosi ( vzahy (56) až (60) ): definiční rovnice pro konsanu šíření dosaneme zajímavé vzahy pro α a β [56] k β jα β α e srovnání reálných čásí rovnice (56): + jαβ j ωµ jωε + σ ω µε j ωµ σ

[57] α + β ω µε e srovnání imaginárních čásí rovnice (56): [58] αβ ωµ σ definiční rovnice pro charakerisickou impedanci vyplyne: [59] ωµ k ωµ α + β [60] cos( φ z ) β α + β Tím je dokázán předpoklad, že rozdíl sřední hodnoy výkonu vsupujícího a vysupujícího povrchovou plochou z uzavřeného objemu, vypočený pomocí Poyningova vekoru, je roven celkovým zráám v omo objemu : [6] P θ p dv Pz ( 0) P( z z) XI-0 Určení konsany šíření, měrného úlumu, fázové konsany a charakerisická impedance prosředí Konsana šíření je komplexní veličina, označuje se jako k. Konsana šíření vyplyne při řešení vlnové rovnice po zavedení fázorových veličin a obsahuje v sobě dvě konsany, keré mají základní význam pro popis rovinné harmonické elekromagneické vlny. Je o fázová konsana α a měrný úlum β. O významu ěcho veličin při popisu vlny bylo pojednáno v předchozím exu. Konsana šíření se svými složkami je definována vzahem : [6] k β jα α činiel měrného úlumu [ /m ] β fázová konsana [ /m ] Konsana šíření je jednoznačně určena paramery prosředí a kmiočem vlnění : [63] k β jα j ω µ jωε + σ ω π f úhlový kmioče [ rad/s ] µ permeabilia [H/m]

µ µ 0 µ r µ 0 4 π 0 7 permeabilia vakua ε permiivia [F/m] ε ε 0 ε r ε 0 0 9 36π permiivia vakua Konsanu šíření je možno vypočía přímo z definičního vzahu (63) po provedení naznačených komplexních operací. Vzah (63) je však aké možné analyicky upravi, pro konsany α a β poom vyplyne : [64] α ω εµ + + σ ω ε [65] β ω εµ + + σ ω ε Charakerisická impedance prosředí je komplexní veličina, kerá udává vzah mezi inenziou elekrického a magneického pole. Absoluní hodnoa charakerisické impedance udává podíl ampliud inenziy elekrického a magneického pole, argumen udává fázový posuv mezi fázorem E a H ( časové zpoždění průběhu inenziy magneického pole za inenziou elekrického pole). Obecně je ao veličiny závislá na paramerech prosředí a kmioču, je možno jí urči podle vzahu : [66] e j φ z ωµ k ωµ j ωµ jωε + σ jω j ωµ ε + σ Vzahy pro kosnanu šíření a charakerisickou impedanci jsou úmyslně upraveny ak, že se zde vyskyuje člen : jω ε + σ To je z oho důvodu, že člen ω.ε a σ má v Maxwellových rovnicích po převedení do fázorového varu podobný význam. aímco σ je vodivos pro vodivé proudy, člen j.ω.ε předsavuje jakousi vodivos pro proudy posuvné. Je o nejlépe vidě na rovnici (), kerá je převedena do fázorového varu: [67] ro H σ E + jω εe V závislosi na paramerech prosředí a kmioču může nasa několik evenuali. Posuvné a vodivé proudy mohou bý srovnaelně veliké, nebo se naopak může velikos jednoho druhu podsaně liši od druhého. Chování vzahů (63) až (66) je edy určeno vzájemným vzahem mezi členy σ a.ω.ε.

Pro Nevodivé prosředí převažuje posuvný proud a plaí : [68] ωε > σ V rovnici (63) a (66) se o projeví ím, že můžeme zanedba σ vůči ω.ε. Po omo kroku se vzahy pro konsanu síření a charakerisickou impedanci podsaně zjednoduší: [69] k β jα j ωµ jωε ω µ ε oho vyplyne, že konsana šíření má pouze reálno čás, pro kerou plaí: [70] β ω µ ε ω µ 0 ε r ε 0 ω ε r µ 0 ε 0 ω c ε r Měrný úlum je nulový, v nevodivém prosředí se vlna nelumí : [7] α 0 Konsana šíření je reálná a je rovna fázové konsaně : Rovnice (70) je dále upravena ím, že se předpokládá jednoková relaivní permeabilia, což je časý případ. Navíc je zde s výhodou použia míso permeabiliy a permiiviy vakua rychlos svěla podle známého vzahu: [7] c µ 0 ε 0 Pro vlnovou délku v nevodivém prosředí poom plaí : [73] λ π β π ω c ε r f c ε r A pro vlnovou délku ve vakuu ( vzduchu) poom plaí známý vzah : [74] λ v c f Jednoduchý vzah plaí i pro fázovou rychlos v nevodivém prosředí : [75] v f ω β ω ω c ε r c ε r e vzahu (75) plyne, že je fázová rychlos elekromagneické vlny ve volném prosoru ve vakuu (vzduchu) rovna rychlosi svěla :

