Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 9

Rozměr: px
Začít zobrazení ze stránky:

Download "Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 9"

Transkript

1 Fakulta strojnío inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přenáška 9

2 Kluná ložiska Te novelt of is meto (Renols) of aroac mae is aers ver ar reaing in fact I tink it is robable tat some of tem ave never been rea troug b anone. SIR J. J. THOMSON (96)

3 Obsa Kluná ložiska Petrovova rovnice. Hranice mei stabilním a nestabilním maáním. Hronamické raiální ložisko. Teorie ronamickéo maání. Renolsova rovnice. Sommerfelovo a Ockvirkovo řešení Renolsov rovnice. Přenáška 0 - Kluná ložiska

4 Viskoita Viskoita je jenou nejůležitějšíc vlastností tekutýc maiv, která se rojevuje oorem ři obu jejic částic. Pole Newtona latí ro ob tekutin s laminárním tokem, že smkové naětí τ v rovině rovnoběžné s laminárním tokem, je římo úměrné graientu rclosti u/ neboli smkovému sáu D. Konstanta úměrnosti se naývá absolutní (namická) viskoita. Často se oužívá také kinematická viskoita k efinovaná jako oměr absolutní viskoit a ustot ři ané telotě. u τ k ρ D τ N.s Pa.s u m kg m m k m.s kg s Jenotk absolutní viskoit SI soustava N.s/m CGS soustava centioise (cp) Anglické ren (lbf.s/in ) To convert To from cp kgf-s/m N-s/m lbf-s/in Multil b cp kgf-s/m N-s/m lbf-s/in Přenáška 9 Kluná ložiska

5 Petrovova rovnice Velikost tření u klunéo ložiska racujícío v omínkác kaalinovéo maání bla orvé stanovena Petrovem roku 88. Petrovova rovnice nejenže ává obrý oa součinitele tření, ale také efinuje áklaní beroměrné arametr oužívané ři výočtu klunýc ložisek. u πrn τ c c πrn T ( τ A)( r) ( π rl)( r) c T T 4π μw r r ln c ( μ)( rl )( r) r μl τ smkové naětí, absolutní viskoita maiva, u obvoová rclost, c raiální vůle, r oloměr čeu, N otáčk čeu, T kroutící moment, l élka ložiska, A loca, μ součinitel tření, W atížení, tlak μ π S r c N r c Přenáška 9 Kluná ložiska N Petrovova rovnice Sommerfelovo číslo

6 Hranice mei stabilním a nestabilním maáním Hranici mei kaalinovým a meným maáním je možné stanovit na áklaě Stribeckov křivk. Proveené eeriment ukaují, že ři osažení určité onot μn/ nastává ronamické neboli stabilní maání. N,7.0 6 součinitel tření μ tenký film mené maání nestabilní tlustý film ronamické maání stabilní N/ Zvýšení telot maiva vee ke snížení jeo viskoit a te také k menší onotě N/. Součinitel tření μ se sníží, takže množství tela vnikající v ůsleku tření mei jenotlivými vrstvami maiva se menší. To vee k oklesu telot maiva. Přenáška 9 Kluná ložiska

7 Hronamické raiální ložisko Při otáčení čeu vniká v kluném ložisku klínová vrstva maiva. Če ůsobí jako čeralo a v ůsleku řilnavosti maiva strává maivo s sebou a tlačí jej o sebe. Ve vrstvě maiva tak vniká tlakové ole, jeož výslenice je v rovnováe se atížením W. Minimální tloušťka maacío filmu 0 leží na sojnici střeůčeu O a ánve O. Záklaní terminologie raiálníc ložisek raiální ložisková vůle c R r ecentricita ložiska e OO ecentrický oměr ε e/c β π úlné ložisko β < π arciální ložisko ánev be maiva s maivem Přenáška 9 Kluná ložiska

