QUADROTORY. Ing. Vlastimil Kříž

Rozměr: px
Začít zobrazení ze stránky:

Download "QUADROTORY. Ing. Vlastimil Kříž"

Transkript

1 QUADROTORY ng. Vlastiil Kříž

2 Obsah 2 Mateatický odel, říení transforace ei báei (rotace) staoý popis říení Eistující projekt unieritní hobb koerční

3 Quadrotor 3 ožnost isu iniu pohbliých součástek dobrý poěr elikost/nosnost Zdroj: Zdroj: q-8b-na-unanned-aerial-ehicle.htl Zdroj: Zdroj: Zdroj:

4 Princip letu quadrotoru 5 Klopení (angl. pitching; podél příčné os) a klonění (angl. rolling; podél podélné os) poocí ěn otáček (=> tahu) rotorů na protilehlých raenách klopení klonění

5 Princip letu quadrotoru 6 Bočení poocí ěn otáček (=> rekčního oentu) rotorů točících se opačné sslu bočení

6 Princip letu quadrotoru 7 Stoupání / klesání ěnou tahu šech rotorů Let e odoroné roině naklopení / naklonění

7 Mateatický odel staoých proěnných 2 báe n 1 n 4 n 2 n 3 inerciální báe

8 Staoé proěnné 9 V bái robota: úhloá rchlost ose robota úhloá rchlost ose robota úhloá rchlost ose robota rchlost ose robota rchlost ose robota rchlost ose robota V inerciální bái: - natočení ose eě (naklonění, roll) - natočení ose eě (naklopení, pitch) - natočení ose eě (bočení, aw) poloha ose eě poloha ose eě poloha ose eě

9 Transforace ei báei 10 Vektor q bái 0 q 0 =

10 Transforace ei báei 11 Noá báe 1 pootočená o kole os q 0 =

11 Transforace ei báei 12 Souřadnice q bái 1? q 0 =

12 Transforace ei báei 13 Přes atici rotace q 0 = q 1 = R 10 φ q 0 1 0

13 Transforace ei báei 14 Matice rotace R φ = cos φ sin φ 0 sin φ cos φ R φ = cos φ 0 sin φ sin φ 0 cos φ R φ = cosφ sin φ 0 sin φ cos φ

14 Transforace ei báei 15 Zde rotace poue kole os q 0 = q 1 = R 10 φ q = cosφ sin φ 0 sin φ cos φ

15 Transforace ei báei 16 Transforace opačný sěre 0 1 q 1 = R 10 q 0 q 0 = R 10 1 q 1 1 0

16 Transforace ei báei 17 Transforace opačný sěre 0 1 q 1 = R 10 q 0 q 0 = R 10 1 q 1 protože atice rotace je orthogonální 1 0 q 0 = R 10 T q 1

17 Transforace ei báei 18 Rotace kole íce os V aionice nejčastěji poocí posloupnosti rotací RPY ( Roll Pitch Yaw ) (klonění, klopení, bočení) q o = R Z R Y R X q 1 R 01 Zdroj: (upraeno)

18 Model odoení. 19 Setračnost lineární F = d p dt p = rotační M = dh dt H = ω p hbnost tělesa H oent hbnosti tělesa

19 Model odoení. 20 ( ) F ( ) F ( ) F M M M

20 Model odoení. 21 Působící síl a oent: Složk graitační síl osách robota Noé řídicí eličin: u 1 - oent ose působený rodílný tahe rotorů 2 a 4 u 2 - oent ose působený rodílný tahe rotorů 1 a 3 u 3 - oent ose působený rodílný reakční oente rotorů rotujících opačné sslu u 4 - síla ose působená součte tahu rotorů

