Automaty a gramatiky

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Automaty a gramatiky"

Transkript

1 Automty grmtiky Romn Brták, KTIML Úvod do formálních grmtik Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí všechny řetězce dného jzyk. Původně pro popis přirozených jzyků <vět> <podmětná část> <přísudková část> Zdání syntxe vyšších progrmovcích jzyků od do Algolu 60 Bckus-Nurov normální form (BNF) <číslo> :== <číslo ez zn.> +<číslo ez zn.> -<číslo ez zn.> <číslo ez zn.> :== <číslice> <číslice><číslo ez znm>. <číslice> :==

2 Příkldy grmtik ) Grmtik správných uzávorkování V VV (V) () Výrz (()())(()) je generován posloupností přepisů: V VV (V)V (VV)V (()V)V (()())V (()())(V) (()())(()) 2) Grmtik generující všechny výrzy s opercemi + *, závorkmi jedinou konstntou c. V T+V T T F*T F F (V) c Výrz c+c*c+c je generován posloupností přepisů: V T+V F+V c+v c+t+v c+f*t+v c+c*t+v c+c*f+v c+c*c+v c+c*c+t c+c*c+f c+c*c+c Přepisovcí systémy - zákldní pojmy Přepisovcím (produkčním) systémem nzýváme dvojici R=(V,P), kde V - konečná eced P - konečná množin přepisovcích prvidel přepisovcí prvidlo (produkce) je uspořádná dvojice (u,v), kde u,v V* (zprvidl píšeme u v) Říkáme, že w se přímo přepíše n z (píšeme w z), jestliže: u,v,x,y V* tž. w=xuy, z=xvy (u v) P. Říkáme, že w se přepíše n z (píšeme w *z), jestliže: u,,u n V* w=u u 2... u n =z. Posloupnost u,,u n nzýváme odvozením (derivcí). Pokud i j u i u j, potom hovoříme o minimálním odvození. 2

3 Přepisovcí systémy Příkld: V = {0,} P = {0 0, 0 0} 000 * 000 dostneme z * 000 dostneme z liovolné slovo přepíše n liovolné jiné slovo (se stejným počtem výskytů 0 ) Produkční systémy slouží jko progrmovcí nástroj v UI progrm = systém produkcí dt = slov v ecedě OPS5, TOPS Constrint Hndling Rules (CHR) Definite Cluse Grmmrs (DCG) Formální (genertivní) grmtiky Genertivní grmtikou nzýváme čtveřici G=(V N,V T,S,P): V N - konečná množin neterminálních symolů V T - konečná množin terminálních symolů oě ecedy jsou neprázdné disjunktní! S V N -počáteční neterminální symol P - systém produkcí u v, kde u,v (V N V T )* u oshuje lespoň jeden neterminální symol. Jzyk L(G) generovný grmtikou G definujeme tkto: L(G) = {w w V T * & S *w}. Grmtiky G G 2 jsou ekvivlentní, jestliže L(G )=L(G 2 ). Příkld: G = ({S},{0,},S,{S 0S,S 0}), L(G) = {0 i i i } 3

4 Chomského hierrchie Klsifikce grmtik podle tvru přepisovcích prvidel. grmtiky typu 0 (rekurzivně spočetné jzyky L 0 ) prvidl v oecné formě grmtiky typu (kontextové jzyky L ) pouze prvidl ve tvru αxβ αwβ, X V N, α,β (V N V T )*, w (V N V T ) + jedinou výjimkou je prvidlo S λ, potom se le S nevyskytuje n prvé strně žádného prvidl grmtiky typu 2 (ezkontextové jzyky L 2 ) pouze prvidl ve tvru X w, X V N, w (V N V T )* grmtiky typu 3 (regulární/prvé lineární jzyky L 3 ) pouze prvidl ve tvru X wy, X w, X,Y V N, w V T * Uspořádnost Chomského hierrchie Chomského hierrchie definuje uspořádání tříd jzyků: L 0 L L 2 L 3 Dokonce vlstní podmnožiny (později): L 0 L L 2 L 3 L 0 L (rekurzivně spočetné jzyky zhrnují kontextové jzyky) oecná prvidl prvidl tvru αxβ αwβ L 2 L 3 (ezkontextové jzyky zhrnují regulární jzyky) X w, w (V N V T )* X wy, X w, Y V N, w V T * L L 2 (kontextové jzyky zhrnují ezkontextové jzyky) αxβ αwβ, w >0 vs. X w w 0 prolém s prvidly tvru X λ Můžeme z ezkontextových grmtik vyřdit prvidl X λ? 4