8 Geometrie raiálníc ložisek Přenáška 9 Kluná ložiska

9 Teorie ronamickéo maání Současná teorie ronamickéo maání má svůj ůvo v eerimentec s arciálním raiálním ložiskem osanýc roku 88 Beaucamem Towerem. Towerov výslek vel o tři rok oěji Osborna Renolse k ovoení iferenciální rovnice (Renolsova rovnice) oisující růbě tlaku v klínové meeře. Towerův eeriment Přeokla ři ovoení Renolsov rovnice. Newtonské maivo.. Setrvačné síl jsou anebatelné.. Maivo je ovažováno a nestlačitelné. 4. Viskoita maiva je konstantní. 5. Tlak se nemění v aiálním směru. 6. Če a ánev jsou nekonečně loué, takže maivo rouí oue ve směru rclosti u. 7. Tlak oél tloušťk maacío filmu je konstantní. 8. Rclost jakékoliv částice maiva ávisí oue na souřanicíc a. Přenáška 9 Kluná ložiska

10 Renolsova rovnice Přenáška 9 Kluná ložiska 0 τ τ τ F τ u τ u C u C C u Na elementární objem maiva o roměrec,, ůsobí tlakové a třecí síl. Jejic rovnováa je určena rovnicí F 0. osaením Newtonova vtau ro smkové naětí vojnásobnou integrací se určí růbě rclosti v klínové meeře

11 Renolsova rovnice rclost rouění Okrajové omínk se vjáří ro obě loc, které tvoří klínovou meeru. Přeokláá se, že ánev stojí, atímco ovrc čeu se obuje rclostí u. Pak ro 0, u 0 a ro, u U. Integrační konstant jsou určen vta Rclost rouění maiva v libovolném místě klínové meer C U C u 0 U ( ) Průbě rclosti rouění maiva v klínové meeře ávisí na souřanici a na tlakovém graientu /. Průbě rclosti je án součtem lineární a arabolické funkce. V místě maimálnío tlaku, k / 0 je rclost u (U/). Přenáška 9 Kluná ložiska

12 Renolsova rovnice objemový růtok Přenáška 9 Kluná ložiska 0 u Q ( ) U U Q 0 0 U Q U 6 U 6 Objemový růtok maiva klínovou meerou o jenotkové šířce Dosaením vtau ro rclost rouění maiva a náslenou integrací Protože maivo je ovažováno a nestlačitelné musí být objemový růtok maiva stejný v jakémkoliv místě klínové meer Jenoroměrná Renolsova rovnice anebávající boční výtok Renolsova rovnice beroucí o úva boční výtok

13 Sommerfelovo řešení Arnol Sommerfel ovoil roku 904 řešení Renolsov rovnice ro řía nekonečně louéo (tj. be bočnío výtoku) raiálnío klunéo ložiska. Průbě tlaku v maacím filmu je funkcí úlu θ, růměru čeu r, raiální vůle c, ecentrickéo oměru ε, ovrcové rclosti U a viskoit maiva. 6ε sinθ( ε cosθ) ( ε )( ε cosθ) Ur c 0 W Sommerfelova rovnice se řeší v intervalu 0 θ π. Mimo tento interval je tlak v maacím filmu roven tlaku 0 o kterým je oáváno maivo. S Ul W r c ( ε )( ε ) πε Sommerfelovo číslo S le vjářit jako funkci ecentrickéo oměru ε. / Přenáška 9 Kluná ložiska

14 Dlouá raiální kluná ložiska se v moerníc strojíc vsktují výjimečně. Obvkle oužívaná ložiska mají oměr l/ v romeí o /4 o. V těcto říaec raje boční výtok maiva ložiska ostatnou úlou a Sommerfelovo řešení, které jej anebává, nemůže být oužito. Ocvirk a Dubois ublikovali roku 955 řešení Renolsov rovnice, které bere o úva boční výtok. Přitom anebali rvní člen rovnice, který je malý v orovnání s tokem v aiálním směru. Ocvirkovo řešení Přenáška 9 Kluná ložiska U 6 ( ) cos sin 4 θ ε θ ε l rc U ε ε θ 4 4 arccos ma

15 Porovnání řešení ro nekonečné a krátké ložisko Užití Sommerfelova řešení ro ložiska s oměrem l/ < vee k načné cbě v oau růběu tlaku. V říaě, k l/, ává Sommerfelovo řešení řibližně stejnou onotu tlaku jako řešení Ocvirkovo. Proveené eeriment ukáal, že Ocvirkovo řešení může být oužito v intervalu /4 l/. Sommerfelovo řešení ává řesný oa tlaku ro l/ >4. Přenáška 9 Kluná ložiska

