K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha

Rozměr: px
Začít zobrazení ze stránky:

Download "K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha"

Transkript

1 K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Keleova úloha Chceme sočítat, jak se ohybuje hmotný bod gavitačně řitahovaný nehybným silovým centem. Příkladem může být ohyb lanety nebo komety kolem Slunce. (Slunce ovažujeme za nehybné.) Hmotnost centálního tělesa (nař. Slunce) označíme M, hmotnost obíhajícího hmotného bodu m. Počátek soustavy souřadnic umístíme do silového centa, olohu obíhajícího bodu udává olohový vekto. Rychlost hmotného bodu budeme značit v. Síla, kteou centální těleso ůsobí na hmotný bod je mm F κ. Sočítat ohyb řešením ohybové ovnice (. Newtonova zákona m F ) v katézských souřadnicích lze numeicky, tedy omocí očítače. Pokud si ale zkusíme ohybovou ovnici ozesat do souřadnic, uvidíme, že analytické řešení je o nás neschůdné. Zkusme to jinak. Gavitační síla F má vzhledem k centu nulový moment: F 0. 1 Díky tomu se zachovává moment hybnosti mv. Z toho lyne, že ohyb hmotného bodu m se děje v ovině. Jak to zdůvodníme? Vektoy a jsou na sebe kolmé. 3 Takže je-li konstantní vekto, musí být olohový vekto kolmý na evný smě v ostou; všechny koncové body tedy musí ležet v jedné ovině. 4 Budeme acovat v oláních souřadnicích Pohyb bodu v ovině bude užitečné oisovat ne v katézských, ale v oláních souřadnicích,. Vekto ychlosti v bude vhodné ozložit do adiálního směu a do směu k němu kolmého. Složku ychlosti do adiálního směu (tedy do směu ostoucího ) označíme v. Tato složka je ovna časové změně adiální souřadnice : d v. (1) Složku ychlosti ve směu kolmém na adiální označíme v. Výhadně v tomto směu by se bod ohyboval, okud by bylo konst. Pak by šlo vlastně o ohyb o kužnici, jeho ychlost jednoduše učíme jako součin oloměu a úhlové ychlosti: d v. () 1 Uvědomte si, oč. Oět si uvědomte oč, řiomeňte si duhou větu imulzovou. 3 Víte oč? 4 Názoně je to vidět, okud osy soustavy souřadnic natočíme tak, aby mířil ve směu osy z. Vekto ak může mířit jen do oviny xy. 1

2 K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Využijeme zákony zachování Výše uvedené složky ychlosti můžeme využít ři výočtu momentu hybnosti. Ulatní se ři něm jen složka v. Je totiž mvm vm ( v + v) m v + m v m v, otože a v mají stejný smě. 5 Potože a v jsou na sebe kolmé, latí o velikost (es. řesněji o jedinou složku) vektou : mv m (3) Přiomeňme, že ze zákona zachování hybnosti, konst., lyne ovnou. Keleův zákon. 6 Kinetická enegie hmotného bodu m je T 1 1 ( ) 1 mv m v v m( ( ) ) m + m. Gavitační otenciální enegie v oli silového centa M je Celková enegie E T + V je tedy 1 1 mm E m + m κ mm V κ. Při ohybu v gavitačním oli se zachovává enegie; již výše jsme odvodili, že i moment hybnosti je konstantní: E konst., konst. A ávě ze zachování enegie a hybnosti odvodíme, o jaké tajektoii se hmotný bod m ohybuje. Malá odbočka: efektivní otenciál Nejve ale ukážeme, jak ze vztahů (3) a (4) jednoduše odvodit, v jakém ozmezí adiální souřadnice se může bod ohybovat. Ze (3) lyne (4) Dosazením (5) do (4) dostaneme což můžeme řesat jako m mm m + m κ E m κ mm m + E m, (5) (6) Označíme-li část v kulatých závokách jako efektivní otenciál Vef () : V ef κ mm, m 5 Uvědomte si, co to znamená, když v íšeme bez šiky, a co je vekto v. 6 Zoakujte si, oč tomu tak je. Je to ostatně vidět i ze (3), uvědomíme-li si, že lošná ychlost je ovna ds v. 1

