2 Souvslost raů Poku mám ra, ktrý molu něaká sponí č sít, přrozně nás zaímá, akou mám možnost s ostat oněku někam v tomto rau. To má množství praktký motvaí napříkla počítačové, opravní, tlonní č potruní sítě. J pooptlné, ž v takový sítí m mít možnost s ostat z kažéo místa o kažéo néo. Graům s takovou vlastností říkám souvslé. Ptr Hlněný, FI MU Brno 1 FI: MA010: Souvslost rau
2 Souvslost raů Poku mám ra, ktrý molu něaká sponí č sít, přrozně nás zaímá, akou mám možnost s ostat oněku někam v tomto rau. To má množství praktký motvaí napříkla počítačové, opravní, tlonní č potruní sítě. J pooptlné, ž v takový sítí m mít možnost s ostat z kažéo místa o kažéo néo. Graům s takovou vlastností říkám souvslé. Stručný přl lk Dn souvslost rau, vrolová / ranová, vyšší souvslost. Alortmus proázní ram (souvslou komponntou). Eulrovské ray. Ptr Hlněný, FI MU Brno 1 FI: MA010: Souvslost rau
2.1 Sponí vrolů, komponnty Dn: Slm élky n v rau G rozumím posloupnost vrolů a ran v 0, 1, v 1, 2, v 2,..., n, v n, v ktré vžy rana má konové vroly v 1, v. Sl vlastně proázka po raná rau z u o v. Příklam slu můž ýt průo IP paktu ntrntm (včtně yklní). Ptr Hlněný, FI MU Brno 2 FI: MA010: Souvslost rau
2.1 Sponí vrolů, komponnty Dn: Slm élky n v rau G rozumím posloupnost vrolů a ran v 0, 1, v 1, 2, v 2,..., n, v n, v ktré vžy rana má konové vroly v 1, v. Sl vlastně proázka po raná rau z u o v. Příklam slu můž ýt průo IP paktu ntrntm (včtně yklní). Lma 2.1. Měm rla na množně vrolů V (G) lovolnéo rau G takovou, ž pro va vroly u v právě kyž xstu v G sl začínaíí v u a končíí v v. Pak rlaí kvvaln. Důkaz. Rla rlxvní, not kažý vrol sponý sám s sou slm élky 0. Symtrká také, protož sl z u o v snano orátím na sl z v o u. Stně tak tranztvní, protož va sly můžm na s navázat v n. Ptr Hlněný, FI MU Brno 2 FI: MA010: Souvslost rau
2.1 Sponí vrolů, komponnty Dn: Slm élky n v rau G rozumím posloupnost vrolů a ran v 0, 1, v 1, 2, v 2,..., n, v n, v ktré vžy rana má konové vroly v 1, v. Sl vlastně proázka po raná rau z u o v. Příklam slu můž ýt průo IP paktu ntrntm (včtně yklní). Lma 2.1. Měm rla na množně vrolů V (G) lovolnéo rau G takovou, ž pro va vroly u v právě kyž xstu v G sl začínaíí v u a končíí v v. Pak rlaí kvvaln. Důkaz. Rla rlxvní, not kažý vrol sponý sám s sou slm élky 0. Symtrká také, protož sl z u o v snano orátím na sl z v o u. Stně tak tranztvní, protož va sly můžm na s navázat v n. Dn: Tříy kvvaln výš popsané (Lma 2.1) rla na V (G) s nazývaí komponnty souvslost rau G. Jnak s taky komponntam souvslost mysĺı poray nukované na těto tříá kvvaln. Ptr Hlněný, FI MU Brno 2 FI: MA010: Souvslost rau
Přpomňm s, ž sta v rau vlastně slm z opakování vrolů. Věta 2.2. Poku mz věma vroly rau G xstu sl, pak mz nm xstu sta. Ptr Hlněný, FI MU Brno 3 FI: MA010: Souvslost rau