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60 KLUZNÁ LOŽIKA U PM oužití ro uložení ojnic, klikovýc a vačkovýc řídelů, vaadel a kol rovodů, Zde dnes výradně kluná ložiska s řívodem tlakovéo maacío oleje. Pro rvní návr se oužívá nejjednoduššíc metod

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1 ZADÁNÍ Č. Potrubí růměru a élky l je nalněno voou ři atmosférickém tlaku. Jak velký objem V je nutno vtlačit o otrubí ři tlakové zkoušce, aby se tlak zvýšil o? Potrubí ovažujte za tué, měrná motnost voy

Více

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení

Více

PROCESNÍ INŽENÝRSTVÍ 7

PROCESNÍ INŽENÝRSTVÍ 7 UNIERZITA TOMÁŠE BATI E ZÍNĚ AKUTA APIKOANÉ INORMATIKY PROCENÍ INŽENÝRTÍ 7 ýočty sojené s filtrací Dagmar Janáčová Hana Carvátová Zlín 01 Tento studijní materiál vznikl za finanční odory Evroskéo sociálnío

Více

POHYB SPLAVENIN. 8 Přednáška

POHYB SPLAVENIN. 8 Přednáška POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.

Více

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U8 Ústav procesní a pracovatelské technik FS ČVUT v Prae Seminář PHTH 3. ročník Faklta strojní ČVUT v Prae U8 - Ústav procesní a pracovatelské technik Seminář PHTH Hbnost U8 Ústav procesní a pracovatelské

Více

Mechanická účinnost PSM

Mechanická účinnost PSM KATEDRA OZIDEL A MOTORŮ Mecanická účinnost PSM #/4 Karel Páv Koeficient tření f Tribologie, součinitel tření / Stribeckova křivka Třecí síla: F t sign w f F n Hydrodynamické tření Smíšené olosucé tření

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plasticita II. ročník bakalářskéo stuia oc. Ing. Martin Krejsa, P.. Katera stavební ecanik Plošné konstrukce, nosné esk Nosné esk Iealiují se jako rovinný obraec (nejčastěji ve voorovné rovině),

Více

Matematické modely spalování práškového uhlí v programu Fluent v aplikací na pádovou trubku

Matematické modely spalování práškového uhlí v programu Fluent v aplikací na pádovou trubku Matematické moely salování ráškového uhlí v rogramu Fluent6.3.6 v alikací na áovou trubku Ing., Ph.., Marian, BOJKO, VŠB-TU OSTRAVA, KATERA HYROMECHANIKY A HYRAULICKÝCH ZAŘÍZENÍ, marian.bojko@vsb.cz Anotace

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění

Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění Hyrauické oory Při rouění reáných tekutin znikají násekem iskozity hyrauické oory, tj. síy, které ůsobí roti ohybu částic tekutiny. Hyrauický oor ři rouění zniká zájemným třením částic rouící tekutiny

Více

PROCESY V TECHNICE BUDOV cvičení 1, 2

PROCESY V TECHNICE BUDOV cvičení 1, 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního

Více

SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY

SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY Charakteristická únosnost spoje ocel-řevo je závislá na tloušťce ocelových esek t s. Ocelové esky lze klasiikovat jako tenké a tlusté: t s t s 0, 5 tenká eska,

Více

Válečkové řetězy. Tiskové chyby vyhrazeny. Obrázky mají informativní charakter.

Válečkové řetězy. Tiskové chyby vyhrazeny. Obrázky mají informativní charakter. Válečkové řetězy Technické úaje IN 8187 Hlavními rvky válečkového řevoového řetězu jsou: Boční tvarované estičky vzálené o sebe o šířku () Čey válečků s růměrem () Válečky o růměru () Vzálenost čeů určuje

Více

Kolmost rovin a přímek

Kolmost rovin a přímek Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Analytické řešení jednorozměrného proudění newtonské kapaliny dvě pevné desky

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Analytické řešení jednorozměrného proudění newtonské kapaliny dvě pevné desky U8 Ústav rocesní a racovatelské technk FS ČVUT v Prae Analtcké řešení enoroměrného roění newtonské kaaln vě evné esk Jenoroměrné roění newtonské kaaln v meeře me věma evným eskam vlvem tlakového raent

Více

Šroubová válcová pružina. Tato pružina se používá nejčastěji, může být tažná (má oka) a tlačná (rovné zakončení závitů). Je.