21 Moent a síl od rtulí 22 n 1 u 4 u 1 n 4 n 2 u 3 u 2 n 3

22 23 Tah rtulí

23 Tah rtulí 24 F T = k T n 2

24 25 Reakční oent rtulí

25 Reakční oent rtulí 26 M R = k M n 2

26 27 Přeod otáčk u

27 Model odoení V. 28 ( ) F ( ) F ( ) F M M M

28 Model odoení V. 29 ( ) G ( ) G ) ( 4 u G u 1 u 2 u 3 ( ) F ( ) F ( ) F M M M

29 Model odoení V. 30 ( ) G ( ) G ) ( 4 u G u 1 u 2 u 3

30 Model odoení V. 31 ( ) G ( ) G ) ( 4 u G u 1 u 2 u 3 u 1 u 2 u 3 G G u G 4

31 Blokoé schéa odelu 32 u1 u2 u3

32 33 Blokoé schéa odelu u G 4 G G složk graitační síl

33 Transforace ei báei 34 Transforace lineárního pohbu báe robota do inerciální báe q o = R Z R Y R X q 1 R 01

34 Transforace ei báei 35 Transforace lineárního pohbu báe robota do inerciální báe q o = R Z R Y R X q 1 R 01 cos cos cos sin sin - cos sin sin sin + cos cos sin cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos =

35 Transforace ei báei 36 Transforace lineárního pohbu báe robota do inerciální báe q o = R Z R Y R X q 1 R 01 cos cos cos sin sin - cos sin sin sin + cos cos sin cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos = sin sin cos cos sin cos sin cos sin sin cos cos cos cos sin sin sin cos sin cos sin sin cos sin cos cos sin cos sin

36 Transforace ei báei 37 Transforace rotace báe robota do inerciální báe = 1 - sin 0 0 cos cos sin 0 - sin cos cos Euleroa kineatická ronice

37 Transforace ei báei 38 Transforace rotace báe robota do inerciální báe = 1 - sin 0 0 cos cos sin 0 - sin cos cos Euleroa kineatická ronice ω = θ sin θ ω = θ cos + cos θ sin ω = θ sin + cos θ cos

38 Transforace ei báei 39 Transforace rotace báe robota do inerciální báe = 1 - sin 0 0 cos cos sin 0 - sin cos cos Euleroa kineatická ronice ω = θ sin θ ω = θ cos + cos θ sin ω = θ sin + cos θ cos sin tg cos tg cos sin sin cos cos cos

39 Transforace ei báei 40 Transforace graitační síl inerciální báe do báe robota q 1 = R 01 T q 0

40 Transforace ei báei 41 Transforace graitační síl inerciální báe do báe robota q 1 = R 01 T q 0 G T cos cos cos sin sin - cos sin sin sin + cos cos sin G = cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos G 0 0 G

41 Transforace ei báei 42 Transforace graitační síl inerciální báe do báe robota q 1 = R 01 T q 0 G T cos cos cos sin sin - cos sin sin sin + cos cos sin G = cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos G 0 0 G G cos cos cos sin -sin G = cos sin sin - cos sin cos cos + sin sin sin cos sin sin sin + cos cos sin cos sin sin - cos sin cos cos G 0 0 G

42 Transforace ei báei 43 Transforace graitační síl inerciální báe do báe robota q 1 = R 01 T q 0 G T cos cos cos sin sin - cos sin sin sin + cos cos sin G = cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos G 0 0 G G cos cos cos sin -sin G = cos sin sin - cos sin cos cos + sin sin sin cos sin sin sin + cos cos sin cos sin sin - cos sin cos cos G 0 0 G G gsin G gcos sin G gcos cos

43 44 Blokoé schéa odelu složk graitační síl cos cos cos sin sin cos tg tg cos sin

44 45 sin sin cos cos sin cos sin cos sin sin cos cos sin sin cos sin Blokoé schéa odelu cos cos sin sin sin cos sin cos cos cos sin cos sin složk graitační síl

