FAKULTA STAVEBNÍ. Telefon: WWW:
|
|
- Martin Bárta
- před 7 lety
- Počet zobrazení:
Transkript
1 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: jiri.brozovsky@vsb.cz WWW:
2 Náplň předmětu 1. opakování potřebných vztahů (statika, pružnost) 2. energetické principy, variační metody 3. variační metody 4. základní principy metody konečných prvků (MKP) 5. aplikace MKP na prutové, plošné a prostorové konstrukce 6. izoparametrické konečné prvky 7. okrajové podmínky, zásady tvorby výpočetních modelů 2
3 Doporučená literatura Teplý, B. Šmiřák, S.: Pružnost a plasticita 2., VUT v Brně, Brno, 1992 (skriptum) Kolář, V., Kratochvíl, J., Leitner, F., Ženíšek, A. Výpočet plošných a prostorových konstrukcí metodou konečných prvků, SNTL, Praha, 1979 Kolář V., Němec I., Kanický V. FEM Principy a praxe metody konečných prvků, Computer Press, Praha,
4
5 Doplňková literatura Šmiřák, S.: Energetické principy a variační metody v teorii pružnosti, VUT v Brně, Brno, 1998 (skriptum) Dický, J., Mistríková, Z., Sumec, J.: Pružnost a plasticita v stavebníctve 2, STU, Bratislava, 2005 Ravinger, J., Koleková, Y.: Pružnost II., STU, Bratislava, 2002 Servít a kol.: Teorie pružnosti a plasticity II., SNTL, Praha, 1984 (celostátní učebnice) Cook, R. D., Malkus, D. S., Plesha, M. E., Witt, R. J.: Concepts and Applications of Finite Element Analysis, John Wiley and Sons,
6 Idealizace geometrie konstrukce tělesa plošné konstrukce stěny (rovinný problém) desky skořepiny pruty 5
7 Opakování: základní předpoklady v lineární mechanice látka studovaného tělesa je spojitá látka je homogenní (ve všech místech stejné vlastnosti) látka je isotropní (ve všech směrech stejné vlastnosti) látka se chová lineárně pružně (tzv. Hookeův zákon) těleso je vystaveno jen malým deformacím Pak lze použít: princip superpozice princip úměrnosti 6
8 Isotropní a anisotropní materiál isotropní: ve všech směrech stejné vlastnosti anisotropní: v různých směrech různé vlastnosti ortotropní: různé vlastnosti ve vzájemně kolmých směrech 7
9 Opakování: výpočet deformací staticky určitých konstrukcí lineární mechanika (viz předchozí předpoklady): malé deformace (mnohem menší než rozměry konstrukce) platí principy superpozice a úměrnosti podmínky rovnováhy stanovujeme na nedeformované konstrukci (teorie 1. řádu) Kladný směr deformačních veličin: ve směru příslušné kladné souřadnicové poloosy, u pootočení proti směru hodinových ručiček (při pohledu proti kladné poloose). 8
10 Princip virtuálních prací (1) Virtuální veličina: myšlená, avšak možná (síla, deformace). Práce: součin síly a dráhy, na které působí. Práce vnějších sil: L e = F w, [N m] = [J] (Joule) L e = b a q(x)w(x) dx F w Virtuální práce: práce virtuálních sil na skutečných deformacích (silová virtuální práce) nebo práce skutečných sil na virtuálních deformacích (deformační virtuální práce). 9
11 Princip virtuálních prací (2) Virtuální práce vnitřních sil: L i = { l Ndu + l M ydϕ y + l M zdϕ z + l T dϕ x + l V ydv + l V zdw } Vnitřní síly brání deformacím, jsou proto do vztahu zavedeny jako záporné (znaménko mínus před složenou závorkou). 10
12 Princip virtuálních prací (3) Princip virtuálních prací (J. L. Lagrange): Celková virtuální práce na vyšetřované konstrukcí je rovna nule. L e + L i = 0 tedy: L e = L i 11
13 Princip virtuálních prací (4) Deformace elementárních vrstviček materiálu: du = N EA dx,..., dϕ y = M y EI y dx,..., dv = V z GA z dx dϕ N M dx du dx 12
14 Princip virtuálních prací (5) Deformace elementárních vrstviček materiálu: du = N EA dx,..., dϕ y = M y EI y dx,..., dv = V z GA z dx Z L e = L i a z: L i = { l Ndu + l M y dϕ y + l M z dϕ z + l T dϕ x + l V y dv + l V z dw} plyne: L e = l 0 NN EA + M ym y EI y + M zm z EI z + T T EI t + V yv y GA y + V zv z GA z dx Veličiny označené pruhem jsou virtuální. 13
15 Metoda jednotkových sil (1) Hledáme neznámou deformaci (přetvoření) δ od skutečného zatížení. Aplikujeme na konstrukci virtuální sílu F = 1. Virtuální práce síly F na deformaci δ: L e = 1 δ = δ δ =? F = 1 Tedy zřejmě: δ = l 0 NN EA + M ym y EI y + M zm z EI z + T T EI t + V yv y GA y + V zv z GA z dx 14