Šroubová válcová pružina. Tato pružina se používá nejčastěji, může být tažná (má oka) a tlačná (rovné zakončení závitů). Je. roucené ružiny Torzní tyč: Je to ružina ve tvaru římé tyče, oužívá se u automobiů (odružení). Torzní ružina má mnoem eší využití materiáu, než ružina oybaná. Využívají se tedy avně tam, kde záeží na ekosti

Více

HYDROMECHANIKA 3. HYDRODYNAMIKA

HYDROMECHANIKA 3. HYDRODYNAMIKA . HYDRODYNAMIKA Hydrodynamika - část hydromechaniky zabývající se říčinami a důsledky ohybu kaalin. ZÁKLADY PROUDĚNÍ Stavové veličiny roudění Hustota tekutin [kgm - ] Tlak [Pa] Telota T [K] Rychlost [ms

Více

Svˇetelné kˇrivky dosvit u

Svˇetelné kˇrivky dosvit u Světelné křivky dosvitů. Filip Hroch Světelné křivky dosvitů p. 1 Charakteristiky dosvitů Dosvit (Optical Afterglow) je objekt pozorovaný po gama záblesku na větších vlnových délkách. Dosvit je bodový

Více

Teorie. iars 1/9 Čepové a kolíkové spoje

Teorie. iars 1/9 Čepové a kolíkové spoje Čeové a kolíkové soje V článku jsou oužita ata, ostuy, algoritmy a úaje z oborné literatury a norem ANSI, ISO, DIN a alších. Seznam norem: ANSI B8.8., ANSI B8.8., ISO 338, ISO 339, ISO 30, ISO 3, ISO 8733,

Více

Konstrukce optického mikroviskozimetru

Konstrukce optického mikroviskozimetru Ing. Jan Medlík, FSI VUT v Brně, Ústav konstruování Konstrukce optického mikroviskozimetru Školitel: prof. Ing. Martin Hartl, Ph.D. VUT Brno, FSI 2008 Obsah Úvod Shrnutí současného stavu Měření viskozity

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

Geometricky válcová momentová skořepina

Geometricky válcová momentová skořepina Geometricky válcová momentová skořepina Dalším typem tenkostěnnéo rotačně souměrnéo tělesa je geometricky válcová momentová skořepina. Typický souřadnicový systém je opět systém s osami z, r, a t. Geometricky

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1)

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1) říklad S1 Stanovte potřebný výkon spalovacího motoru siničního vozidla pro jízdu do stoupání 0 % rychlostí 50 km.h -1 za bezvětří. arametry silničního vozidla jsou: Tab S1.1: arametry zadání: G 9,8. 10

Více

03 Návrh pojistného a zabezpečovacího zařízení

03 Návrh pojistného a zabezpečovacího zařízení 03 Návrh ojistného a zabezečovacího zařízení Roman Vavřička ČVUT v raze, Fakulta strojní Ústav techniky rostředí 1/14 htt://ut.fs.cvut.cz Roman.Vavricka@fs.cvut.cz ojistné zařízení chrání zdroj tela roti

Více

je dána vzdáleností od pólu pohybu πb

je dána vzdáleností od pólu pohybu πb 7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

Elastické deformace těles

Elastické deformace těles Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

Rotačně symetrická deska

Rotačně symetrická deska Rotačně symetrická deska je tenkostěnné těleso, jeož střednicová ploca je v nedeformovaném stavu rovinná, kruová nebo mezikruová. Zatížení působí kolmo ke střednicové rovině, takže při deformaci se střednicová

Více

Řešený příklad: Požární návrh chráněného sloupu průřezu HEB vystaveného normové teplotní křivce

Řešený příklad: Požární návrh chráněného sloupu průřezu HEB vystaveného normové teplotní křivce VÝPOČET Dokument: SX044a-E-EU Strana 0 Vracoval Z. Sokol Datum Leden 006 Kontroloval F. Wald Datum Leden 006 Řešený říklad: Požární návrh chráněného slouu růřeu HEB vstaveného normové telotní křivce V

Více

Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 2. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 7

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 7 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ převoy Přenáška 7 Kuželová soukolí http://www.gearesteam.com/ The universe is full of magical things patiently waiting for