45 46 Blokoé schéa odelu G gsin G gcos sin G gcos cos složk graitační síl

46 Blokoé schéa odelu 47 složk graitační síl

47 Staoé ronice (dnaika stroje) 48 u 1 u 2 u 3 sin g sin g cos u g 4 cos cos tg tg cos sin cos cos cos sin cos cos sin sin cos sin cos sin cos cos sin sin sin cos sin sin cos sin cos sin sin sin cos cos sin cos sin cos cos sin cos

48 Lineariace okolí praconího bodu 49 Praconí bod is na ístě,, = 0 nutno kopenoat graitační sílu u 4 = g

49 Říení quadrotoru 50 Poocí PD regulátorů Poocí staoého regulátoru Jiné Neuronoé sítě Fu regulátor

50 Použití PD regulátorů 51 Říení roděleno do jednotliých os Přesto le při dobré nastaení dosáhnout poěrně kalitních ýsledků ž u 1

51 Použití staoého regulátoru 52 Pracuje se šei 12 staoýi proěnnýi stroje ará Složitější

52 Jiné působ říení 53 Neuronoé sítě naučení např. na PD regulátorech Údajně schopn ládnout ětší roptl paraetrů Zdroj: Jack F. Shepherd, Kagan Tuer; Robust neuro-control for a icro quadrotor, GECCO '10 Proceedings of the 12th annual conference on Genetic and eolutionar coputation; SBN: ; USA 2010

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ MULTKOPTÉRY ng. Vlastiil Kříž Koplení inoace studijních prograů a šoání kalit ýuk na FEKT VUT Brně OP VK CZ.1.07/2.2.00/28.0193

Více

Dynamika tuhého tělesa. Petr Šidlof

Dynamika tuhého tělesa. Petr Šidlof Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

Dynamika tuhého tělesa

Dynamika tuhého tělesa Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického

Více

Dynamika vozidla Hnací a dynamická charakteristika vozidla

Dynamika vozidla Hnací a dynamická charakteristika vozidla Dynamika ozidla Hnací a dynamická charakteristika ozidla Zpracoal: Pael BRABEC Pracoiště: VM Tento materiál znikl jako součást projektu In-TECH, který je spoluinancoán Eropským sociálním ondem a státním

Více

Inerciální a neinerciální soustavy

Inerciální a neinerciální soustavy Inerciální neinerciální soust olný hmotný bod (nepůsobí n něj žádné síl) inerciální soust: souřdnicoá soust ůči které je olný hmotný bod klidu nebo ronoměrném přímočrém pohbu pokud máme tři hmotné bod,

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

7. SEMINÁŘ Z MECHANIKY

7. SEMINÁŘ Z MECHANIKY - 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu

Více

Mechanika

Mechanika Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

i β i α ERP struktury s asynchronními motory

i β i α ERP struktury s asynchronními motory 1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází

Více

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální

Více

10. PŘEVODY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS

10. PŘEVODY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS 10. PŘEVOY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS Jedná se o převody s tvarový styke výhody - relativně alé roěry - dobrá spolehlivost a životnost - dobrá echanická účinnost - přesné dodržení

Více

Matematické základy fotogrammetrie, souřadnicové soustavy, transformace

Matematické základy fotogrammetrie, souřadnicové soustavy, transformace Mateatické áklad fotograetrie, souřadnicové soustav, transforace oříení sníků ěření hodnot Fotograetrické pracování - transforace - vrovnání - korelace Fotograetrické výstup Sníkové orientace Fotograetrie

Více

Transformace (v OpenGL) příklady a knihovna GLM

Transformace (v OpenGL) příklady a knihovna GLM Transforace (v OpenGL) příklady a knihovna GLM Petr Felkel, Jaroslav Sloup Katedra počítačové grafiky a interakce, ČVUT FEL ístnost KN:E-413 (Karlovo náěstí, budova E) E-ail: felkel@fel.cvut.cz Poslední

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

Kap. 3 Makromechanika kompozitních materiálů

Kap. 3 Makromechanika kompozitních materiálů Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více