5 Nevypouštějící ezkontextové grmtiky Bezkontextová grmtik G je nevypouštějící právě tehdy, když nemá prvidl ve tvru X λ. Vět: Ke kždé ezkontextové grmtice G existuje nevypouštějící ezkontextová grmtik G tková, že L(G ) = L(G) - {λ} (jzyky se liší mximálně o prázdné slovo). Je-li λ L(G), potom existuje BKG G 2 tk, že L(G 2 ) = L(G) jediné prvidlo s λ n prvé strně je S λ S (počáteční neterminál) se nevyskytuje n prvé strně žádného prvidl G 2 (tedy L L 2 ). Příkld: G: S 0S λ G :S 0S 0 G 2 : S S λ, S 0S 0 Převod n nevypouštějící BKG ne, jk se zvit prvidel ve tvru X λ? Zákldní myšlenk: - prvidlo X λ se používá pro vyhození X ze slov - co když X do slov vůec nezřdíme?, Y uxv, X λ,, Y uv, ) Nejprve zjistíme neterminály, které se přepisují n λ: U = {X X V N & X *λ} Proč tk silně (nestčilo y X λ místo X *λ)? Řešení derivcí X X Y Y Y Z Z Z λ λ Iterční lgoritmus pro získání U: U = {X X V N & (X λ) P} přímý přepis U i+ = {X X V N & (X w) P, w U i *} přepis po i+ krocích U U 2 V N + stilizce ( k U k = U k+ = ) + U=U k 5

6 Převod n nevypouštějící BKG - pokrčování 2) Úprv prvidel do P dáme prvidl tvru X u tková, že: u λ v P je prvidlo X v Y v 2 v m Y m v m+, Y i U, v i ((V N -U) V T )* u vzniká z (v Y v 2 v m Y m v m+ ) vypuštěním některých (všech, žádného) symolů Y i. 3) Ještě L(G ) = L(G) - {λ} zřejmé: G je nevypouštějící BKG, L(G ) L(G), λ L(G ) nechť w L(G) w λ, tj. S *w, pokud se použilo prvidlo z P-P, pk má tvr X λ v derivci před ním muselo ýt užito prvidlo Y uxv uděláme novou derivci s Y uv ez X λ 4) Zývá situce λ L(G) G 2 = (V N {S },V T,S,P {S λ, S S}) Příkld - nevypouštějící BKG S Sc A A Ac λ ) Nejprve zjistíme neterminály, které se přepisují n λ: U = {A,S} 2) Uprvíme prvidl: S Sc A S c (vzniklo z S Sc vypuštěním S) A Ac (prvidlo A λ nepřevádíme) A c (vzniklo z A Ac vypuštěním A) Původní grmtik přijímá jzyk { i j c k i+j=k}. Převedená grmtik přijímá jzyk { i j c k i+j=k, k>0}. 6

7 Chomského hierrchie grmtiky typu 0 (rekurzivně spočetné jzyky L 0 ) prvidl v oecné formě grmtiky typu (kontextové jzyky L ) pouze prvidl ve tvru αxβ αwβ, X V N, α,β (V N V T )*, w (V N V T ) + jedinou výjimkou je prvidlo S λ, potom se le S nevyskytuje n prvé strně žádného prvidl grmtiky typu 2 (ezkontextové jzyky L 2 ) pouze prvidl ve tvru X w, X V N, w (V N V T )* grmtiky typu 3 (regulární/prvé lineární jzyky L 3 ) pouze prvidl ve tvru X wy, X w, X,Y V N, w V T * Grmtiky typu 3 regulární jzyky pouze prvidl ve tvru X wy, X w, X,Y V N, w V T * Podívejme se n derivce generovné grmtikmi typu 3 P: S 0S A λ, A 0A B, B 0B S S 0S 0A 0B 00B 00S 00 Pozorování: kždé slovo derivce oshuje právě jeden neterminál tento neterminál je vždy umístěn zcel vprvo plikcí prvidl X w se derivce uzvírá krok derivce = generuje symol(y) +změní neterminál Ide vzthu grmtiky konečného utomtu: neterminál = stv konečného utomtu prvidl = přechodová funkce 7