3 K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 lyne z (6) m E V. (7) 1 0 ef () Je tedy jasné, že adiální souřadnice může nabývat jen takových hodnot, že E V (). Z gafu funkce Vef () je vidět 7, že o: E < 0 jde o vázané obity (je min max, bod nemůže uniknout do nekonečna ), E 0 se bod může vzdálit do libovolně velké vzdálenosti. 8 Poznámky: 1. Poč oužíváme temín efektivní otenciál : 1 Rovnici (6) můžeme řesat jako E m + Vef (). Pávě taková by byla enegie hmotného bodu, kteý by se ohyboval o římce (souřadnicí by bylo ) v oli síly o otenciálu Vef ().. Pozo, efektivní otenciál závisí na velikosti momentu hybnosti. Po 0 nevzůstá o blížící se k nule. Od ovnic o časovou závislost k ovnici o tajektoii Rovnici (6) můžeme o vynásobení m řesat na tva ef a ovnice (5) je d E κ M ± + m m d m (8). (9) Jde o dvě difeenciální ovnice 1. řádu o dvě neznámé funkce t (), () t. Bohužel, analyticky je řešit neumíme tedy neumíme z nich dostat vzoce oisující časový vývoj obou souřadnic. Co však lze vyočítat, je tva tajektoie, tedy závislost ( ). K tomu stačí ovnici (8) vydělit ovnicí (9). Platí totiž, že d d d d. 9 7 Rozmyslete si, jak to z gafu a vztahu (7) názoně lyne. 8 Uvědomte si, jak možnost ulétnout k nekonečnu souvisí s duhou kosmickou ychlostí. Dobře je to vidět, okud z místa o adiální souřadnici vystřelíme hmotný bod ychlostí v v adiálním směu. Zákon zachování enegie ak je 1 m κ mm E. Přiomeňte si, oč musí být enegie ovna nule, okud má bod 0 ávě doletět do nekonečna, tedy nesadnout zět, a jak oud vyjádřit duhou kosmickou ychlost.) 9 Plyne to z věty o deivaci invezní funkce; mnemotechnicky si to můžeme amatovat tak, že výsledek je stejný, jako kdybychom zkátili difeenciály. 3

4 K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Vydělením ovnice (8) ovnicí (9) dostaneme d κ ± m E + M d m m (10) a to už je difeenciální ovnice, z níž vyočteme ( ), tedy učíme tva tajektoie. Řešíme ovnici o tajektoii Rovnici (10) budeme řešit seaací oměnných, tedy tak, že výazy, v nichž se vyskytuje, řesuneme na levou stanu ovnice, výazy, v nichž se vyskytuje (včetně difeenciálu d ), na avou stanu a ovnici budeme integovat: m d E κ M + m m ± d (11) Pavá stana dá + konst., levou musíme integovat. Substitucí ξ ( m) a následně substitucí ( ) ξ κmm τ E m + κmm můžeme integál na levé staně uavit na tabulkový integál, kteý již umíme řešit; ak zětně dosadíme za τ a oté za ξ, abychom v něm měli ůvodní oměnnou : 10 dξ dξ E m + κmm ξ ξ E m + κmm ξ κmm ( ) ( ) ( ) ( ) ( κ )( ) Mm dτ ξ κmm accos( τ ) accos accos 1 1 τ 3 1 E m + ( κmm ) E ( κ M m ) + 1 Označíme-li 3 a E ( κ M m ) + 1 ε, (1) κmm řejde (11) na 1 accos ± + konst. ε Konstantu na avé staně (13) můžeme bez újmy na obecnosti zvolit ovnou nule 11 uavit na 1 cos( ± ) cos ε (13) a získaný vztah 10 Výočet je vlastně římočaý, jen tochu zdlouhavý a naové nás může množstvím veličin, dvojí substitucí a řevedením výazu od odmocninou na tva jedna mínus duhá mocnina tochu zaskočit. Zkuste si ho oočítat odobně, alesoň jednou v životě stojí za to si výočet ojít a řesvědčit se, že i takovýhle integál umíme sočítat. 11 Přičtení konstanty znamená vlastně jen ootočení soustavy souřadnic. (Rozmyslete si, oč.) 4