Směrové řízení vozidla

Směrové řízení vozidla Směroé řízení ozidla Ing. Pael Brabec, Ph.D. TEHNIKÁ UNIVERITA V LIBERI Fakulta mechatroniky, informatiky a mezioboroých studií Tento materiál znikl rámci projektu ESF.1.07/..00/07.047 Reflexe požadaků

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 5

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 5 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 5 Šrouby a šroubové spoje For want of a nail the shoe is lost; For want of a shoe the horse is

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

Soustava hmotných bodů

Soustava hmotných bodů Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět

Více

m cyklotronová frekvence

m cyklotronová frekvence Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q dt

Více

11. cvičení z Matematiky 2

11. cvičení z Matematiky 2 11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv

Více

Řízení pohybu manipulátoru

Řízení pohybu manipulátoru Martin Sábl, Kail Všten, Radek Sekal České soké čení technické Praze, Faklta elektrotechnická ABSTRAKT V sočasné době á inteligentní robotika sé nezastpitelné ísto noha odětích průsl, edicín či ěd. Inteligentní

Více

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar

Více

Vliv přepravovaných nákladů na jízdní vlastnosti vozidel

Vliv přepravovaných nákladů na jízdní vlastnosti vozidel Vliv přepravovaných nákladů na jízdní vlastnosti vozidel Doc. Ing. Miroslav Tesař, CSc. Havlíčkův Brod 20.5.2010 1. Úvod 2. Definování základních pojmů 3. Stabilita vozidel 4. Stabilita proti překlopení

Více

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi.

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi. Lineární funkcionál Z teorie je nutné znát pojm: lineární funkcionál jádro hodnost a defekt lineárního funkcionálu Také vužijeme větu o dimenzi [cvičení] Nechť je definován funkcionál ϕ : C C pro každé

Více

Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor)

Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) 22.

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní

Více

qb m cyklotronová frekvence

qb m cyklotronová frekvence Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q = =

Více

Mechatronické systémy struktury s asynchronními motory

Mechatronické systémy struktury s asynchronními motory 1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán

Více

ω JY je moment setrvačnosti k ose otáčení y

ω JY je moment setrvačnosti k ose otáčení y ZÁKLADNÍ USPOŘÁDÁNÍ MECHANICKÝCH GYROSKOPŮ POUŽITÝCH NA LETADLE 3 2 1 ω 3 2 1 ω 3 ω Kardanův ávěs ω a) 4 Groskop se dvěma stupni volnosti 3 b) Groskop se třemi stupni volnosti Groskop se otáčí úhlovou

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

1. Regulace otáček asynchronního motoru - skalární řízení

1. Regulace otáček asynchronního motoru - skalární řízení 1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán

Více

Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze

Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze Popis poloh těles 1 2 Robotik Popis poloh těles 3 4 5 6 7 8 9 10 11 12 Vldimír Smutný Centrum strojového vnímání České vsoké učení technické v Prze 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická

Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká

Více

Mechanika letu. Tomáš Kostroun

Mechanika letu. Tomáš Kostroun Mechanika letu Tomáš Kostroun Mechanika letu Letové výkony Rychlosti Klouzavost Dostup Dolet Letové vlastnosti Stabilita letu Řiditelnost Letadlová soustava Letové výkony větroně Minimální rychlost Maximální

Více

ŘÍDICÍ SYSTÉM VZDUŠNÉHO PRŮZKUMNÉHO PROSTŘEDKU PRO VNITŘNÍ PROSTŘEDÍ

ŘÍDICÍ SYSTÉM VZDUŠNÉHO PRŮZKUMNÉHO PROSTŘEDKU PRO VNITŘNÍ PROSTŘEDÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU

VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU Ing. Petr FRANTÍK, Ph.D., Ing. David LEHKÝ, Ph.D., Ústav stavební echaniky, Fakulta stavební, Vysoké učení technické v Brně, tel.:

Více

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Pohyb mechanismu Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Doba studia : asi,5 hodiny Cíl přednášky : uvést studenty do problematiky mechanismů, seznámit