Přpomňm s, ž sta v rau vlastně slm z opakování vrolů. Věta 2.2. Poku mz věma vroly rau G xstu sl, pak mz nm xstu sta. Důkaz. Nt u = v 0, 1, v 1,..., n, v n = v sl élky n mz vroly u a v v G. Začnm uovat nový sl W z vrolu w 0 = u, ktrý už u stou: Přpoklám, ž nový sl W už má počátk w 0, 1, w 1,..., w (na začátku = 0, t. n w 0 z ran), k w = v pro něktré {0, 1,..., n}. Ptr Hlněný, FI MU Brno 3 FI: MA010: Souvslost rau
Přpomňm s, ž sta v rau vlastně slm z opakování vrolů. Věta 2.2. Poku mz věma vroly rau G xstu sl, pak mz nm xstu sta. Důkaz. Nt u = v 0, 1, v 1,..., n, v n = v sl élky n mz vroly u a v v G. Začnm uovat nový sl W z vrolu w 0 = u, ktrý už u stou: Přpoklám, ž nový sl W už má počátk w 0, 1, w 1,..., w (na začátku = 0, t. n w 0 z ran), k w = v pro něktré {0, 1,..., n}. Nam nvětší nx k takový, ž v k = v = w, a sl W pokračum krokm..., w = v = v k, k+1, w +1 = v k+1,.... Ptr Hlněný, FI MU Brno 3 FI: MA010: Souvslost rau
Přpomňm s, ž sta v rau vlastně slm z opakování vrolů. Věta 2.2. Poku mz věma vroly rau G xstu sl, pak mz nm xstu sta. Důkaz. Nt u = v 0, 1, v 1,..., n, v n = v sl élky n mz vroly u a v v G. Začnm uovat nový sl W z vrolu w 0 = u, ktrý už u stou: Přpoklám, ž nový sl W už má počátk w 0, 1, w 1,..., w (na začátku = 0, t. n w 0 z ran), k w = v pro něktré {0, 1,..., n}. Nam nvětší nx k takový, ž v k = v = w, a sl W pokračum krokm..., w = v = v k, k+1, w +1 = v k+1,.... Zývá okázat, ž nový vrol w +1 = v k+1 s v slu W nopaku. Poku y tomu al tak ylo w l = w +1, l, pak yom na vrol w +1 přskočl už řív z vrolu w l, spor. Nakon skončím, kyž w = v. Ptr Hlněný, FI MU Brno 3 FI: MA010: Souvslost rau
Přpomňm s, ž sta v rau vlastně slm z opakování vrolů. Věta 2.2. Poku mz věma vroly rau G xstu sl, pak mz nm xstu sta. Důkaz. Nt u = v 0, 1, v 1,..., n, v n = v sl élky n mz vroly u a v v G. Začnm uovat nový sl W z vrolu w 0 = u, ktrý už u stou: Přpoklám, ž nový sl W už má počátk w 0, 1, w 1,..., w (na začátku = 0, t. n w 0 z ran), k w = v pro něktré {0, 1,..., n}. Nam nvětší nx k takový, ž v k = v = w, a sl W pokračum krokm..., w = v = v k, k+1, w +1 = v k+1,.... Zývá okázat, ž nový vrol w +1 = v k+1 s v slu W nopaku. Poku y tomu al tak ylo w l = w +1, l, pak yom na vrol w +1 přskočl už řív z vrolu w l, spor. Nakon skončím, kyž w = v. Ačkolv uvný ůkaz vypaá složtě, to n o ormálním zápsm. V skutčnost s v ůkaz ně n néo, nž ž s půvoní sl zkrau o opakované vroly, až nakon zákontě vznkn sta. Jo výoou konstruktvnost vím, ak stu získat. Ptr Hlněný, FI MU Brno 3 FI: MA010: Souvslost rau
Důkaz kratší, al nkonstruktvní, pro Větu 2.2: Z vš slů mz vroly u a v v G vyrm sl W s nmnší élkou. J snano vět, ž poku W zopaku něktrý vrol rau G, můžm W ště zkrátt, a to spor s přpoklam. Proto W stou v G. Ptr Hlněný, FI MU Brno 4 FI: MA010: Souvslost rau
Důkaz kratší, al nkonstruktvní, pro Větu 2.2: Z vš slů mz vroly u a v v G vyrm sl W s nmnší élkou. J snano vět, ž poku W zopaku něktrý vrol rau G, můžm W ště zkrátt, a to spor s přpoklam. Proto W stou v G. Závěrm s ostávám k nůlžtěší n souvsléo rau: Dn 2.3. Gra G souvslý poku G tvořný nvýš nou komponntou souvslost, t. poku kažé va vroly G sou sponé stou (l Věty 2.2). Poívt s, kolk komponnt souvslost má tnto ra: Ptr Hlněný, FI MU Brno 4 FI: MA010: Souvslost rau