16 Metoda jednotkových sil (2) 1. stanovíme průběhy M, N, V od skutečného zatížení 2. zavedeme jednotkovou (a bezrozměrnou) virtuální sílu v místě hledaného posunutí (v případě pootočení zavedeme moment) 3. určíme průběhy M, N, V od virtuální veličiny 4. vypočítáme hledanou veličinu pomocí vzorce (v rovině): δ = l 0 NN EA dx + l 0 MM EI dx + l 0 V V GA dx U nosníkových úloh obvykle zanedbáváme člen l 0 V V GA dx. Úlohy kde nelze zanedbat práci posouvajících sil viz Pružnost a plasticita. 15
17 Příklad 1 (1) Stanovte průhyb na volném konci konzoly, E = 20GP a. M = 9 knm l = 6 m w=? 0,2 m 0,4 m Tedy: I = 1 12 b h3 = ,2 0,43 = m 4 EI = E I = = ,333 N m 2 16
18 Příklad 1 (2) M = 9 knm F = M = 9 T 9 6 A T M 2 4 M l 0 MMdx = A M M T = ( 6) 9 = 162 w = 1 EI l 0 MMdx = ,333 = 0, m ( ) 17
19 Opakování: Silová metoda řešení staticky neurčitých konstrukcí využívá principu virtuálních prací využívá také: podmínky rovnováhy, princip superpozice, princip úměrnosti 18
20 Silová metoda princip F1 F2 b c a F2 F1 u0 u1 1*X Výsledný deformační stav (červený + modrý) musí být ve shodě s původní konstrukcí, a proto musí platit (v místě c): u 0 + u 1 X = 0 19
21 Silová metoda postup 1. určení stupně statické neurčitosti s 2. odebrání s vazeb: vznikne základní staticky určitá soustava (pozor na výjimkové případy!) 3. vložení síly neznámé síly X i v místě každé odebrané vazby 4. určení deformací δ i,j (místo X i zavedeme jednotkovou sílu princip superpozice) 5. sestavení s deformačních podmínek pro posunutí ve směrech všech s odebraných vazeb: δ 0,1 + δ 1,1 X 1 + δ 1,2 X = 0 δ 0,2 + δ 2,1 X 2 + δ 2,2 X = 0 20
22 Příklad 2 (1) 10 kn 10 kn 2 m 0 M0 4 m 20 X M1 21
23 Příklad 2 (2) δ 1,1 = M 1 M 1 EI = = 2,667 EI M0 2 m δ 1,0 = M o M 1 EI = = 26,667 EI 20 M1 δ 1,0 + δ 1,1 X 1 = 0... X 1 = δ 1,0 δ1,
24 Příklad 2 (3) X 1 = δ 1,0 δ1, 1 = 26,667 2,667 = 10 kn 10 kn 10 kn V N 10 kn M 23
25 Opakování: Deformační metoda řešení staticky neurčitých konstrukcí využívá statických podmínek rovnováhy využívá také: základní vztahy teorie pružnosti, princip superpozice, princip úměrnosti 24
26 Deformační metoda: princip (1) X ba X bc a c L 1 X ba X bc L 2 b Sestavení podmínek rovnováhy ve styčníku (např.): Fix = X ba X bc F = 0 F Určení sil v prutech z principů pružnosti: L = X ba L 1 E 1 A 1 Dosazením deformačních vztahů do podmínek rovnováhy získáme známou soustavu rovnic K u = F. 25
27 Deformační metoda: princip (2) X ba X bc a c L 1 X ba X bc L 2 b F Fix = X ba X bc F = 0 Dosazením deformačních vztahů do podmínek rovnováhy získáme známou soustavu rovnic K u = F. E 1 A 1 E 2 A 2 u bx = F L 1 L 2 Pozn.: vztahy platí pro osovou úlohu bez momentů a posouvajících sil. 26
28 Deformační metoda: k zopakování Matice tuhosti, vektor zatížení, vektor posunutí. Lokalizace matic tuhostí prutů do globální matice tuhosti. Transformace mezi systémy souřadnic. Řešení systémů K u = F. 27
29 Opakování: Základní úloha teorie pružnosti základní veličiny geometrické vztahy diferenciální podmínky rovnováhy fyzikální rovnice (konstitutivní vztahy) 28
30 Základní veličiny (1) y w v u x Vektor posunutí u = u v w (1) z 29
31 Základní veličiny (2) y ε y ε z γ zy γ γ yz zx γ yx γ xz γ xy ε x x Vektor deformací ε = ε x ε y ε z γ yz γ zx γ xy (2) z 30
32 Základní veličiny (3) y σ z τ zy τ σ τ y yz zx τ yx τ xz τ xy σ x x Vektor napětí σ = σ x σ y σ z τ yz τ zx τ xy (3) z 31
33 Geometrické vztahy (1) Vyjadřují vztahy mezi posunutími a deformacemi. 0 y, v x, u A B D C β α A D u v dx u x dx dy x v B dx x y v u dy dy C 32
34 Geometrické vztahy (2) 0 y, v x, u A B D C β α A D u v dx u x dx dy x v B dx x y v u dy dy C εx = A B AB AB = (x + dx + u + u x dx) (x + u) dx dx = u x 33
35 Geometrické vztahy (3) Normálové deformace ε x = u x ε y = v y ε z = w z, (4) smykové deformace γ yz γ zx γ xy = γ zy = v z + w y (5) = γ xz = w x + u (6) z = γ yx = u y + v x. (7) 34
36 Diferenciální podmínky rovnováhy (1) σ y σ x dy τyx τzx τ yz σz τzy dx τ zy τ xy τyz σz τ τ xz xz τxy σy τyx τzx dz σ x σ x = σ x + σ x x dx, τ xy = τ xy + τ xy dy,... (8) x 35
37 Diferenc. podmínky rovnováhy (2) σ x = σ x + σ x x dx, τ xy = τ xy + τ xy dy,... y Fi,y = (σ x σ x) dy dz+(τ xy τ xy) dx dz+(τ xz τ xz ) dx dy = 0 (σ x σ x σ x x dx) dy dz+(τ xy τ xy τ xy y dy) dx dz+(τ xz τ xz τ xz z dz) dx dy = 0 A po úpravě: σ x x + τ xy y + τ xz z = 0 (9) 36