[76] v fv c Pro charakerisickou impedanci plaí podle vzahu (66) s uvažováním (68): [77] e j φ z j ω µ jω ε µ ε µ 0 ε 0 ε r 0π ε r Charakerisická impedance prosředí má pouze reálnou složku. Pro absoluní hodnou, kerá udává podíl ampliud Em a Hm plaí: [78] 0π ε r Pro úhel, kerý udává fázový posuv mezi E a H plaí : [79] φ z 0 Ve vakuu plaí pro charakerisickou impedanci časo používaná hodnoa: [80] 0 0π ávěr : Ve nevodivém prosředí má konsana šíření i charakerisická impedance pouze reálnou složku. oho vyplývá, že se vlna nelumí ( koeficien měrného úlumu je nulový) a časový průběh inenziy elekrického a magneického pole je ve fázi. Fázová rychlos vlnění v dielekrickém maeriálu se zmenšuje s odmocninou relaivní permiiviy, fázová rychlos ve vakuu je rovna rychlosi svěla. Pro dobře vodivé prosředí plaí naopak, že převažuje vodivý proud nad posuvným : [8] ωε < σ Při výpoču konsany šíření a charakerisické impedance lze zanedba člen ω.ε a podle definiční rovnice (63) plaí: [8] k β jα j ωµ σ j ωµ σ j ωµ σ ( j) ωµ σ oho plyne zajímavá skuečnos : [83] α β ωµ σ Měrný úlum a fázová konsana jsou v omo případě sejně veliké. Pro charakerisickou impedanci plaí podle rovnice (66): [84] e j φ z j ωµ σ j ωµ σ ωµ σ π j e 4

Absoluní hodnoa charakerisické impedance, kerá udává podíl ampliud inenziy elekrického a magneického pole: [85] ωµ σ Fázový posun, kerý udává naočení fázorů E a H, respekive časový posuv průběhů inenzi E a H: [86] φ z π 4 ávěr : Ve vodivém prosředí má konsana šíření i charakerisická impedance shodnou reálnou a imaginární čás. Elekromagneická vlna je v omo prosředí lumena, časový průběh inenziy magneického pole je zpožděno o úhel 45 supňů. Je o mezní hodnoa fázového posunu, kerá může nasa. V maeriálu, kerý se nedá označi jako vodivý či nevodivý, leží hodnoa fázového posunu mezi nulou a 45 supni. Poznámka : Pojem dobře vodivé či nevodivé prosředí je vázán na kmioče vlnění. Bez uvážení, o jaký kmioče se bude jedna, nemůžeme prohlási, zda se prosředí chová jako vodivé či nevodivé. Sejný maeriál se z hlediska šíření elekromagneické vlny může pro nižší kmioče chova jako dokonalý vodič, pro vyšší kmioče jako dokonalý nevodič. XI- Odvození rovnice pro popis rovinné elekromagneické vlny Při odvození rovinné elekromagneické vlny lze vycháze z rovnic (6),(7), keré byly popsány v kapiole : ro H ro E σ E + µ H ε E V éo sousavě se vyskyují neznáme veličiny E a H. Je o inenzia elekrického a magneického pole, popsaná obecně vekorovými funkcemi, závislými aké na čase. Pro E plaí obecně podle rovnice (8) v kapiole : E( xy,, z, ) E x ( xy,, z, ) x 0 + E y ( xy,, z, ) y 0 + E z ( xy,, z, ) z 0 pro rovinnou vlnu je problém zjednodušen podmínkami (9),(0) z kapioly : E x ( z, ) E x fxy (, ) Uvedenou sousavu rovnic můžeme řeši ak, že jednu veličinu vyjádříme pomocí druhé veličiny. To však není ak jednoduché, veličiny jsou na jednom mísě rovnic v podobě časových derivací a na jiném mísě jako argumen vekorové funkce roace, kerá v sobě nese parciální derivace podle souřadnic. Není možné přímo z jedné rovnice vypočía jednu z veličin a dosadi do druhé rovnice. Teno problém lze obejí ak, že ješě jednou aplikujeme roaci na druhou rovnici :