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

Příklady k přednášce 1. Úvod

Příklady k přednášce 1. Úvod Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 08 9-6-8 Kyvadlo řízené momentem Atomatické řízení - Kybernetika a robotika Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ M ro moment setrvačnosti

Více

Příklady k přednášce 1. Úvod. Michael Šebek Automatické řízení 2019

Příklady k přednášce 1. Úvod. Michael Šebek Automatické řízení 2019 Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 09 08.0.09 Kyvadlo řízené momentem Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ = M ro moment setrvačnosti J = ml = M Flsinϕ c = M mgl sinϕ

Více

2 Tokové chování polymerních tavenin reologické modely

2 Tokové chování polymerních tavenin reologické modely 2 Tokové chování polymerních tavenin reologické modely 2.1 Reologie jako vědní obor Polymerní materiály jsou obvykle zpracovávány v roztaveném stavu, proto se budeme v prvé řadě zabývat jejich tokovým

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

Nakloněná rovina III

Nakloněná rovina III 6 Nakloněná rovina III Předoklady: 4 Pedagogická oznáka: Následující říklady oět atří do kategorie vozíčků Je saozřejě otázkou, zda tyto říklady v takové nožství cvičit Osobně se i líbí, že se studenti

Více

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL 1. ZADÁNÍ Navrhněte růměr a výztuž vrtané iloty délky L neosuvně ořené o skalní odloží zatížené v hlavě zadanými vnitřními silami (viz

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 06/2018 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

Příklady k přednášce 1. Úvod

Příklady k přednášce 1. Úvod Příklady k řednáše. Úvod Mihael Šebek Automatiké řízení 05 Evroský soiální fond Praha & EU: Investujeme do vaší budounosti 6--5 Kyvadlo řízené momentem Automatiké řízení - Kybernetika a robotika Pohybová

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

ř řč č Í ř č ú Í ř č š č č ř č ď č š Ž č š ň č ř š ř ú ř ř ř Í š Ý š š ří ó š ď ř š ř š Ž Ž Á š Í ó š ř š ř č ň čš ř Ž č č š Ď ř Ž říč ď ó ď č ň Í š Š Á š ř ř ř ó č ř š ř Š Ť ř č č ř ň č ř ňš č É Ž Ř ÚŽ

Více

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

příklad 16 - Draft verze pajcu VUT FAST KDK Pešek 2016

příklad 16 - Draft verze pajcu VUT FAST KDK Pešek 2016 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 VZPĚR SOŽEÉHO PRUTU A KŘÍŽOVÉHO PRUTU ZE DVOU ÚHEÍKŮ Vpočítejte návrhovou vpěrnou únosnost prutu délk 84 milimetrů kloubově uloženého na obou koncí pro všen

Více

Jaroslav Hlava. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Jaroslav Hlava. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Jaroslav Hlava THIKÁ UIVZIT V LII Fakulta mechatroniky, informatiky a meioborových stuií Tento materiál vnikl v rámci rojektu F Z..7/../7.47 eflexe ožaavků růmyslu na výuku v oblasti automatického říení

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

PRŮTOK PORÉZNÍ VRSTVOU

PRŮTOK PORÉZNÍ VRSTVOU PRŮTOK PORÉZNÍ RSTOU Průmyslové alikace Nálňové aaráty Filtrační zařízení Porézní vrstva: órovitá řeážka (lsť, keramika, aír) zrnitá vrstva (ísek, filtrační koláč) nálň (kuličky, kroužky, sedla, tělíska)

Více

Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ

Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA

Více

Vliv povrchových nerovností na utváření velmi tenkých mazacích filmů na hranici přechodu do smíšeného mazání

Vliv povrchových nerovností na utváření velmi tenkých mazacích filmů na hranici přechodu do smíšeného mazání Vliv povrchových nerovností na utváření velmi tenkých mazacích filmů na hranici přechodu do smíšeného mazání Ing. Tomáš Zapletal Vedoucí práce: Ing. Petr Šperka, PhD. Ústav konstruování Fakulta strojního

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

5.1.8 Vzájemná poloha rovin

5.1.8 Vzájemná poloha rovin 5.1.8 Vzájemná oloha rovin Předoklady: 5107 Př. 1: Kolik solečných bodů mohou mít dvě roviny? Každou možnost dokumentuj omocí dvou rovin určených vrcholy krychle a urči vzájemnou olohu rovin. Mohou nastat

