je amplituda indukovaného dipólového momentu s frekvencí ω

Rozměr: px
Začít zobrazení ze stránky:

Download "je amplituda indukovaného dipólového momentu s frekvencí ω"

Transkript

1 Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové momenty induované v moleule eletromagneticým polem dopadajících světelných vln Běžně je nejdůležitějším multipólovým zdrojem oscilující eletricý dipól Oscilující magneticý dipól a eletricý vadrupól jsou dalšími nejdůležitějšími zdroji v řadě, ale veliost jejich příspěvu je typicy o něoli řádů menší ve srovnání s oscilujícím eletricým dipólem Proto se zpočátu omezíme pouze na oscilující induovaný eletricý dipól jao zdroj rozptýleného záření Intenzita I (střední výon vyzářený oscilujícím dipólem induovaným v moleule eletricým polem dopadajícího záření o frevenci ω do jednotového prostorového úhlu ve směru svírajícím úhel ϑ s osou dipólu je dán vztahem dφ 4 4 I ωpsin ϑ ϖωpsin ϑ dω πεc de jsme označili ω πεc () a de p je amplituda induovaného dipólového momentu s frevencí ω, terá je obecně (ale ne nutně) odlišná od ω a c je rychlost světla Zde i v následujícím teoreticém popisu je vhodné používat (ruhovou) frevenci ω Avša v případech, dy bude laden důraz na polohy pásů ve spetru, budeme ve shodě s běžnou praxí používat vlnočet (wavenumber) ν Vztah () lze potom psát v alternativním tvaru π c ν 4 4 sin ϑ ν ν sin ϑ ε I p p () de jsme označili π c ε ν a použili vztah ω πc ν () Úolem lasicého či vantově mechanicého popisu rozptylu světla je uázat, ja ω (nebo ν ) a p souvisí s vlastnostmi rozptylující moleuly a s frevencí dopadajícího eletromagneticého záření o frevenci ω (nebo vlnočtu ν )

2 Klasicá teorie ova a Ramanova rozptylu Ja eletromagneticé záření ta i látu popisujeme lasicy Ačoliv lasicá teorie nedoáže vysvětlit všechny aspety ova a Ramanova rozptylu, doáže uspoojivě vysvětlit alespoň něteré z nich, především frevenční závislost a částečně i výběrová pravidla frevenčně závislý induovaný dipólový moment moleuly () p α E (4) de E je vetor eletricé intenzity dopadající rovinné monochromaticé vlny o frevenci ω a α je tenzor polarizovatelnosti moleuly Vztah (4) může být napsán ve tvaru tří lineárních rovnic () p α E + α E + α E x xx x xy y xz z () p α E + α E + α E y yx x yy y yz z () p α E + α E + α E z zx x zy y zz z anebo užitím maticového formalizmu jao () p x αxx αxy αxz Ex () p de devět oeficientů α α α y yx yy yz y () p α z zx αzy α zz E z E (4a) (4b) α představuje složy tenzoru polarizovatelnosti α V případě nerezonančního rozptylu je tenzor polarizovatelnosti symetricý, tj α ασρ, potom má pouze šest nezávislých slože Tenzor polarizovatelnosti moleuly si můžeme graficy vyjádřit jao elipsoid mající v obecném případě tři různé poloosy Ačoli tvar elipsoidu polarizovatelnosti moleuly nezávisí na volbě souřadného systému, atuální hodnoty jeho slože na orientaci os závisí Poud osy souřadného systému oincidují s hlavními osami elipsoidu polarizovatelnosti (označme je X, Y, Z), nabývá tenzor polarizovatelnosti jednodušší diagonální tvar, tj všechny nediagonální složy vymizí ( α α α ) αxx ; αyy a α ZZ a dély poloos elipsoidu budou XY XZ YZ