[87] ro ro E µ roh Na pravé sraně ak dosaneme člen, kerý v sobě obsahuje první rovnice sousavy: [88] roroe µ σe + ε E µσ E + µ ε E Podle pravidel vekorového poču plaí v karézské sousavě souřadnic vzah: [89] roroe graddive E Když budeme uvažova, že se v naší úloze nenacházejí žádné volné náboje, bude první čás nulová: ( jinými slovy lze říci, že se nacházíme mimo oblas zdrojů ) [90] graddive 0 Pro druhou čás, kerá se nazývá Laplaceův operáor, plaí vzah: [9] E( x, y, z, ) E x ( x, y, z, ) x 0 + E y ( x, y, z, ) y 0 + E z ( x, y, z, ) z 0 ohoo vzahu přímo neplyne, jak eno operáor vyčísli, plyne z ní však další důležiá vlasnos, že jej lze aplikova na jednolivé složky vekorové funkce. V našem případě má inenzia elekrického pole pouze složku E x, druhé dva členy vypadnou: [9] E x ( x, y, z, ) x E x ( x, y, z, ) + y E x ( x, y, z, ) + z E x ( x, y, z, ) Když ješě uvážíme další podmínku, že složka E x je pouze funkcí z, nezávisí na x a y, vypadnou dva členy i v rovnici (9) a z celé rovnice (89) zbude pouze: [93] E x ( z, ) z E x ( z, ) Rovnice (88) přejde na var, kerý se dá chápa jako vlnová rovnice pro rovinnou vlnu v obecném prosředí a obecnou časovou závislos mimo oblas zdrojů: [94] z E x ( z, ) µσ E x ( z, ) µ ε E x ( z, ) 0 V rovnici (94) se sále ješě vyskyují dvě proměnné veličiny, souřadnice z a čas. Pro libovolnou časovou funkci by řešení nemuselo bý jednoduché. Budeme-li však uvažova harmonické průběhy pro veličiny elekromagneického pole ( sin, cos), je možné zavedení fázorů podle rovnice (95)

[95] ( ) E x ( z, ) Im E x ()e z jω Názorové veličiny jsou obrazy časových průběhů v komplexní rovině, naznačenou ransformaci můžeme použí na rovnici (94) : [96] z ( ) Im E x ()e z jω µσ ( ) Im E x ()e z jω µ ε Im( E x ()e z jω ) 0 Po provedení naznačených časových derivací a vykrácení exponenciálního členu, kerý je u všech čásí sejný, přejde celá rovnice do komplexní roviny a odsraní se závislos na čase. Fázory jsou pouze funkcí proměnné z, parcialní derivaci podle z lze nahradi obyčejnou, dosáváme lineární diferenciální rovnici s nulovou pravou sranou, kerá je snadno řešielná. Tao rovnice se dá chápa jako vlnová rovnice pro rovinnou elekromagneickou vlnu s harmonickým časovým průběhem zapsaná pomocí fázorů mimo oblas zdrojů: [97] d dz E x () z j ω µ σe x () z ω µ εe x () z + 0 Ve vzahu (97) můžeme všechny konsany slouči pod jednu, kerá se nazývá konsana šíření. Tao konsana má při popisu vlnění velký význam, bylo o ní pojednáno již v kapiole (3): [98] k ω µ ε j ωµ σ j ωµ jωε + σ Rovnice (97) se poom upraví do varu : [99] d dz E x () z k E x () z + 0 Při řešení akvého ypu diferenciálních rovnic se obvykle posupuje ím způsobem, že se sesaví charakerisická rovnice a vypočíají charakerisické koeficieny : [00] λ + k 0 [0] λ λ jk jk V ěcho vzazích plaí pro konsanu šíření s ohledem na vzah (98): [0] k k β jα j ωµ jω ε + σ Obecným řešením diferenciální (99) je například následující funkce :