8 Převod konečného utomtu n grmtiku L F L L 3 Důkz: L=L(A) pro nějký konečný utomt A=(Q,X,δ,q 0,F) definujme grmtiku G=(Q,X,q 0,P), kde prvidl mjí tvr p q, když δ(p,)=q p λ, když p F ještě L(A)=L(G)? ) λ L(A) q 0 F (q 0 λ) P λ L(G) 2) n L(A) q 0,,q n Q tž. δ(q i, i+ )=q i+, q n F (q 0 q n q n n ) je derivce pro n n L(G) QED A co nopk? prvidl X Y kódujeme do přechodové funkce X λ je konec le co prvidl X n Y, X Y, X n? Příkld převodu KA n grmtiku A B 0A λ B 0C D C 0E A D 0B C E 0D E 0 A B 0 0 C D 0 0 E Příkldy derivcí: A 0A 0 (0) A B 0C 0A 0 (5) A B 0C 0A 00A 00 (0) A B D C A (5) L= { w w {0,}* & w je inární zápis čísl dělitelného 5} 8

9 Stndrdizce prvidel regulární grmtiky Ke kždé grmtice G=(V N,V T,S,P) typu 3 existuje ekvivlentní grmtik G, která oshuje pouze prvidl ve tvru: X Y X λ. Důkz: definujme G =(V N,V T,S,P ), kde prvidl P získáme tkto P P X Y X Y X λ X λ X n Y X Y 2, Y 2 2 Y 3,, Y n n Y Z n Z Z, Z 2 Z 2,, Z n λ (Y 2,,Y n, Z,,Z n jsou nové neterminály - pro kždé prvidlo jiná sd) zývá X Y definujme U(X) = {Y Y V N & X * Y} efektivní postup U = {Y (X Y) P}, U i+ = U i {Y (Z Y) P, Z U i } X Y X w pro všechn Y w z P Y U(X) Příkld stndrdizce regulární grmtiky Originální S X S Y Y Y Y Y X Y X X X λ Převedená S S S S 2 S 2 S 3 S 3 X S Y Y Y Z Y Y Y Y Y Y Y 2 Y 2 X Y Z Z Z 2 Z 2 Z 3 Z 3 λ X X X λ, L={ w w=u w=uv w=u, u,v {,}* } S S S 2 S 3 X, Y Y Y 2, Z Z 2 Z 3 9

10 Převod grmtiky n konečný utomt L L 3 L F Důkz: L=L(G) pro nějkou grmtiku G=(V N,V T,S,P) typu 3 oshující pouze prvidl ve tvru: X Y X λ definujme nedeterministický konečný utomt A=(V N,V T,δ,{S},F), kde: F={ X (X λ) P} δ(x,) ={ Y (X Y) P} ještě L(G)=L(A)? ) λ L(G) (S λ) P S F λ L(A) 2) n L(G) existuje derivce (S X n X n n ) X 0,,X n V N tž. δ(x i, i+ ) X i+, X 0 =S, X n F n L(A) Levé ( prvé) lineární grmtiky Grmtiky typu 3 nzýváme tké prvé lineární (neterminál je vždy vprvo). Odoně - grmtik G je levá lineární, jestliže má pouze prvidl tvru X Yw, X w, X,Y V N, w V T * (neterminál je vždy vlevo). Vět: Jzyky generovné levou lineární grmtikou jsou právě regulární jzyky. Důkz: otočením prvidel dostneme prvou lineární grmtiku X Yw, X w převedeme n X w R Y, X w R získná grmtik generuje jzyk L R víme, že regulární jzyky jsou uzvřené n reverzi tudíž protože L R je regulární, je i L (=(L R ) R ) regulární tkto lze získt všechny regulární jzyky 0