Důkaz kratší, al nkonstruktvní, pro Větu 2.2: Z vš slů mz vroly u a v v G vyrm sl W s nmnší élkou. J snano vět, ž poku W zopaku něktrý vrol rau G, můžm W ště zkrátt, a to spor s přpoklam. Proto W stou v G. Závěrm s ostávám k nůlžtěší n souvsléo rau: Dn 2.3. Gra G souvslý poku G tvořný nvýš nou komponntou souvslost, t. poku kažé va vroly G sou sponé stou (l Věty 2.2). Poívt s, kolk komponnt souvslost má tnto ra: Vít oě vě komponnty? Ptr Hlněný, FI MU Brno 4 FI: MA010: Souvslost rau
2.2 Prolávání rau Pro vytvořní o noněšío sématu alortmu pro proázní rau vystačím s násluíím atovým stavy a pomonou strukturou: Vrol: má stavy... nační ostan na začátku, nalzný poté, o sm přs něktrou ranu nalzl, zpraovaný poté, o sm už proral všny rany z ně vyázíí. Hrana: má stavy... nační ostan na začátku, zpraovaná poté, o už yla prorána o noo z svý vrolů. Ptr Hlněný, FI MU Brno 5 FI: MA010: Souvslost rau
2.2 Prolávání rau Pro vytvořní o noněšío sématu alortmu pro proázní rau vystačím s násluíím atovým stavy a pomonou strukturou: Vrol: má stavy... nační ostan na začátku, nalzný poté, o sm přs něktrou ranu nalzl, zpraovaný poté, o sm už proral všny rany z ně vyázíí. Hrana: má stavy... nační ostan na začátku, zpraovaná poté, o už yla prorána o noo z svý vrolů. Úsovna: pomoná atová struktura (množna), uržu nalzné a ště nzpraované vroly. Poznámka: Způso, ktrým s vyíraí vroly z úsovny k zpraování, urču varantu alortmu proázní rau. V prolávaný vrol a raná s pak prováěí konkrétní proramové ak pro prolání a zpraování našo rau. Ptr Hlněný, FI MU Brno 5 FI: MA010: Souvslost rau
Alortmus 2.4. Proázní souvslé komponnty rau Alortmus pro a zprau kažou ranu a vrol souvsléo rau G. vstup < ra G; stav(všny vroly a rany G ) = nační; usovna U = {lovolný vrol v 0 rau G}; stav(v 0 ) = nalzný; wl (U nprázná) { vyrat v U; U = U \ {v}; ZPRACUJ(v); ora ( rana vyázíí z v) { (stav()==nační) ZPRACUJ(); w = opačný vrol rany = vw; (stav(w)==nační) { stav(w) = nalzný; U = U {w}; } stav() = zpraovaná; } stav(v) = zpraovaný; } G zpraovaný; Ptr Hlněný, FI MU Brno 6 FI: MA010: Souvslost rau
Způsoy mplmnta proázní rau Proázní o louky úsovna U mplmntovaná ako zásoník, t. ál prolávám o poslní nalzný vrolů. Ptr Hlněný, FI MU Brno 7 FI: MA010: Souvslost rau
Způsoy mplmnta proázní rau Proázní o louky úsovna U mplmntovaná ako zásoník, t. ál prolávám o poslní nalzný vrolů. Proázní o šířky úsovna U mplmntovaná ako ronta, t. ál prolávám o první nalzný vrolů. Ptr Hlněný, FI MU Brno 7 FI: MA010: Souvslost rau
Způsoy mplmnta proázní rau Proázní o louky úsovna U mplmntovaná ako zásoník, t. ál prolávám o poslní nalzný vrolů. Proázní o šířky úsovna U mplmntovaná ako ronta, t. ál prolávám o první nalzný vrolů. Dkstrův alortmus pro nkratší stu z úsovny vyírám vžy vrol nlžší k počátčnímu v 0. (Toto ost pooné prolávání o šířky, al oněší pro přípay, ky rany nsou stně loué.) Tnto alortmus u popsán v příští lk. Ptr Hlněný, FI MU Brno 7 FI: MA010: Souvslost rau