Více

š ó ó Š š ú ž Ó ž ů ď ů ó ů ú ť ť Ú ú ňó ž Ě ň ů ú Š ó ú ó š Ů ď ó ň Ň Ú ú ú ž ó ň ž ú Ú ú Ú ú š ň Ú Ú Ú Ú Ú ú Ú Ú Ó Ú Ú Š Š ú Ú Š Š š ú Ý ď É Š Š ň ň Ú Š É š Ů ň Ú Ď ž ú ž ň ň É É ď Ú Ů Ú Ú Éň ú ú É ň

Více

Í ě ň ó Ř Š ě ě ě ě ě ě ě ě ě ě ó Ř ě ě ě ě ě ě ť ě ť Š ě ě ť ě ť ě ě Š ó Ř ó Ř Ý Ž É Č ň ň ě ě ť Ž ě ě ť ě ě ě ě ě ě ě ě ě ě ě ě ě Š ň ě ó Ř ó Ř ó ť ť ě ť ť ě ě ě ě ě ě ě Š ů ě ó ó Ř ó Ř ě ě ť ě ě ó Ř

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l :

ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l : ÚLOHA Závažíčko zavěšené na pružině kitá haronick tak, že: aplituda výchlk je 2 c, doba kitu je T 0,5 s. Předpokládáe, že včase t 0 s prochází závažíčko rovnovážnou polohou a sěřuje vzhůru. Úkol: a) Zjistíe

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

ZÁKLADNÍ PARAMETRY GYROSKOPU

ZÁKLADNÍ PARAMETRY GYROSKOPU ZÁKLADNÍ PARAMETRY GYROSKOPU v Vektor obvodové rchlosti Moment hbnosti r Hlavní osa otáčení Vektor úhlové rchlosti SLEDOVÁNÍ OTÁČENÍ ZEMĚKOULE POMOCÍ GYROSKOPU t hlavní osa t = 0 rovník Groskop je na rovníku,

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice

Více

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plasticita II. ročník bakalářskéo stuia oc. Ing. Martin Krejsa, P.. Katera stavební ecanik Plošné konstrukce, nosné esk Nosné esk Iealiují se jako rovinný obraec (nejčastěji ve voorovné rovině),

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

FYZIKA I. Složené pohyby (vrh šikmý)

FYZIKA I. Složené pohyby (vrh šikmý) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar

Více

Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren

Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Projekt TA ČR č. TA01020457: Výzkum, vývoj a validace univerzální technologie pro potřeby moderních

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

SIMULACE A ŘÍZENÍ LÉTAJÍCÍHO ROBOTA

SIMULACE A ŘÍZENÍ LÉTAJÍCÍHO ROBOTA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO

STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO DO TVRDÉ SÍTĚ Ing. Karel Noháč, Ph.D. Západočeská Univerzita v Plzni Fakulta elektrotechnická Katedra elektroenergetiky a ekologie Analyzovaný ý systém: Dále

Více

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

Ů Č Č Ě Í š í í ě í í Ťí í ě í ňí í Ť ě ě Ť í ě í í ě ě ě í š í Ťí ě í ě ší Ó Č š í í í š í ě í í ě í Ť ší í í ě ě í Ť í í ě í š š ě ě ě í ě ě í í š ě

Ů Č Č Ě Í š í í ě í í Ťí í ě í ňí í Ť ě ě Ť í ě í í ě ě ě í š í Ťí ě í ě ší Ó Č š í í í š í ě í í ě í Ť ší í í ě ě í Ť í í ě í š š ě ě ě í ě ě í í š ě ě ě í í Ú ě Ú Ť š íš ě í í ň Í É š Č ě ě šší ě Ť ě š ň í ě ší ě ší ě í í š Ť í í í Ť š ě ě ší ě Ť í íš ě í ě ě í Ť í í í í ší ě Ď ě ě ší Ď í ě í í ě í š ěí ě ě ší ě í í í Ó í í í í š í í ě í ě ě í í ň

Více

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2.