11 Lineární grmtiky ( jzyky) Můžeme levě právě lineární prvidl používt njednou? Dlší zoecnění - grmtik je lineární, jestliže má pouze prvidl tvru X uyv, X w, X,Y V N, u,v,w V T * (n prvé strně vždy mximálně jeden neterminál). Lineární jzyky jsou právě jzyky generovné lineárními grmtikmi. Zřejmě: regulární jzyky lineární jzyky Pltí tké: regulární jzyky lineární jzyky? NE! {0 n n n } není regulární jzyk, le je lineární (S 0S 0) Pozorování: lineární prvidl lze rozložit n levě prvě lineární prvidl S 0A, A S

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik Úvod do formáln lních grmtik Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí

Více

Automaty a gramatiky(bi-aag)

Automaty a gramatiky(bi-aag) BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn

Více

Automaty a gramatiky

Automaty a gramatiky 5 Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Co ylo minule Množinové operce s jzyky sjednocení, pr nik, rozdíl, dopln k uzv enost opercí (lgoritmus p evodu) et

Více

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111.

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111. Grmtiky. Vytvořte grmtiku generující množinu řetězů { n m } pro n, m N {} tková, že n m. Pomocí této grmtiky derivujte řetezy,. 2. Grmtik je dán prvidly S ɛ S A A S B B A B. Je regulární? Pokud ne, n regulární

Více

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku? Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než

Více

Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí

Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí 3 Automty grmtiky Romn Brták, KTIML rtk@ktimlmffcunicz http://ktimlmffcunicz/~rtk Pro připomenutí 2 Njít ekvivlentní stvy w X* δ*(p,w) F δ*(q,w) F Vyřdit nedosžitelné stvy 3 Sestrojit podílový utomt Automty

Více

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M. BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty

Více

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů. Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje

Více

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35 Převody Regulárních Výrzů Minimlizce Konečných Automtů Regulární jzyky 2 p.1/35 Kleeneho lger Definice 2.1 Kleeneho lger sestává z neprázdné množiny se dvěm význčnými konstntmi 0 1, dvěm inárními opercemi

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Automaty a gramatiky

Automaty a gramatiky Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Co bylo minule Úvod do formálních gramatik produkční systémy generativní gramatika G=(V N,V T,,P) G =

Více

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31 Minimlizce utomtů M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 28. řezn 2007 1/ 31 Ekvivlence utomtů 1 2 3 1 2 3 1 2 Všechny 3 utomty přijímjí jzyk všech slov se sudým počtem -ček Nejvýhodnějšíjepronásposledníznich-mánejméněstvů

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46 Formální jzyky Z. Sw (VŠB-TUO) Úvod do teoretické informtiky 7. řezn 2012 1/ 46 Teorie formálních jzyků motivce Příkldy typů prolémů, při jejichž řešení se využívá pozntků z teorie formálních jzyků: Tvor

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem 11 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Uzávěrové vlastnosti v kostce Sjednocení Průnik Průnik s RJ Doplněk Substituce/ homomorfismus Inverzní

Více

Teorie jazyků a automatů

Teorie jazyků a automatů Slezská univerzit v Opvě Filozoficko-přírodovědecká fkult v Opvě Šárk Vvrečková Teorie jzyků utomtů Skript do předmětů II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

Úvod 1. 3 Regulární jazyky Konečné jazyky Pumping Lemma pro regulární jazyky a nekonečné jazyky Sjednocení...

Úvod 1. 3 Regulární jazyky Konečné jazyky Pumping Lemma pro regulární jazyky a nekonečné jazyky Sjednocení... Osh Úvod 1 1 Teoretická informtik 2 1.1 Vznik vývoj teoretické informtiky................... 2 1.1.1 Mtemtik............................. 2 1.1.2 Jzykověd............................. 5 1.1.3 Biologie...............................