Způsoy mplmnta proázní rau Proázní o louky úsovna U mplmntovaná ako zásoník, t. ál prolávám o poslní nalzný vrolů. Proázní o šířky úsovna U mplmntovaná ako ronta, t. ál prolávám o první nalzný vrolů. Dkstrův alortmus pro nkratší stu z úsovny vyírám vžy vrol nlžší k počátčnímu v 0. (Toto ost pooné prolávání o šířky, al oněší pro přípay, ky rany nsou stně loué.) Tnto alortmus u popsán v příští lk. Příkla 2.11. Ukázka průou násluíím ram o louky z vrolu a. Ptr Hlněný, FI MU Brno 7 FI: MA010: Souvslost rau
Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm. Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau
Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm.
Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm. Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau
Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm. Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau
Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm.
Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm.
Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm.
Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm.
Ptr Hlněný, FI MU Brno 8 FI: MA010: Souvslost rau Nprolané rany sou čárkované, prolané rany plnou čarou a rany, ktré vly k nalzní vrolů, sou tlustou čarou (tyto rany často mívaí spální význam v aplkaí sématu alortmu). Nalzné vroly s poznaí pol příozí tlusté rany a zpraované vroly sou značné voím kroužkm.
Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a.
Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a.
Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a.
Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a.
Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a.
Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a.
Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a.
Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a. Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau
Příkla 2.12. Ukázka průou přozím ram o šířky z vrolu a. Tímto zpraování zaanéo rau skončlo. Vít rozíly tooto průou prot přozímu příklau? Ptr Hlněný, FI MU Brno 9 FI: MA010: Souvslost rau
2.3 Vyšší stupně souvslost V sít ový aplkaí nás často zaímá nn, stl s za normální pomínk můžm poyovat mz vroly/uzly, al také, aké sponí můžm nalézt v přípaě lokální výpaků (oolnost a runan). Toto lz tortky poytt zkoumáním vyšší stupňů souvslost rau. Ptr Hlněný, FI MU Brno 10 FI: MA010: Souvslost rau
2.3 Vyšší stupně souvslost V sít ový aplkaí nás často zaímá nn, stl s za normální pomínk můžm poyovat mz vroly/uzly, al také, aké sponí můžm nalézt v přípaě lokální výpaků (oolnost a runan). Toto lz tortky poytt zkoumáním vyšší stupňů souvslost rau. Dn: Gra G ranově k-souvslý, k > 1, poku po orání lovolný nvýš k 1 ran z G zůstan výslný ra souvslý. Ptr Hlněný, FI MU Brno 10 FI: MA010: Souvslost rau