3 Ačoli jednotlivé složy tenzoru polarizovatelnosti se při rotaci souřadného systému mění, něteré jejich ombinace jsou invariantní V případě symetricého tenzoru polarizovatelnosti existují dva taové invarianty: střední polarizovatelnost a definovaná vztahem a ( αxx + αyy + αzz ) (5a) a anizotropie γ definovaná vztahem γ ( αxx αyy ) + ( αyy αzz ) + ( αzz αxx ) + 6( αxy + αxz + αyz ) (5b) Pro nesymetricý tenzor polarizovatelnosti existuje ještě třetí antisymetricý invariant δ, definovaný vztahem { } xy yx xz zx yz zy δ α α + α α + α α (5c) 4 Tyto invarianty zísávají na významu v případě souboru náhodně orientovaných moleul, dy je mohutnost rozptýleného záření dána prostorovým středováním čtverců slože tenzoru polarizovatelnosti Dá se uázat, že střední hodnoty čtverců slože tenzoru polarizovatelnosti mohou být vyjádřeny pomocí invariantů a a γ 45a + 4γ αxx αyy αzz 45 γ αxy αxz αyz 5 45a γ αxxαyy αxxαzz αyyαzz 45 V literatuře se můžeme setat ještě s jinými invarianty (tzv Placzeovy) teré jsou definovány vztahy, ( s) a { αxx + αyy + αzz } ( s) { } { } α xy + αyx + αxz + αzx + αyz + αzy + αxx αyy + αxx αzz + αyy αzz ( a) { α } xy αyx + αxz αzx + αyz αzy Mezi invarianty, ( s) a ( a) a invarianty a, γ a δ zřejmě platí následující vztahy (6) ( a), (7) ( s) ( a) a γ δ (8)

4 Tenzor polarizovatelnosti bude obecně funcí jaderných souřadnic a tudíž bude záviset i na frevencích vibrací moleuly α α α ( α ) + + l +, l (9) l α v rovnovážné onfiguraci moleuly,, jsou normální de ( α ) je hodnota souřadnice vibrací o frevencích ω, ω a sčítá se přes všechny normální souřadnice l Index u derivací znamená, že jsou počítány v rovnovážné onfiguraci Omezíme se pouze na první dva členy rozvoje, tj zanedbáme členy zahrnující vyšší než první mocninu Tato aproximace se nazývá harmonicá oustřeďme se pro začáte pouze na jednu normální vibraci de V tom případě můžeme vztah (9) psát ve tvaru ( α ) ( α ) ( α ) + () l ( α ) α () α jsou složy nového tenzoru α, terý nazýváme derivovaný tenzor polarizovatelnosti ( ) a jehož složami jsou derivace polarizovatelnosti podle normální souřadnice platí pro všechny složy tenzoru, a proto můžeme psát α α + α Uvažujeme-li jednoduchý harmonicý pohyb, potom můžeme závislost jao Vztah () () na čase vyjádřit cos ωt+ δ () de je amplituda normální vibrace a δ je fázový fator Dosazením () do () dostaneme závislost tenzoru polarizovatelnosti vyplývající z -tého vibračního modu na čase α cos α + α ωt+ δ (4) Do rovnice (4) nyní dosadíme frevenční závislost dopadajícího pole E danou vztahem E E cosω t (5) Potom () p α E cosω t+ α E cos ω t+ δ cosωt Užitím trigonometricé identity (6) 4

