6.1 Shrnutí základních poznatků

Rozměr: px
Začít zobrazení ze stránky:

Download "6.1 Shrnutí základních poznatků"

Transkript

1 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice ve tvaru τ τ τ τ. (1) σ Prvk, a σ ležící na hlavní diagonále představují normálové složk napětí a prvk τ, τ, τ, τ, a ležící mimo hlavní diagonálu repreentují smkové složk napětí. Orientace uvedených složek a rovin, v nichž působí, jsou patrné obr. 1, na kterém je náorněn elementární hranolek vjmutý tělesa. τ τ τ τ τ τ τ σ Pro smkové složk napětí přitom platí tv. ákon sdružených smkových napětí, který le apsat ve tvaru τ = τ =, τ = = τ, τ = = τ. () τ To však namená, že původních 9 složek napětí σ τ τ bývá poue 6 růných složek, toho tři normálové,, σ a tři smkové τ, τ a. Prostorovou napjatost le také popsat jednodušeji pomocí tv. hlavních napětí σ 1, σ a σ 3 σ (σ 1 σ σ 3 ), což jsou normálová napětí působící v tv. hlavních rovinách. Hlavní rovinou Obr. 1: Element vjmutý tělesa. roumíme takovou rovinu v tělese, ve které je smková složka napětí nulová. Velikost hlavních napětí le určit podmínk ( σ i ) τ ( σ i ) τ τ τ (σ σ i ) = 0, pro i = 1,, 3, (3) kde i představuje inde příslušného hlavního napětí. Včíslením determinantu dostaneme kubickou rovnici pro výpočet tří hlavních napětí. Speciálními případ prostorové napjatosti jsou tv. jednoosá a rovinná napjatost. Danou napjatost onačíme a jednoosou, je-li poue jedna normálová složka napětí nenulová a všechn ostatní složk jsou nulové. V takovém případě hovoříme o prostém tahu či tlaku. 1

2 β α σρ 0 τ ρ δ ρ (a) (b) Obr. : Rovinná napjatost. V případě rovinné napjatosti leží všechn nenulové složk napětí poue v jedné rovině, všechn ostatní složk jsou nulové. S takovým případem napjatosti se často setkáváme při kombinovaném namáhání. Příkladem je např. napjatost v rovině náorněná na obr. (a) popsaná složkami napětí, a. Předpokládejme, že náme složk napětí, a popisující rovinnou napjatost v rovině. Potom velikost složek napětí σ ρ a τ ρ působících v rovině ρ, která je vůči rovině pootočena o úhel α (vi obr. (b)), určíme pomocí vtahů σ ρ = + τ ρ = + cos α + sin α, sin α cos α, (4) přičemž úhel α považujeme a kladný, směřuje-li proti směru otáčení hodinových ručiček. Rovnice (4) představují parametrické vjádření kružnice s parametrem α a se středem na ose σ v Mohrově rovině napětí στ. Tato kružnice se naývá Mohrova a pro případ > > 0 je náorněna na obr. 3. Geometrická interpretace vtahů (4) je náorněna do tohoto obráku pomocí trojúhelníka SAρ. Z uvedeného obráku vplývá, že každý bod kružnice představuje obra jedné rovin (v tomto případě rovin ρ) patřící do svaku rovin, který je určen průsečnicí rovin, v nichž působí složk napětí, a, v tomto případě osou. Dále je obr. 3 řejmé, že se úhl do Mohrov kružnice (diagramu) vnášejí s dvojnásobnou velikostí a se stejnou orientací v porovnání se skutečností (vi obr. (b) a obr. 3). Podle výše uvedeného le snadno provést vlastní konstrukci Mohrov kružnice (diagramu) na ákladě nalosti složek napětí, a. Do Mohrov rovin potom vneseme bod představující obra dvou navájem kolmých rovin β a δ (vi obr. (b)), jejichž poloha je dána velikostmi normálových a smkových složek napětí působících v těchto rovinách (vi všrafované trojúhelník SA β a SA δ v obr. 3). Znaménka smkových napětí přitom