2.3 Vyšší stupně souvslost V sít ový aplkaí nás často zaímá nn, stl s za normální pomínk můžm poyovat mz vroly/uzly, al také, aké sponí můžm nalézt v přípaě lokální výpaků (oolnost a runan). Toto lz tortky poytt zkoumáním vyšší stupňů souvslost rau. Dn: Gra G ranově k-souvslý, k > 1, poku po orání lovolný nvýš k 1 ran z G zůstan výslný ra souvslý. Dn: Gra G vrolově k-souvslý, k > 1, poku po orání lovolný nvýš k 1 vrolů z G zůstan výslný ra souvslý. Spálně úplný ra K n vrolově (n 1)-souvslý. Poku mluvím n o k-souvslém rau, mám na mysl vrolově k-souvslý ra. Ptr Hlněný, FI MU Brno 10 FI: MA010: Souvslost rau
2.3 Vyšší stupně souvslost V sít ový aplkaí nás často zaímá nn, stl s za normální pomínk můžm poyovat mz vroly/uzly, al také, aké sponí můžm nalézt v přípaě lokální výpaků (oolnost a runan). Toto lz tortky poytt zkoumáním vyšší stupňů souvslost rau. Dn: Gra G ranově k-souvslý, k > 1, poku po orání lovolný nvýš k 1 ran z G zůstan výslný ra souvslý. Dn: Gra G vrolově k-souvslý, k > 1, poku po orání lovolný nvýš k 1 vrolů z G zůstan výslný ra souvslý. Spálně úplný ra K n vrolově (n 1)-souvslý. Poku mluvím n o k-souvslém rau, mám na mysl vrolově k-souvslý ra. Stručně řčno, vysoká ranová souvslost znamná vysoký stupň oolnost sítě prot výpakům sponí-ran, nol sít zůstan stál osažtlná, kyž lovolný k 1 sponí u přrušno. Vysoká vrolová souvslost mnom slněším pomm, znamná totž, ž sít zůstan osažtlná po výpaku lovolný k 1 uzlů-vrolů (samozřmě mmo tě vypalý uzlů). Ptr Hlněný, FI MU Brno 10 FI: MA010: Souvslost rau
Na lustračním orázku má první ra vrolovou souvslost 4 a snano vím, ž po orání tří vrolů č ran zůstává souvslý. Z ruéo rau yom musl orat nméně 3 rany, ay s stal nsouvslým, a proto o ranová souvslost 3. Na ruou stranu však stačí orat 2 vroly, ay mz o lvým a pravým kraním vrolm žáné sponí nzůstalo. (Vít, ktré va?) A ak tomu u třtío rau? Ptr Hlněný, FI MU Brno 11 FI: MA010: Souvslost rau
Na lustračním orázku má první ra vrolovou souvslost 4 a snano vím, ž po orání tří vrolů č ran zůstává souvslý. Z ruéo rau yom musl orat nméně 3 rany, ay s stal nsouvslým, a proto o ranová souvslost 3. Na ruou stranu však stačí orat 2 vroly, ay mz o lvým a pravým kraním vrolm žáné sponí nzůstalo. (Vít, ktré va?) A ak tomu u třtío rau? Věta 2.5. Lovolný oyčný ra 2-souvslý, právě kyž lz vytvořt z kružn přáváním uší ; t. traí opra, ky lovolné va stávaíí vroly rau sou spony novou stou lovolné élky (al n parallní ranou). Ptr Hlněný, FI MU Brno 11 FI: MA010: Souvslost rau
Mnrova věta Důkaz násluíío ůlžtéo výslku y nyl nouý př použtí stávaíí znalostí, proto ponám na pozěší lk... ( Toky v sítí.) Věta 2.6. Gra G ranově k-souvslý právě kyž mz lovolným věma vroly lz vést aspoň k ranově-sunktní st (vroly moou ýt sílné). Gra G vrolově k-souvslý právě kyž mz lovolným věma vroly lz vést aspoň k sunktní st (různý až na ty va spoované vroly). Ptr Hlněný, FI MU Brno 12 FI: MA010: Souvslost rau