38 Diferenc. podmínky rovnováhy (3) σ x x + τ xy y τ xy + τ xz z + X = 0 x + σ y y + τ yz z + Y = 0 (10) τ zx x + τ zy y + σ z z + Z = 0 kde X,Y, Z jsou objemové síly. 37
39 Vzájemnost smykových napětí Uvedené vztahy obecně neplatí: τ yz = τ zy, τ zx = τ xz, τ xy = τ yx. Předpoklad o vzájemnosti smykových napětí se odvozuje z přibližného splnění momentových podmínek rovnováhy na elementu tělesa. Na smykové deformace se pohlíží obdobně. 38
40 Fyzikální rovnice (1) Vyjadřují vztahy mezi napětími a deformacemi. Hookeův zákon v 1D (tah/tlak): ε x = σ x E x Α F ε x = L L = L x L L σ x = F A = E ε x 39
41 Fyzikální rovnice (2) Hookeův zákon v prostoru: ε x = 1 E [σ x ν (σ y + σ z )], γ yz = τ yz G ε y = 1 E [σ y ν (σ x + σ z )], γ xz = τ xz G ε z = 1 E [σ z ν (σ x + σ y )], γ xy = τ xy G (11) 40
42 Shrnutí 15 neznámých veličin: 3 složky posunutí u 6 složek deformací ε 6 složek napětí σ 15 rovnic: 6 geometrických rovnic 6 fyzikálních rovnic 3 podmínky rovnováhy 41
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
VícePRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
VíceNosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
VíceTENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
VíceRozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
VíceKancel پ0 0: LP C H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz. WWW: http://fast10.vsb.cz/brozovsky/
1 3VYSOKپ0 9 پ0 7KOLA Bپ0 9پ0 4SKپ0 9 C TECHNICKپ0 9 UNIVERZITA OSTRAVA FAKULTA STAVEBNپ0ˆ1 Zپ0 9KLADY METODY KONEپ0Œ9Nپ0 6CH PRVKپ0 0 Cviپ0چ0en ھ Jiپ0 0 ھ Broپ0 6ovskپ0 5 Kancel پ0 0: LP C H 406/3 Telefon:
VíceDvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
VíceOTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
VíceRovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
VíceZáklady matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice
Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta
VíceTéma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
VícePřednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
VíceTéma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
VíceVlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Více4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
VícePružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
VíceFAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Vnitřní síly na nosnících Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW:
VíceZjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
Více16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
VíceNauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
VíceVícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
VíceTéma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
VíceBetonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
VíceZÁKLADY MATEMATICKÉ TEORIE PRUŽNOSTI
ZÁKLADY MATEMATICKÉ TEORIE PRUŽNOSTI Jiří Brožovský, Alois Materna Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně
VícePRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
VíceFAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
VíceTéma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
Vícevztažný systém obecné napětí předchozí OBSAH další
p05 1 5. Deformace těles S deformací jako složkou mechanického pohybu jste se setkali už ve statice. Běžně je chápána jako změna rozměrů a tvaru tělesa. Lze ji popsat změnami vzdáleností různých dvou bodů
Více1 Ohyb desek - mindlinovské řešení
1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové
VícePRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura
VíceStatika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
Více1.1 Shrnutí základních poznatků
1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i
VíceNáhradní ohybová tuhost nosníku
Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží
VíceObecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
VíceProstorové konstrukce. neznámé parametry: u, v w. (prvky se středostranovými uzly)
Konečné prvk pro řešení 3D úloh Prostorové konstrukce neznámé parametr: u, v w volba různého počtu uzlů a neznámých v uzlech možnost zakřivených hran prvků (prvk se středostranovými uzl) Opakování: Geometrické