5 cos Acos B cos( A+ B) + cos( A B) můžeme vztah (6) vyjádřit ve tvaru p p ω + p ω ω + p ω + ω () () () () (7) de () p ( ω) p cosωt p α E α α () Raman p ( ω± ω) p cos ( ω± ω) t± δ Raman Raman p α E (8) (9) () () () Raman α α () Kosinové funce ve vztazích (8) a () definují frevence induovaných dipólů, vztahy () Raman α rozptylu a () definují lasicé tenzory ova α a Ramanova ( ) Ze vztahu (7) je zřejmé, že induovaný lineární dipól má tři složy o různých frevencích:, terá je příčinou záření o stejné frevenci jao je dopadající záření a vysvětluje () p ( ω ) pružný ův rozptyl; p ω ω () ( ) vysvětluje toesův Ramanův rozptyl; a, terá je příčinou záření o frevenci ω ω a p ω ω () ( + ), terá je příčinou záření o frevenci ω + ω a vysvětluje anti-toesův Ramanův rozptyl Povšimněme si, že zatímco induovaný dipól () p ( ω ) má stejnou fázi jao dopadající vlna, induované dipóly p ω ω () ( ± ) fázově posunuty vůči dopadajícímu vlně o δ Tato veličina definuje relativní fázi normální vibrace vzhledem dopadající vlně a pro různé moleuly může být různá Tento jednoduchý lasicý přístup nám posytuje užitečný valitativní obráze mechanismu ova a Ramanova rozptylu ův rozptyl vzniá díy mitům eletricého dipólu o frevenci ω induovaného v moleule eletricým polem dopadajícího záření, jež samo mitá s frevencí ω Ramanův rozptyl vzniá díy eletricým dipólům mitajícím s frevencemi ω ± ω, teré vzniají následem modulace eletricého dipólu mitajícího s frevencí ω moleulárními vibracemi s frevencí ω Nezbytnou vazbu mezi pohybem jader a eletricým polem zajišťují eletrony, jež sledují pohyby jader a způsobují jsou 5

6 harmonicou modulaci polarizovatelosti Užijeme-li analogie s hudbou, můžeme říci, že frevence pozorované při Ramanově rozptylu jsou frevence rázů mezi frevencí záření ω a frevencí moleulární vibrace ω Je zřejmé, že nutnou podmínou pro existenci ova rozptylu je nenulovost α Jeliož všechny moleuly jsou v menší či větší míře polarizovatelné, lasicý rovnovážný tenzor α bude vždy mít nějaé nenulové složy a tudíž α bude vždy nenulový Všechny moleuly tedy vyvolávají ův rozptyl Analogicou podmínou pro existenci Ramanova rozptylu spojeného s moleulovou vibrací o frevenci ω je nenulovost derivovaného tenzoru polarizovatelnosti Raman α To znamená, že alespoň jedna ze slože ( ) α α musí být nenulová Podle vztahu () je ( α derivací složy tenzoru polarizovatelnosti podle normální souřadnice ) v rovnovážné onfiguraci jader Podmínou pro existenci Ramanova rozptylu tedy je, aby alespoň pro jednu ze slože tenzoru polarizovatelnosti měla její závislost na normální souřadnici v rovnovážné onfiguraci nenulový gradient, tedy α ( α ) (4) Potom říáme, že taová vibrace je ativní v Ramanově spetru Poud naopa jsou pro nějaou vibraci všechny složy α nulové, potom říáme, že taová vibrace je v Ramanově spetru neativní Vztah α α (5) odráží citlivost polarizovatelnosti moleuly na změny onfigurace jader při normální vibraci 6

do jednotkového prostorového úhlu ve směru svírajícím úhel ϑ s osou dipólu je dán vztahem (1) a c je rychlost světla.

do jednotkového prostorového úhlu ve směru svírajícím úhel ϑ s osou dipólu je dán vztahem (1) a c je rychlost světla. Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové

Více

Optické vlastnosti látek

Optické vlastnosti látek Opticé vlastnosti láte Isaac Newton 64 77 Jan Marcus Marci z Kronlandu 595 677 Světlo je eletromagneticé vlnění James Cler Maxwell 83 879 Maxwellovy rovnice E, B B E, t B j E t Energie eletromagneticých

Více

Kmity a rotace molekul

Kmity a rotace molekul Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).

Více

22. Mechanické a elektromagnetické kmity

22. Mechanické a elektromagnetické kmity . Mechanicé a eletromagneticé mity. Mechanicé mity Mechanicé mitání je jev, při terém se periodicy mění fyziální veličiny popisující mitavý pohyb. Oscilátor těleso, teré je schopné mitat, (mitání způsobuje

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Geometrická zobrazení

Geometrická zobrazení Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

ELEKTRONICKÉ ČÁSTI HERNÍCH KOMPONENT

ELEKTRONICKÉ ČÁSTI HERNÍCH KOMPONENT ELEKTRONICKÉ ČÁSTI HERNÍCH KOMPONENT Laserová zbraň (phaser) je Iniciátor laserového paprsu podobně jao laserové uazováto. Pomocí přijímací IR diody čte signál z vesty protihráče a vyhodnotí zásah. Přijímací