3 τ III IV δ II 0 A S σ α A α A ρ τ ma τ ρ I σ σ >0 β <0 IV V <0 σ ρ σ 1 >0 Obr. 3: Konstrukce Mohrov kružnice. Obr. 4: Znaménka smkových složek napětí při vnášení do Mohrov rovin. vnášíme podle úmluv náorněné na obr. 4. Tato úmluva plne e druhého vtahu (4) a obr. (b) pro úhel α = 0. Dodržíme-li pravidlo pro naménko smkových napětí, bude smsl otáčení rovin ρ v elementu na obr. (b) shodný se smslem pohbu jejího obrau (bodu) na Mohrově kružnici na obr. 3. Bod I a II v obr. 3 představují obra hlavních rovin. Z obráku je řejmé, že v těchto rovinách působí etrémní (maimální a minimální) napětí - hlavní napětí σ 1 > σ. Pokud OS onačíme vdálenost středu Mohrov kružnice od počátku souřadnicového sstému στ a R poloměr Mohrov kružnice, le velikosti těchto napětí stanovit podle vtahu (σ σ 1, = OS ± R = + ± ) + τ. (5) Z Mohrova diagramu můžeme dále také určit polohu hlavních rovin vhledem k rovině β či δ. Rovina I s napětím σ 1 je například od rovin β natočena o úhel φ (v Mohrově kružnici o úhel φ) proti směru hodinových ručiček, jehož velikost určíme pravoúhlého trojúhelníka SA β v obr. 3 jako tan φ = φ = 1 ( arctan τ ). (6) 3

4 Dalšími charakteristickými bod na Mohrově kružnici jsou bod IV a V (vi obr. 3). Tto bod představují obra rovin, v nichž působí stejně velká normálová napětí σ s a maimální smková napětí τ ma, pro jejichž velikost platí σ s = + a τ ma = (σ ) + τ. (7) Mohrovu kružnici le sestrojit i pro prostorovou napjatost. V takovém případě pak hovoříme o tv. Mohrově diagramu, který se skládá e tří Mohrových kružnic. Příklad takového Mohrova diagramu pro prostorovou napjatost popsanou hlavními napětími σ 1, σ a σ 3, pro která platí σ 1 > σ > σ 3 > 0, je náorněn na obr. 5. Bod I, II a III pak repreentují obra hlavních rovin. τ σ σ 3 τ ma 0 III II I σ σ σ 1 Obr. 5: Mohrův diagram pro prostorovou napjatost. Vtah mei složkami napětí a deformace při prostorové a rovinné napjatosti Vtah mei složkami napětí a deformace je v teorii pružnosti popsán tv. Hookeovým ákonem. V případě prostorové napjatosti le tento ákon apsat v obecněném tvaru ε = 1 E [ µ( + σ )], γ = 1 G τ, ε = 1 E [ µ( + σ )], γ = 1 G τ, (8) ε = 1 E [σ µ( + )], γ = 1 G, kde E [MPa] představuje modul pružnosti v tahu (tv. Youngův modul), µ [-] je Poissonovo číslo a G [MPa] je modul pružnosti ve smku. Mei těmito konstantami platí vtah E G = (1 + µ). (9) 4

5 Vhledem k tomu, že rovinná napjatost je speciálním případem napjatosti prostorové, le podobu Hookeova ákona pro tuto napjatost snadno odvodit e vtahů (8). Pro rovinnou napjatost v rovině potom platí ε = 1 E ( µ ), ε = 1 E ( µ ), γ = 1 G. (10) Inverí vtahů (10) pak dostáváme příslušné vtah pro složk napětí = E 1 µ (ε + µε ), = E 1 µ (ε + µε ), = G γ. (11) Teorie pevnosti (hpoté) - podmínk pevnosti V případě jednoosé napjatosti či napjatosti prostého smku má podmínka pevnosti jednoduchý tvar (blíže vi kapitola Tah (tlak) a Krut). Jedná-li se o složitější napjatost (rovinnou či prostorovou) je situace komplikovanější, protože chování materiálu ovlivní všechn složk napětí. Pro řešení uvedeného problému bla navržena růná kritéria a pro vjádření potřebné mechanické vlastnosti materiálu se vcháí jednoosé napjatosti, na kterou se pohlíží jako na vláštní případ napjatosti prostorové σ 1 = σ 0, σ = σ 3 = 0. Závislost mei těmito veličinami, kd b nastala porucha, le obecně vjádřit ve tvaru f(σ 1, σ, σ 3, R mt, R md ) = 0, (1) kde R mt je pevnost materiálu v tahu a R md pevnost v tlaku. Pro ajištění spolehlivého provou součásti je potřeba abepečit, že k uvedenému menímu stavu nedojde. Proto, jak již blo uvedeno u prostého tahu - tlaku (jednoosá napjatost), se avádí součinitelé bepečnosti k k > 1 vůči mei kluu a k p > 1 vůči mei pevnosti. Přípustná (dovolená) napětí le potom pro tvárné materiál vjádřit ve tvaru σ D = σ k k k, (13) kde σ k = Re pro materiál s výranou meí kluu a σ k = R p 0. pro materiál se smluvní meí kluu. Pro křehké materiál, pro které platí R mt < R md, jsou dovolené hodnot napětí definován vtah σ Dt = R mt k p a σ Dd = R md k p. (14) Pevnostní podmínk se vájemně liší podle toho, jakého předpokladu vcháejí. Na ákladě toho se obecná napjatost vjádří pomocí ekvivalentního napětí tv. redukovaného napětí σ red. Eistuje řada podmínek pevnosti, které jsou definován pro tvárný nebo křehký materiál. Zde uvedeme poue tři nejužívanější. 5