Mnrova věta Důkaz násluíío ůlžtéo výslku y nyl nouý př použtí stávaíí znalostí, proto ponám na pozěší lk... ( Toky v sítí.) Věta 2.6. Gra G ranově k-souvslý právě kyž mz lovolným věma vroly lz vést aspoň k ranově-sunktní st (vroly moou ýt sílné). Gra G vrolově k-souvslý právě kyž mz lovolným věma vroly lz vést aspoň k sunktní st (různý až na ty va spoované vroly). Věta nám vlastně říká, ž stupň souvslost rau s přrozně rovná stupn runan sponí vrolů. Na výš uvném orázku mz kažým věma vroly prvnío rau můžm vést až 4 sunktní sty. U ruéo rau třa mz lvým a pravým konm lz vést n 2 (vrolově) sunktní sty, al mz kažým věma vroly lz vést 3 ranově-sunktní sty. Ptr Hlněný, FI MU Brno 12 FI: MA010: Souvslost rau
V uu přozí Mnrovy věty pokračum s násluíím poznatky. Věta 2.7. Nt G vrolově 2-souvslý ra. Pak kažé vě rany v G lží na spolčné kružn. Ptr Hlněný, FI MU Brno 13 FI: MA010: Souvslost rau
V uu přozí Mnrovy věty pokračum s násluíím poznatky. Věta 2.7. Nt G vrolově 2-souvslý ra. Pak kažé vě rany v G lží na spolčné kružn. Důkaz: Nt, E(G). Sstroím ra G porozělním oou ran, novým vroly v, v. J zřmé, ž G vrolově 2-souvslý ra, takž pol Věty 2.6 xstuí v G vě sunktní sty spouíí v s v, tvoříí spolu kružn C. Nakon C nuku v G kružn C proázíí. Ptr Hlněný, FI MU Brno 13 FI: MA010: Souvslost rau
V uu přozí Mnrovy věty pokračum s násluíím poznatky. Věta 2.7. Nt G vrolově 2-souvslý ra. Pak kažé vě rany v G lží na spolčné kružn. Důkaz: Nt, E(G). Sstroím ra G porozělním oou ran, novým vroly v, v. J zřmé, ž G vrolově 2-souvslý ra, takž pol Věty 2.6 xstuí v G vě sunktní sty spouíí v s v, tvoříí spolu kružn C. Nakon C nuku v G kružn C proázíí. Rozšířním přozí úvay lz okon okázat: Věta 2.8. Nt G vrolově k-souvslý ra, k 1. Pak pro kažé vě sunktní množny U 1, U 2 V (G), U 1 = U 2 = k v G xstu k po vou sunktní st z vrolů U 1 o vrolů U 2. U 1 U 2 Ptr Hlněný, FI MU Brno 13 FI: MA010: Souvslost rau
2.4 Jním tam: Eulrovské ray Sna nstarší výslk tor raů vů poází o Lonara Eulra ná s o slavný 7 mostů v Králov / Könsru / nšním Kalnnraě. O aký prolém s ty nalo? Městští raní těl věět, za moou suou noou přít po kažém z sm vyznačný mostů právě nou. Ptr Hlněný, FI MU Brno 14 FI: MA010: Souvslost rau
Ptr Hlněný, FI MU Brno 15 FI: MA010: Souvslost rau Rozor tooto prolému v k násluíí n a opově. Dn: Ta sl v rau z opakování ran. Uzavřný ta tam, ktrý končí v vrolu, v ktrém začal. Otvřný ta tam, ktrý končí v ném vrolu, nž v ktrém začal. Nstarší výslk tor raů o Lonara Eulra poté zní:
Ptr Hlněný, FI MU Brno 15 FI: MA010: Souvslost rau Rozor tooto prolému v k násluíí n a opově. Dn: Ta sl v rau z opakování ran. Uzavřný ta tam, ktrý končí v vrolu, v ktrém začal. Otvřný ta tam, ktrý končí v ném vrolu, nž v ktrém začal. Nstarší výslk tor raů o Lonara Eulra poté zní: Věta 2.9. Gra G lz nakrslt ním uzavřným tam právě kyž G souvslý a všny vroly v G sou suéo stupně.