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

Úvod. K141 HYAR Úvod 0

Úvod. K141 HYAR Úvod 0 Úvod K141 HYAR Úvod 0 FYZIKA MECHANIKA MECH. TEKUTIN HYDRAULIKA HYDROSTATIKA HYDRODYNAMIKA Mechanika tekutin zabývá se mechanickými vlastnostmi tekutin (tj. silami v tekutinách a prouděním tekutin) poskytuje

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x

Více

É ú ž ž č ž ů ý ů ř ů ý ň ú ň č ůč Ž ř č ý ů Í ý č Ž ř č ř č ší ý ů ř š š ů ř Ž š ů č č ň Í ý ř š š č Ž š š ý č Ž č š ú Ž ř Š Ž Í ů ř č š č č ůč Ž ř Í č č ý Í ř ý č š Ž Š š Ž ř č Í ý úč ý ý ř š ý š ř Ž

Více

Í é čá í á ř í á ó ř é ď ň í á é č é ř á í á á á í í á á á á ď á é č á ó ů č á í ů č é é í Í é ů é ř í í ů í ď é ř é é í é í é é é á č é á á á é í ů í é á é Á Í Š Í É é á é í íčí ů Í ů é á á í ř é á é

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

ř ř ř ů ř ř ř ř ň řú ó ó ř ř ů ř ů Ž Á Č ČÍŽ ř ů ř ů ó řó ř Íř ů Ť ř Í ó ú ů ř ř ř ú ú ú ř ř ř Í ď ů ú ů ů ř ř ř ůř ů ó ó ú ří ř ů ř ó ř ó ř řó Í ť ř ř ů ř ř ř Á Č ČÍŽ ř ů ř Č Í ů ř ů ř ř Í ř ú ř ř ř ů

Více

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním

Více

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník. 5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

Pneumotachografie Pneumotachografie je metoda umožňující zjistit rychlost proudění vzduchu v dýchacích cestách a vypočítat odpor dýchacích cest.

Pneumotachografie Pneumotachografie je metoda umožňující zjistit rychlost proudění vzduchu v dýchacích cestách a vypočítat odpor dýchacích cest. Pneumotachografie Pneumotachografie je metoa umožňující zjistit rychlost prouění vzuchu v ýchacích cestách a vypočítat opor ýchacích cest. Přístroj, na kterém se pneumotachografie prováí, se nazývá pneumotachograf.

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Teorie frézování

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Teorie frézování Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Teorie frézování Geometrie břitu frézy Aby břit mohl odebírat třísky, musí k tomu být náležitě upraven. Každý

Více

VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ

VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ Vlastní torsní kmitání po čase vymií vlivem tlumení, není samo o sobě nebepečné. Periodický proměnný kroutící moment v jednotlivých alomeních vybudí vynucené kmitání,

Více

Exponenciální funkce, rovnice a nerovnice

Exponenciální funkce, rovnice a nerovnice Eonenciální unkce, rovnice a nerovnice Mamut s korovou omáčkou (Eonenciální unkce) a) AN; b) NE; c) NE; d) AN; e) NE; ) NE; g) AN; h) NE a),; b),; c) ; d) ; e) ; ) e + b) - - - D()= R; H ()=( ; ) ; P neeistuje

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 3. GAUSSŮV ZÁKON 3.1 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ POMOCÍ GAUSSOVA ZÁKONA ÚLOHA

Více

1. Úlohy z gravimetrie

1. Úlohy z gravimetrie . Úloy ravimetrie Úvodní problém nakreslete raf náorňující tíový účinek koule podle vorce pro vertikální složku. loubka středu koule 500 m poloměr koule R 50 m diferenční ustota σ 500 k/m Základy Geofyiky:

Více

s p nazýváme směrový vektor přímky p, t je parametr bodu

s p nazýváme směrový vektor přímky p, t je parametr bodu MATE ZS 2013 KONZ 3A Analytická geometrie lineárních útvarů v rovině a v rostoru Přímka v rovině 1 Parametrická rovnice římky v rovině: t R s o : X = A + t s, kde, Vektor s nazýváme směrový vektor římky,

Více