6 Podmínk pevnosti pro tvárné materiál: 1. Teorie (hpotéa) pevnosti podle maimálního smkového napětí - tv. Guestova hpotéa. Podle této teorie rohoduje o pevnosti součásti velikost maimálního smkového napětí. Pevnostní podmínku le obecně apsat ve tvaru což le přepsat do tvaru σ D σ i σ j σ D, kde i, j = 1,, 3, (15) σ red σ D. (16) Redukované napětí σ red v (16) le přitom podle této hpoté vjádřit jako σ red = σ 1 σ 3 = τ ma, (17) kde σ 1 je největší a σ 3 nejmenší hlavní napětí. Zde je potřeba dát poor u rovinné napjatosti, při které jsou obě hlavní napětí σ 1, σ stejného naménka. Protože o pevnosti rohoduje maimální smkové napětí, je nutné rovinnou napjatost chápat jako speciální případ napjatosti prostorové, tj. třetí hlavní napětí je σ 3 = 0 a pomocí toho pak správně určit σ red podle rovnice (17). V případě rovinné napjatosti dané dvěma složkami normálových napětí a jednou smkovou složkou (např., a ) bude velikost redukovaného napětí rovna σ red = ( ) + 4τ. (18). Teorie pevnosti podle hustot deformační energie na měnu tvaru - tv. hpotéa HMH (Huber-Mises-Henck). Podle této teorie rohoduje o pevnosti součásti velikost deformační energie na měnu tvaru. Pevnostní podmínku le opět apsat ve tvaru σ red σ D, (19) kde velikost redukovaného napětí σ red určíme jako σ red = σ1 + σ + σ3 (σ 1 σ + σ σ 3 + σ 3 σ 1 ), (0) nebo σ red = σ + σ + σ ( + σ + σ ) + 3 ( τ + τ + τ ). (1) V případě rovinné napjatosti dané např. složkami, a se vtah pro σ red redukuje na σ red = σ + σ + 3τ. () Redukované napětí určené dle této hpoté je v literatuře velmi často onačováno jako tv. Misesovo napětí (von Mises stress). 6

7 Podmínk pevnosti pro křehké materiál: 1. Mohrova hpotéa pevnosti. Tuto podmínku le apsat ve tvaru σ red σ Dt, (3) Hodnotu redukovaného napětí σ red přitom obecně stanovíme jako σ red = σ 1 ρσ 3, (4) kde konstantu ρ určíme v případě rodílných součinitelů bepečnosti v tahu a v tlaku jako ρ = σ Dt σ Dd. (5) Pokud uvažujeme stejné součinitele bepečnosti, přecháí vtah (5) do podob ρ = R mt R md. (6) Při posuování rovinné napjatosti pomocí této hpoté je nutné, stejně jako u Guestov hpoté, chápat danou napjatost jako prostorovou a správně tak určit maimální a minimální hlavní napětí. 7

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

Z hlediska pružnosti a pevnosti si lze stav napjatosti

Z hlediska pružnosti a pevnosti si lze stav napjatosti S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