Více

16. Matematický popis napjatosti

16. Matematický popis napjatosti p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických

Více

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno 7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje

Více

Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu)

Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu) Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu) Průchod optického záření absorbujícím prostředím V dipólové aproximaci platí Einsteinův vztah pro pravděpodobnost

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

zpracování signálů - Fourierova transformace, FFT Frekvenční

zpracování signálů - Fourierova transformace, FFT Frekvenční Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier (768-830) Zálady experimentální mechaniy Frevenční analýza Proč se frevenční analýza

Více

Linearní algebra příklady

Linearní algebra příklady Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

Návrh vysokofrekvenčních linkových transformátorů

Návrh vysokofrekvenčních linkových transformátorů inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

MATEMATIKA III. Program - Křivkový integrál

MATEMATIKA III. Program - Křivkový integrál Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

22. Mechanické a elektromagnetické kmity

22. Mechanické a elektromagnetické kmity . Mechanicé a eletroagneticé ity. Mechanicé ity Oscilátor tleso, teré je schoné itat, (itání zsobuje síla ružnosti, nebo tíhová síla, i itání se eriodicy ní otenciální energie oscilátoru v energii ineticou

Více

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy 2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená

Více

V této sekci zobecníme vnější kalkulus z kapitoly 4 operaci vnějšího. se sice na zde zavedené operace budeme odvolávat, vždy ale jen jako

V této sekci zobecníme vnější kalkulus z kapitoly 4 operaci vnějšího. se sice na zde zavedené operace budeme odvolávat, vždy ale jen jako [2.03,1.12,1.14,2.04,2.02,2.02,2.03,2.03,2.02,0,1.03] Kapitola 8 Kovariantní vnější derivace V této seci zobecníme vnější alulus z apitoly 4 operaci vnějšího součinu a vnější derivace na obecnější tenzorové

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Rozdíly mezi MKP a MHP, oblasti jejich využití. Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R. Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y

Více

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Kritéria porušení laminy

Kritéria porušení laminy Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém

Více

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o

Více

Metody nelineární optiky v Ramanově spektroskopii

Metody nelineární optiky v Ramanově spektroskopii Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

Teorie plasticity PLASTICITA

Teorie plasticity PLASTICITA Teore platcty PLASTICITA TEORIE PLASTICKÉHO TEČENÍ IDEÁLNĚ PRUŽNĚ-PLASTICKÝ MATERIÁL BEZ ZPEVNĚNÍ V platcém tavu nelze jednoznačně přřadt danému napětí jedné přetvoření a naopa, ja tomu bylo ve tavu elatcém.

Více

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2,

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2, 4. Parciální derivace a diferenciál. řádu 0-a3b/4dvr.tex Příklad. Určete parciální derivace druhého řádu funkce f v obecném bodě a v daných bodech. Napište obecný tvar. diferenciálu, jeho hodnotu v daných

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Modelování blízkého pole soustavy dipólů

Modelování blízkého pole soustavy dipólů 1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento

Více

4. Přednáška: Kvazi-Newtonovské metody:

4. Přednáška: Kvazi-Newtonovské metody: 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Absorpční vlastnosti plazmatu směsí SF 6 a PTFE

Absorpční vlastnosti plazmatu směsí SF 6 a PTFE Absorpční vlastnosti plazmatu směsí SF 6 a PTFE N. Bogatyreva, M. Bartlová, V. Aubrecht Faulta eletrotechniy a omuniačních technologií, Vysoé učení technicé v Brně, Technicá 10, 616 00 Brno Abstrat Článe

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

Transformace dat mezi různými datovými zdroji

Transformace dat mezi různými datovými zdroji Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Číselné charateristiy náhodných proměnných Charateristiy náhodných proměnných dělíme nejčastěji na charateristiy polohy a variability. Mezi charateristiy polohy se nejčastěji

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 63. roční matematicé olympiády Úlohy rajsého ola ategorie A 1. Najděte všechna celá ladná čísla, terá nejsou mocninou čísla 2 a terá se rovnají součtu trojnásobu svého největšího lichého dělitele a pětinásobu