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2. 1. kapitola Stavební echanika Janek Faltýnek SI J (43) Vnitřní síl v průřeu prostorového prutu eoretická část: ) erinologie ejdříve bcho si ěli říci co se rouí pod poje prut. Jako prut se onačuje konstrukční

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

Pohyb soustavy hmotných bodů

Pohyb soustavy hmotných bodů Pohyb soustavy hotných bodů Tato kapitola se zabývá úlohai, kdy není ožné těleso nahradit jední hotný bode, předevší při otáčení tělesa. Těžiště soustavy hotných bodů a tělesa Při hodu nějaký složitější

Více

1 Veličiny charakterizující geometrii ploch

1 Veličiny charakterizující geometrii ploch 1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY ABORATORNÍ CVIČENÍ Z FYZIKY Jéno: Petr Česák Datu ěření: 7.. Studijní rok: 999-, Ročník: Datu odevzdání:.5. Studijní skupina: 5 aboratorní skupina: Klasifikace:

Více

5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk

5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk 5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk Teoretická geodézie 4 FSV ČVUT 2017/2018 LS 1 Celková orientace zemského tělesa, tj. precese-nutace+pohyb pólu+vlastní rotace,

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

frekvence f (Hz) perioda T = 1/f (s)

frekvence f (Hz) perioda T = 1/f (s) 1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu

Více

2. Dynamika hmotného bodu

2. Dynamika hmotného bodu . Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy

Více

2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f )

2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f ) 1 Pracovní úkoly 1. Zěřte tuost k pěti pružin etodou statickou. 2. Sestrojte raf závislosti prodloužení pružiny na působící síle y = i(f ) 3. Zěřte tuost k pěti pružin etodou dynaickou. 4. Z doby kitu

Více

Typ výpočtu. soudržná. soudržná

Typ výpočtu. soudržná. soudržná Posouzení plošného základu Vstupní data Projekt Datu : 2.11.2005 Základní paraetry zein Číslo Název Vzorek ϕ ef [ ] c ef [] γ [/ 3 ] γ su [/ 3 ] δ [ ] 1 Třída S4 3 17.50 7.50 2 Třída R4, přetváření křehké

Více

Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G

Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G Řešení úloh celostátního kola 47 ročníku fyzikální olypiády Autor úloh: P Šedivý 1 a) Úlohu budee řešit z hlediska pozorovatele ve vztažné soustavě otáčející se spolu s vychýlenou tyčí okolo svislé osy

Více

QUADROCOPTER - STABILIZACE POMOCÍ INERCIÁLNÍCH SNÍMAČŮ

QUADROCOPTER - STABILIZACE POMOCÍ INERCIÁLNÍCH SNÍMAČŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

PLOŠNÉ INTEGRÁLY PLOCHY

PLOŠNÉ INTEGRÁLY PLOCHY LOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). LOCHY lochy v prostoru, které byly zatí hlavně používány, byly

Více

ž á ž á á Ž á á ž é á é Ť á é á é žá š é é Ť ÍŽ á é á á ň ť á á Í Ť á á á á ť ž á é á ň Ť ť Ď á é é ť é Í ž á á á é é á á é áž Í ť ď á š é á Í Ž Č ď ř ť Í á ď é ď ť ž é á Í š á é ď á é é é á á ž á á á

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

M5. ODHAD A ŘÍZENÍ ORIENTACE MULTIKOPTÉRY

M5. ODHAD A ŘÍZENÍ ORIENTACE MULTIKOPTÉRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘÍCÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Statické posouzení k akci: Přístavba výrobní haly CETRIS

Statické posouzení k akci: Přístavba výrobní haly CETRIS Statické posouzení k akci: Přístavba výrobní haly CETRIS Akce: Část projektu: Datu: Vypracoval: Obsah: Přístavba výrobní haly CETRIS D..2 - Statika 29.6.206 Ing. Petr Král STATIKA Obsah: A) Statické posouzení

Více