Ptr Hlněný, FI MU Brno 15 FI: MA010: Souvslost rau Rozor tooto prolému v k násluíí n a opově. Dn: Ta sl v rau z opakování ran. Uzavřný ta tam, ktrý končí v vrolu, v ktrém začal. Otvřný ta tam, ktrý končí v ném vrolu, nž v ktrém začal. Nstarší výslk tor raů o Lonara Eulra poté zní: Věta 2.9. Gra G lz nakrslt ním uzavřným tam právě kyž G souvslý a všny vroly v G sou suéo stupně. Důslk 2.10. Gra G lz nakrslt ním otvřným tam právě kyž G souvslý a všny vroly v G až na va sou suéo stupně.
Důkaz: Dokazum oa směry kvvaln. Poku lz G nakrslt ním uzavřným tam, tak zřmě souvslý a naví má kažý stupň suý, not uzavřný ta kažým průom vrolm ur vě rany. Ptr Hlněný, FI MU Brno 16 FI: MA010: Souvslost rau
Důkaz: Dokazum oa směry kvvaln. Poku lz G nakrslt ním uzavřným tam, tak zřmě souvslý a naví má kažý stupň suý, not uzavřný ta kažým průom vrolm ur vě rany. Naopak zvoĺım mz všm uzavřným tay T v G tn (n z) nlší. Tvrím, ž T osau všny rany rau G. Pro spor vzměm ra G = G E(T ), o ktrém přpoklám, ž nprázný. Jlkož G má taktéž všny stupně sué, (z nukčnío přpoklau) lovolná o komponnta C G nakrslná ním uzavřným tam T C. Ptr Hlněný, FI MU Brno 16 FI: MA010: Souvslost rau
Důkaz: Dokazum oa směry kvvaln. Poku lz G nakrslt ním uzavřným tam, tak zřmě souvslý a naví má kažý stupň suý, not uzavřný ta kažým průom vrolm ur vě rany. Naopak zvoĺım mz všm uzavřným tay T v G tn (n z) nlší. Tvrím, ž T osau všny rany rau G. Pro spor vzměm ra G = G E(T ), o ktrém přpoklám, ž nprázný. Jlkož G má taktéž všny stupně sué, (z nukčnío přpoklau) lovolná o komponnta C G nakrslná ním uzavřným tam T C. Vzlm k souvslost rau G kažá komponnta C G protíná náš ta T v něktrém vrol w, a tuíž lz oa tay T C a T propot přs w. To spor s naším přpoklam nlšío možnéo T. Ptr Hlněný, FI MU Brno 16 FI: MA010: Souvslost rau
Důkaz: Dokazum oa směry kvvaln. Poku lz G nakrslt ním uzavřným tam, tak zřmě souvslý a naví má kažý stupň suý, not uzavřný ta kažým průom vrolm ur vě rany. Naopak zvoĺım mz všm uzavřným tay T v G tn (n z) nlší. Tvrím, ž T osau všny rany rau G. Pro spor vzměm ra G = G E(T ), o ktrém přpoklám, ž nprázný. Jlkož G má taktéž všny stupně sué, (z nukčnío přpoklau) lovolná o komponnta C G nakrslná ním uzavřným tam T C. Vzlm k souvslost rau G kažá komponnta C G protíná náš ta T v něktrém vrol w, a tuíž lz oa tay T C a T propot přs w. To spor s naším přpoklam nlšío možnéo T. Důkaz ůslku: Nt u, v sou va vroly rau G maíí lý stupň, nol va (přpokláané) kon otvřnéo tau pro G. Do G nyní přám nový vrol w sponý ranam s u a v. Tím sm náš přípa přvl na přozí přípa rau s všm suým stupn. Ptr Hlněný, FI MU Brno 16 FI: MA010: Souvslost rau