Více

23 - Diskrétní systémy

23 - Diskrétní systémy 23 - Disrétní systémy Michael Šebe Automaticé řízení 218 29-4-18 Disrétní čas: z podstaty, z měření či z pohonu Otáčející se radar - měření polohy cíle jednou za otáču radaru motivace v počátcích historie

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

Diplomová práce. aktivity krystalů ve směru kolmém k optické ose

Diplomová práce. aktivity krystalů ve směru kolmém k optické ose Vysoá šola: Univerzita Palacého Faulta: Přírodovědecá Katedra: Optiy Šolní ro: 008/009 Diplomová práce Název práce: Použití Condonových relací v řešení opticé ativity rystalů ve směru olmém opticé ose

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ

DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ P. Hora, O. Červená Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory grantu cíleného vývoje a výzkumu AV ČR č. IBS276356 Ultrazvukové metody

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

vztažný systém obecné napětí předchozí OBSAH další

vztažný systém obecné napětí předchozí OBSAH další p05 1 5. Deformace těles S deformací jako složkou mechanického pohybu jste se setkali už ve statice. Běžně je chápána jako změna rozměrů a tvaru tělesa. Lze ji popsat změnami vzdáleností různých dvou bodů

Více

Isaac Newton Jan Marcus Marci z Kronlandu

Isaac Newton Jan Marcus Marci z Kronlandu Optié vlastnosti láte Isaa Newton 64 77 Jan Marus Mari z Kronlandu 595 677 Světlo je eletromagnetié vlnění James Cler Maxwell 83 879 Maxwellovy rovnie ρ E, B E B E, B μ j + μ t t Energie eletromagnetiýh

Více

9.1 Definice a rovnice kuželoseček

9.1 Definice a rovnice kuželoseček 9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

21. Úvod do teorie parciálních diferenciálních rovnic

21. Úvod do teorie parciálních diferenciálních rovnic 21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Cvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017

Cvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017 z AM-DI Petr Hasil, Ph.D. hasil@mendelu.cz Verze: 1. března 017 Poznámka. Příklady označené na cvičení dělat nebudeme, protože jsou moc dlouhé, popř. složité (jako takové, nebo pro psaní na tabuli). V

Více

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi

Více

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2. Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ

Více

5. KŘIVKOVÝ INTEGRÁL Křivka a její orientace Z kapitoly 4.1 víme, že vektorovou funkcí jedné nezávisle proměnné t

5. KŘIVKOVÝ INTEGRÁL Křivka a její orientace Z kapitoly 4.1 víme, že vektorovou funkcí jedné nezávisle proměnné t Matematia IV Křivový integrál 5. KŘIVKOVÝ INTEGRÁL Proč řivový integrál? Integračním oborem je řiva. Křiva neorientovaná integrál I. druhu (neorientovaný) Křiva orientovaná integrál II. druhu (orientovaný)

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Obr.1 Princip Magnetoelektrické soustavy

Obr.1 Princip Magnetoelektrické soustavy rincipy měřicích soustav: 1. Magnetoeletricá (depreszý) 2. Eletrodynamicá 3. Induční 4. Feromagneticá 1.ANALOGOVÉ MĚŘICÍ ŘÍSTROJE Magnetoeletricá soustava: Založena na působení sil v magneticém poli permanentního

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

7 Optická difrakce jako přenos lineárním systémem

7 Optická difrakce jako přenos lineárním systémem 113 7 Opticá difrace jao přenos lineárním systémem 7.1 Impulsová odezva pro Fresnelovu difraci 7. Přenosová funce pro Fresnelovu difraci jao Fourierova transformace impulsové odezvy 7.3 Fourierovsý rozlad

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Difuze v procesu hoření

Difuze v procesu hoření Difuze v procesu hoření Fyziální podmíny hoření Záladní podmínou nepřetržitého průběhu spalovací reace je přívod reagentů (paliva a vzduchu) do ohniště a zároveň odvod produtů hoření (spalin). Pro dosažení

Více

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více