5 K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Oud ( cos ) 1 + ε (14) Inteetujeme řešení a dostáváme vní Keleův zákon Vztah (14) je ovnice kuželosečky v oláním tvau. To, že jde o kuželosečku, je samozřejmě nejjednodušeji vidět v říadě ε 0. 1 Obecně: Potože x cos (viz obázek), lyne ze (14) + ε cos + ε x ε x. Po umocnění dostaneme ( ε ) x x + y a o úavě levé stany ε x+ ε x x + y. Oud konečně ( ε ) 1) Po ε 1 je křivkou aabola. x 1 + ε x+ y (15) Z (1) vidíme, že toto nastane, okud celková enegie E Že jde o aabolu, můžeme vidět, když y do (15) dosadíme ε 1. Dostaneme x+ y x. ) Po 0<ε<1 je křivkou elisa. Vztah (15) lze v tomto říadě uavit na ε ε x ( 1 ε ) + ε x+ + y +. (16) 1 ε 1 ε 1 ε Pvní tři členy lze uavit na duhou mocninu dvojčlenu ( 1 ε ) avou stanou, dostaneme ε x + 1 ε ( 1 ε ) ε x + ε. Vydělíme-li (16) její 1 + y 1. (17) 1 ε Označíme-li a a, 1 ε 1 ε b (18) 1 Schválně: co je to v tomto říadě za křivku? (Pokud váháte, uvědomte si, že je konstanta.) 13 Tedy ávě na omezí toho, že hmotný bod může uniknout do nekonečna. 5

6 K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 ε e 1 ε, (19) dostaneme ze (17) ( + ) x e y + 1, (0) a b tedy známý tva ovnice elisy. Přitom a je délka velké oloosy elisy, b délka malé oloosy. Počátek soustavy souřadnic (tedy místo, kde je silové centum M) není ve středu elisy, je osunut o e. Navíc latí, že e a b, e je tedy excenticita, čili vzdálenost mezi středem elisy a ohniskem 14. Vidíme tedy, že silové centum je v ohnisku elisy. Odvodili jsme tedy vní Keleův zákon: Planety obíhají kolem Slunce o elisách, v jejich ohnisku je 15 Slunce. 3) Po ε>1 (tedy o E>0)je křivkou hyebola. 16 Duhý Keleův zákon Duhý Kelleův zákon jsme už odvodili dříve: lošná ychlost je konstantní, ds Třetí Keleův zákon. m Ve třetím Keleově zákoně se vyskytuje doba oběhu T. Sočíst se dá ěkným tikem: Plocha elisy je ds S π ab. Záoveň (otože lošná ychlost je konstantní), musí latit S T m T. Kombinací obou vztahů dostaneme m T π ab. (1) Ze vztahů (18) lyne b a, což o dosazení za z (1) dá dostaneme Umocněním na duhou ak dostáváme m 3 1 T πa a πa. κmm κm T a b a. Dosazením do (1) κm m 4 π () κm 3 To je třetí Keleův zákon: duhé mocniny oběžných dob lanet jsou úměné třetím mocninám velkých oloos jejich tajektoií Poznamenejme, že ε ea, tato veličina se nazývá numeická excenticita. 15 Ze vztahů (18) a (1) lze navíc odvodit, že velká oloosa nezávisí na momentu hybnosti, jen na enegii E. 16 Důkaz je analogický jako v říadě elisy; onecháváme jej na aktivitě laskavého čtenáře. 17 Kdyby silové centum nebylo nehybné (a Slunce nehybné oavdu není), museli bychom ohyb soustavy κ M+ m, tedy laneta+slunce očítat jako oblém dvou těles. Ve vztahu () by ak ve jmenovateli bylo ( ) součet hmotnosti Slunce a lanety. 6

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho

Více

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

Newtonův gravitační zákon

Newtonův gravitační zákon Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU Součást Newtonovské klasická mechanika (v

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

Laplaceova transformace.