3.1 Shrnutí základních poznatků

3.1 Shrnutí základních poznatků 3.1 Shrnutí ákladních ponatků Uvažujme nosník, tj. prut, jejichž délka převládá nad charakteristickými roměr průřeu. Při tvorbě výpočtového modelu nosník totožňujeme s jeho podélnou osou a uvažujeme skutečný

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Kap. 3 Makromechanika kompozitních materiálů

Kap. 3 Makromechanika kompozitních materiálů Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace

Více

7. Základní formulace lineární PP

7. Základní formulace lineární PP p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje

Více

1.1 Shrnutí základních poznatků

1.1 Shrnutí základních poznatků 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

12. Prostý krut Definice

12. Prostý krut Definice p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

Fyzika I mechanika. Rozdělení fyziky podle jednotlivých oborů, tj. podle jevů, které zkoumá:

Fyzika I mechanika. Rozdělení fyziky podle jednotlivých oborů, tj. podle jevů, které zkoumá: Fika I mechanika Úvod Základní fikální pojm Fika (fsis je řeck příroda) bla původně vědou o přírodě, ted souhrnem všech přírodních věd, které se s postupem dějin osamostatnil. Fika si však achovává ústřední

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

Definice : 1 Bod A Ω En se naývá vnitřní bod oboru Ω, kdž eistuje okolí U A, které celé patří do oboru Ω Bod B se naývá hraniční bod oboru Ω, kdž v ka

Definice : 1 Bod A Ω En se naývá vnitřní bod oboru Ω, kdž eistuje okolí U A, které celé patří do oboru Ω Bod B se naývá hraniční bod oboru Ω, kdž v ka 1 Diferenciální počet funkcí dvou proměnných 1 Výnačné bod a množin bodů v prostoru Souřadnicová soustava v prostoru Každému bodu v prostoru přiřaujeme v kartéské souřadnicové soustavě uspořádanou trojici

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. DOC. ING. ZDENĚK KALA, Ph.D. ING. JIŘÍ KALA, Ph.D. PRUŽNOST A PEVNOST MODUL BD02-M03

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. DOC. ING. ZDENĚK KALA, Ph.D. ING. JIŘÍ KALA, Ph.D. PRUŽNOST A PEVNOST MODUL BD02-M03 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FKULT STVEBNÍ DOC. ING. ZDENĚK KL, Ph.D. ING. JIŘÍ KL, Ph.D. PRUŽNOST PEVNOST MODUL BD0-M0 SLOŽENÉ PŘÍPDY NMÁHÁNÍ PRUTU STBILIT VZPĚRNÁ PEVNOST TLČENÝCH PRUTŮ STUDIJNÍ OPORY

Více

Přednáška 08. Obecná trojosá napjatost

Přednáška 08. Obecná trojosá napjatost Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

6 Pohyb částic v magnetickém poli

6 Pohyb částic v magnetickém poli Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016 Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál. E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem

Více

Momenty setrvačnosti a deviační momenty

Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují

Více

Souřadnicové výpočty I.

Souřadnicové výpočty I. Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Prof. Ing. DRAHOMÍR NOVÁK, DrSc. Ing. LUDĚK BRDEČKO, Ph.D. PRUŽNOST A PEVNOST

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Prof. Ing. DRAHOMÍR NOVÁK, DrSc. Ing. LUDĚK BRDEČKO, Ph.D. PRUŽNOST A PEVNOST VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. DRAHOMÍR NOVÁK, DrSc. Ing. LUDĚK BRDEČKO, Ph.D. PRUŽNOST A PEVNOST MODUL BD - MO ZÁKLADNÍ POJMY A PŘEDPOKLADY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

TLUSTOSTĚNNÉ ROTAČNĚ SYMETRICKÉ VÁLCOVÉ NÁDOBY. Autoři: M. Zajíček, V. Adámek

TLUSTOSTĚNNÉ ROTAČNĚ SYMETRICKÉ VÁLCOVÉ NÁDOBY. Autoři: M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: Vyšetřete a v měřítku zakreslete napjatost v silnostěnné otevřené válcové nádobě zatížené vnitřním a vnějším přetlakem, viz obr. 1. Na nebezpečném poloměru, z hlediska pevnosti