Více

Teorie jazyků a automatů I

Teorie jazyků a automatů I Šárk Vvrečková Teorie jzyků utomtů I Sírk úloh pro cvičení Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv, poslední ktulizce 5. květn 205 Anotce: Tto skript jsou určen

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

2.5.4 Věta. Každý jazyk reprezentovaný regulárním výrazem je regulárním jazykem.

2.5.4 Věta. Každý jazyk reprezentovaný regulárním výrazem je regulárním jazykem. 2.5. Regulární výrzy [181012-1111 ] 21 2.5 Regulární výrzy 2.5.1 Regulární jzyky jsme definovli jko ty jzyky, které jsou přijímány konečnými utomty; ukázli, že je jedno, zd jsou deterministické neo nedeterministické.

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

Automaty a gramatiky. Pro připomenutí. Roman Barták, KTIML. Důkaz věty o dvousměrných automatech (1)

Automaty a gramatiky. Pro připomenutí. Roman Barták, KTIML. Důkaz věty o dvousměrných automatech (1) 4 Automty gmtiky omn Bták, KTIML tk@ktiml.mff.cuni.cz htt://ktiml.mff.cuni.cz/~tk Po řiomenutí Automt může tké ovládt čtecí hlvu dvousměný (dvoucestný) utomt řechodová funkce: Q X Q {-,,+} Slovo w je řijto

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

Úvod do Teoretické Informatiky (456-511 UTI)

Úvod do Teoretické Informatiky (456-511 UTI) Úvod do Teoretické Informtiky (456-511 UTI) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vs.cz 25. ledn 2006 Verze 1.02. Copyright c 2004 2006 Petr Hliněný. (S využitím části mteriálů c Petr Jnčr.) Osh

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

písemná a ústní část porozumění látce + schopnost formalizace

písemná a ústní část porozumění látce + schopnost formalizace Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Orgnizční záležitosti Přednášk: n weu (http://ktiml.mff.cuni.cz/~rtk/utomty) Proč chodit n přednášku? Cvičení: dozvíte

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Přednáška 9: Limita a spojitost

Přednáška 9: Limita a spojitost 4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

MULTIDIMENSIONÁLNÍ JAZYKY A JEJICH AUTOMATY MULTI-DIMENSIONAL LANGUAGES AND THEIR AUTOMATA

MULTIDIMENSIONÁLNÍ JAZYKY A JEJICH AUTOMATY MULTI-DIMENSIONAL LANGUAGES AND THEIR AUTOMATA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS MULTIDIMENSIONÁLNÍ

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

10. Suffixové stromy 1 2014-01-23

10. Suffixové stromy 1 2014-01-23 10. Suffixové stromy V této kpitole popíšeme jednu pozoruhodnou dtovou strukturu, pomocí níž dokážeme prolémy týkjící se řetězců převádět n grfové prolémy řešit je tk v lineárním čse. Řetězce, trie suffixové

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

7. Integrální počet Primitivní funkce, Neurčitý integrál

7. Integrální počet Primitivní funkce, Neurčitý integrál 7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)

Více

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - II. část (určitý integrál a jeho aplikace) Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n, Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

2 Formální jazyky a gramatiky

2 Formální jazyky a gramatiky 2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně

Více

Teorie jazyků a automatů

Teorie jazyků a automatů Šárk Vvrečková Teorie jzyků utomtů Sírk příkldů pro cvičení II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv 24. listopdu 2016 Anotce:

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Turingovy stroje. Teoretická informatika Tomáš Foltýnek Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,

Více

Jednoznačné a nejednoznačné gramatiky

Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.

Více

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ . INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

Logaritmické rovnice I

Logaritmické rovnice I .9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme

Více

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný. 4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I ..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,

Více

Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27

Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27 Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2

Více

3. Kvadratické rovnice

3. Kvadratické rovnice CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:

Více

NMAF061, ZS Písemná část zkoušky 16. leden 2018

NMAF061, ZS Písemná část zkoušky 16. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6

Více