Laplaceova transformace. Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci

Více

v 1 = at 1, (1) t 1 = v 1

v 1 = at 1, (1) t 1 = v 1 Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného

Více

5. Světlo jako elektromagnetické vlnění

5. Světlo jako elektromagnetické vlnění Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná

Více

POHYB BODU V CENTRÁLNÍM POLI SIL

POHYB BODU V CENTRÁLNÍM POLI SIL POHYB BODU V CENTRÁLNÍM POLI SIL SPECIFIKCE PROBLÉMU Centální siloé pole je takoé pole sil, kdy liboolném bodě postou nositelka síly působící na pohybující se bod pochází peným bodem postou (tz centem

Více

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

Gravitační a elektrické pole

Gravitační a elektrické pole Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

6 Diferenciální operátory

6 Diferenciální operátory - 84 - Difeenciální opeátoy 6 Difeenciální opeátoy 61 Skalání a vektoové pole (skalání pole) u u x x x Funkci 1 n definovanou v učité oblasti Skalání pole přiřazuje každému bodu oblasti učitou číselnou

Více

Dráhy planet. 28. července 2015

Dráhy planet. 28. července 2015 Dáhy plnet Pet Šlecht 28. čevence 205 Výpočet N střední škole se zpvidl učí, že dáhy plnet jsou elipsy se Sluncem v ohnisku. Tké se učí, že tento fkt je možné dokázt z Newtonov gvitčního zákon. Příslušný

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

Cavendishův pokus: Určení gravitační konstanty,,vážení Země

Cavendishův pokus: Určení gravitační konstanty,,vážení Země Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

4. cvičení z Matematické analýzy 2

4. cvičení z Matematické analýzy 2 4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I 1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb

Více

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2]. Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

Cvičení z termomechaniky Cvičení 6.

Cvičení z termomechaniky Cvičení 6. Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2

Více

1.3 Pohyb hmotného nabitého bodu v homogenním magnetickém poli

1.3 Pohyb hmotného nabitého bodu v homogenním magnetickém poli Klasická mechanika analytická řešení pohybu částic a těles 1. Pohyb v odporujícím prostředí 1.1 Odporující síla je úměrná rychlosti pohybujícího se tělesa 1.2 Pohyb hmotného nabitého bodu v homogenním

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Sluneční plachetnice. 1. Trocha historieequation Chapter 1 Section 1. 2. Pohyb v gravitačním poli

Sluneční plachetnice. 1. Trocha historieequation Chapter 1 Section 1. 2. Pohyb v gravitačním poli Sluneční plachetnice 1. Tocha histoieequation Chapte 1 Section 1 O plachetnici poháněné tlakem slunečního záření, kteá letí napříč sluneční soustavou, snily desítky spisovatelů a fyziků. Mezi nejznámějšími

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Kinematika tuhého tělesa

Kinematika tuhého tělesa Kinematika tuhého tělesa Pet Šidlof TECHNICKÁ UNIVERZITA V LIERCI Fakulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ESF CZ.1.07/2.2.00/07.0247 Reflexe požadavků

Více

I. Statické elektrické pole ve vakuu

I. Statické elektrické pole ve vakuu I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální

Více

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H. 7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Důkazy vybraných geometrických konstrukcí

Důkazy vybraných geometrických konstrukcí Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie

Více

Derivace goniometrických funkcí

Derivace goniometrických funkcí Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí

Více

Analytická geometrie kvadratických útvarů v rovině

Analytická geometrie kvadratických útvarů v rovině Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme

Více

Keplerova úloha. Abstrakt: Článek řeší problém pohybu planety (Země) kolem Slunce.

Keplerova úloha. Abstrakt: Článek řeší problém pohybu planety (Země) kolem Slunce. Kepleova úloha Keple-2c.TEX jan.obzalek@mff.cuni.cz Abstakt: Článek řeší poblém pohybu planety (Země) kolem Slunce. Úplná úloha: co zanebáme Chceme vyšetřit pohyb planety, např. Země, v naší sluneční soustavě.