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

5 SLOUPY. Obr. 5.1 Průřezy ocelových sloupů. PŘÍKLAD V.1 Ocelový sloup

5 SLOUPY. Obr. 5.1 Průřezy ocelových sloupů. PŘÍKLAD V.1 Ocelový sloup SLOUPY. Obecné ponámk Sloup jsou hlavními svislými nosnými element a přenášejí atížení vodorovných konstrukčních prvků do ákladové konstrukce. Modulové uspořádání načně ávisí na unkci objektu a jeho dispoičním

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

4.2. Graf funkce více proměnných

4.2. Graf funkce více proměnných V této kapitole se soustředíme na funkce dvou proměnných. Poue v tomto případě jsme schopni graf funkcí dvou proměnných obrait. Pro funkce tří a více proměnných trácí grafické vjádření smsl. Výklad Definice

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti

Více

Zjednodušený 3D model materiálu pro maltu

Zjednodušený 3D model materiálu pro maltu Problémy lomové mechaniky IV. Brno, červen 2004 Zjednodušený 3D model materiálu pro maltu Jiří Brožovský, Lenka Lausová 2, Vladimíra Michalcová 3 Abstrakt : V článku je diskutován návrh jednoduchého materiálového

Více

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT Φd Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT KRUT KRUHOVÝCH PRŮŘEZŮ Součást je namáhána na krut

Více

7.1.2 Kartézské soustavy souřadnic II

7.1.2 Kartézské soustavy souřadnic II 7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě

Více

NAPJATOST A HYPOTÉZY PEVNOSTI. Autoři: F. Plánička, M. Zajíček, V. Adámek

NAPJATOST A HYPOTÉZY PEVNOSTI. Autoři: F. Plánička, M. Zajíček, V. Adámek 6.3 Řešené příklady Příklad 1: Napjatost v bodě tělesa je určena následujícími složkami napětí (vizobr.1): σ x = 00MPa, σ y = 100MPa, τ z = 50MPa. Sestrojte Mohrovu kružnici a graficky a početně určete

Více

Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma,

Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma, NMAG66 LS 25 Inženýr, jeřáb a matice Výpočet sil v prutových soustavách styčníkovou metodou Úvod Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma, a proto

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Kapitola 2. 1 Základní pojmy

Kapitola 2. 1 Základní pojmy Kapitola 2 Funkce více proměnných Ve vědních i technických oborech se často setkáváme s veličinami, jejichž hodnot ávisí na větším počtu proměnných. Objem válce je ávislý na poloměru podstav a výšce, tlak

Více

Semestrální Projekt 1 Měření rychlosti projíždějících vozidel za použití jedné kalibrované kamery

Semestrální Projekt 1 Měření rychlosti projíždějících vozidel za použití jedné kalibrované kamery 1 Semestrální Projekt 1 Měření rchlosti projíždějících voidel a použití jedné kalibrované kamer (version reprint 2005) Jaromír Brambor 17.5.2000 2 1. ÚVOD Tento semestrální projekt se abývá měřením rchlosti

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků. FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Zemní tlaky cvičení doc. Dr. Ing. Hynek Lahuta Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009. Tento projekt je spolufinancován Evropským sociálním

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

PRUŽNOST A PEVNOST I

PRUŽNOST A PEVNOST I PRUŽNOST A PEVNOST I Učební text Prof. RNDr. Ing. Jan Vrbka, DrSc. Ústav mechaniky těles, mechatroniky a biomechaniky Fakulta strojního inženýrsví VUT v Brně Brno, 2011 Tato publikace vznikla jako součást

Více

STABILITA SVAHŮ staveb. inženýr optimální návrh sklonu

STABILITA SVAHŮ staveb. inženýr optimální návrh sklonu IG staveb. inženýr STABILITA SVAHŮ - přirozené svahy - rotační, translační, creepové - svahy vzniklé inženýrskou činností (násypy, zemní hráze, sklon stavební jámy) Cílem stability svahů je řešit optimální

Více

6.2.1 Zobrazení komplexních čísel v Gaussově rovině

6.2.1 Zobrazení komplexních čísel v Gaussově rovině 6.. Zobraení komplexních čísel v Gaussově rovině Předpoklad: 605 Pedagogická ponámka: Stihnout obsah hodin je poměrně náročné. Při dostatku času je lepší dojít poue k příkladu 7 a btek hodin spojit s úvodem

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ 11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 7 OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice jsou velmi důležitou částí matematické analý protože umožňují řešit mimo jiné celou řadu úloh fik a technické prae Při řešení

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více