[03] E x () z C e jk z + C e jk z První člen řešení v rovnici (03) předsavuje rovinnou vlnu posupující v záporném směru osy z, druhý člen rovinnou vlnu v kladném směru osy z. Že se jedná skuečně o popis elekromagneické vlny v daných směrech, o ješě v éo chvíli není vidě. Je řeba dokonči řešení rovnice, přeransformova zpě do časové roviny a poom se pokusi o fyzikální inerpreaci výsledků. Pro jednoduchos budeme však už v éo chvíli uvažova pouze vlnu v kladném směru osy z a položíme ak : [04] C 0 Pro vlnu v záporném směru osy z by bylo řešení zcela analogické. Konsanu C musíme urči z okrajových podmínek, je o hodnoa, kerou nabývá fázor v bodě z=0: [05] C E x ( z 0) E 0 E m e j φ 0 Později bude ukázáno, že fázor E 0 v sobě zahrnuje velikos ampliudy inenziy elekrického pole Em a fázový posun časového průběhu vůči nule na časové ose v bodě z=0. Rovnice 03 poom přejde do výsledného varu, což je řešení vlnové rovnice pro inenziu elekrického pole ve fázorovém varu: [06] E x () z E 0 e jk z E m e j φ 0 e j ( β jα) z E m e α z e j φ 0 e j βz Provedeme-li zpěnou ransformaci do časové roviny, výslednou rovnici, kerá udává časovou a prosorovou závislos inenziy elekrického pole pro rovinnou vlnu: [07] [08] E x ( z, ) Im E x ()e z jω E x ( z, ) E m e α ( ) E m e αz z sin ω βz + φ 0 Im cos + ω βz + φ 0 + jsin ω βz + φ 0 Rozbor vlasnosi vzahu (08) je podrobně proveden v kapiolách 3 a 4. de je ukázáno, že se skuečně jedná o rovinnou elekromagneickou vlnu, kerá se pohybuje v prosoru ve směru kladné osy z. Rovnice (08), kerá popisuje rozložení inenziy elekrického pole, je však pouze polovina řešení celého problému. Ješě je řeba vypočía druhou veličinu z výchozí sousavy, kerou je inenzia magneického pole H. Inenziu magneického pole získáme zpěným dosazením za E do rovnice : ro E µ H Pro roaci vekorové funkce plaí vzah, kerý lze zapsa v podobě symbolického deerminanu. Když opě uvážíme, že inenzia elekrického pole má pouze složku ve směru osy x, plaí: [09] ro E( xy,, z, ) x 0 x E x y 0 y E y z 0 z E z x 0 x E x ( z, ) y 0 y 0 z 0 z 0 z E x ( z, ) y 0

Po dosazení do za roaci do Výchozí rovnice bude edy: [0] z E x ( z, ) y 0 µ H x ( x, y, z, ) x 0 + H y ( x, y, z, ) y 0 + H z ( x, y, z, ) z 0 Srovnáním levé a pravé srany nuně vyplynou pro inenziu magneického pole yo vzahy : H y ( z, ) H y fxy (, ) Jinými slovy o znamená: Má-li inenzia elekrického pole pouze složku ve směru x, musí mí inenzia magneického pole pouze složku ve směru osy y a a se mění v prosoru pouze ve směru souřadnice z : Když v rovnici dále uvážíme, že veličiny se mění v závislosi na čase podle harmonických funkcí, můžeme zavés fázory veličin a plaí : [] z E x () z µ H y () z Po provedení naznačené časové a prosorové derivace vyplyne vzah: [] jke x () z j ωµ H y () z Pro hledaný fázor inenziy magneického pole lze poom napsa: [3] H y () z k ωµ E x () z E x () z E 0 e jk e j φ z z E m e j φ 0 e j e j φ z k z Při popisu je použia další velice důležiá veličina, kerá se nazývá charakerisická impedance prosředí : [4] ωµ k ωµ j ωµ jωε + σ jω j ωµ ε + σ e j φ z Význam charakerisické impedance prosředí byl popsán již v kapiole 3. Bylo řečeno, že je o komplexní veličina, jejíž absoluní hodnoa udává podíl ampliud inenziy elekrického a magneického pole, argumen udává naočení fázorů, respekive časové posunuí proběhů E a H. [5] H m E m rovnice (3) lze pro fázor inenziy magneického pole napsa formálně sejný vzah, jako byl vzah (06) pro fázor inenziy elekrického pole:

[6] ( ) H y () z H m e j φ 0 φ z e j k z H 0 e jk z Fázor Ho předsavuje hodnou pro z=0: [7] ( ) H y ( z 0) H 0 H m e j φ 0 φ z Konečný časový průběh inenziy magneického pole získáme zpěnou ransformací do časové roviny. [8] H y ( z, ) Im H y ()e z jω ( ) H m e αz sin ω βz φ z + φ 0 Fyzikální inerpreace a rozbor ohoo vzahu byl popsán v kapiole 3.