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

1.3.6 Dynamika pohybu po kružnici II

1.3.6 Dynamika pohybu po kružnici II .3.6 Dynamika ohybu o kužnici II Pedaoická oznámka: Sočítat šechny uedené říklady jedné hodině není eálné. Př. : Vysětli, oč se čloěk ři jízdě na kole (motocyklu) musí ři ůjezdu zatáčkou naklonit. Podobná

Více

ZÁKLADY ROBOTIKY Transformace souřadnic

ZÁKLADY ROBOTIKY Transformace souřadnic ÁKLD OOIK ansfomace souřadnic Ing. Josef Čenohoský, h.d. ECHNICKÁ UNIVEI V LIECI Fakulta mechatoniky, infomatiky a mezioboových studií ento mateiál vznikl v ámci pojektu ESF C..7/2.2./7.247, kteý je spolufinancován

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

1. Semestrální práce. se skládá ze dvou částí: b) Rys tužkou

1. Semestrální práce. se skládá ze dvou částí: b) Rys tužkou 1 Semestální áce se skládá ze dvou částí: a) Páce v Rinoceos b) Rys tužkou a) Páce v Rinoceos: Pomocí křivek učenýc řídicími body navněte fonty o své iniciály (v říadě, že se jedná o dvě stejná ísmena,

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘIN MGNETIZMUS III Elektický potenciál Obsah 3 ELEKTRICKÝ POTENCIÁL 31 POTENCIÁL POTENCIÁLNÍ ENERGIE 3 ELEKTRICKÝ POTENCIÁL V HOMOGENNÍM POLI 4 33 ELEKTRICKÝ POTENCIÁL ZPŮSOENÝ ODOVÝMI NÁOJI 5 331

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

21. ročník, úloha II. 3... víno teče proudem (4 body; průměr 2,08; řešilo 38 studentů)

21. ročník, úloha II. 3... víno teče proudem (4 body; průměr 2,08; řešilo 38 studentů) 1 očník, úloha II 3 víno teče poudem (4 body; půmě,8; řešilo 38 studentů) Vinaři a řidiči kamionu dobře znají šikovné přelévání kapalin z těžkých nádob Vinař Ignác chce stočit víno z jednoho demižonu do

Více

Konstrukční a technologické koncentrátory napětí

Konstrukční a technologické koncentrátory napětí Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SR 1 Pavel Padevět ITŘÍ SÍY PRUTU ITŘÍ SÍY PRUTU Put (nosník) konstukční vek u něhož délka načně řevládá nad dalšími dvěma oměy. Při řešení tyto vky modelujeme jejich střednicí čáou tvořenou sojnicí těžišť

Více

Klíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole

Klíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole Pojekt Efektivní Učení Refomou oblastí gymnaziálního vzdělávání je spolufinancován Evopským sociálním fondem a státním ozpočtem České epubliky. GRAVITAČNÍ POLE Teoie Slovně i matematicky chaakteizujte

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

1 Extrémy funkcí - slovní úlohy

1 Extrémy funkcí - slovní úlohy 1 Extrémy funkcí - slovní úlohy Příklad 1.1. Součet dvou kladných reálných čísel je a. Určete 1. Minimální hodnotu součtu jejich n-tých mocnin.. Maximální hodnotu součinu jejich n-tých mocnin. Řešení.

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF

Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF Dynamika systémů s proměnnou hmotností Buquoyovy úlohy Práce a energie v řešení Buquoyových úloh Mnohočásticové modely Problém rakety Pružné a nepružné srážky Fundemtální zákon vs. kinematická podmínka

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal 4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika

Více

Seriál II.II Vektory. Výfučtení: Vektory

Seriál II.II Vektory. Výfučtení: Vektory Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,

Více

Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1:

Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1: Kvadratické rovnice V zadání lineární rovnice se může vyskytovat neznámá ve vyšší než první mocnině. Vždy ale při úpravě tato neznámá ve vyšší než první mocnině zmizí, odečte se, protože se vyskytuje na

Více