VíceTéma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Stavební mechanika, 2.ročník bakalářského studia AST Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky
VíceCvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
VíceMetoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.
VícePrincip virtuálních posunutí (obecný princip rovnováhy)
SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical
VíceZjednodušený 3D model materiálu pro maltu
Problémy lomové mechaniky IV. Brno, červen 2004 Zjednodušený 3D model materiálu pro maltu Jiří Brožovský, Lenka Lausová 2, Vladimíra Michalcová 3 Abstrakt : V článku je diskutován návrh jednoduchého materiálového
VíceNelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy
VíceAutor: Vladimír Švehla
Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta
VícePružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
VíceCvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
VícePrincip virtuálních posunutí (obecný princip rovnováhy)
SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University
VíceÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které
VíceMartin NESLÁDEK. 14. listopadu 2017
Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:
VíceOkruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
VícePostup při výpočtu prutové konstrukce obecnou deformační metodou
Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu
VícePružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
VíceNelineární úlohy při výpočtu konstrukcí s využitím MKP
Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,
VícePružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
VícePružnost a plasticita Martin Krejsa, Lenka Lausová a Vladimíra Michalcová
Pružnost a plasticita Martin Krejsa, Lenka Lausová a Vladimíra Michalcová Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se
VícePřednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
VícePřednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu
Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in
VíceGeometricky válcová momentová skořepina
Geometricky válcová momentová skořepina Dalším typem tenkostěnnéo rotačně souměrnéo tělesa je geometricky válcová momentová skořepina. Typický souřadnicový systém je opět systém s osami z, r, a t. Geometricky
Více7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
VícePružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
VícePRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
Více3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
VícePružnost a plasticita II DD6
Pružnost a plasticita II DD6 Lud ě k Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm
VíceMETODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU.
METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU. THE METHODOLOGY OF THE BEAM STIFFNESS SUBSTITUTION CALCULATION. Jiří Podešva 1 Abstract The calculation of the horizontal mine opening steel support can be performed
VíceÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
VíceStavební mechanika přednáška, 10. dubna 2017
Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola
VícePružnost a plasticita CD03
Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
VíceSpojitý nosník. Příklady
Spojitý nosník Příklady Příklad, zadání A = konst. =, m I = konst. =,6 m 4 E = konst. = GPa q =kn / m F kn 3 = M = 5kNm F = 5kN 8 F3 = 8kN 4,5 . způsob řešení n p = (nepočítáme pootočení ve styčníku č.3)
Více3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2
3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku
VíceVnitřní síly v prutových konstrukcích
Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m
VíceNOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)
NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou
VíceNelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
VíceZde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
Více1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...
. Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VíceVícerozměrné úlohy pružnosti
Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University
VíceCvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
Více13. Prostý ohyb Definice
p13 1 13. Prostý ohyb 13.1. Definice Prostý ohyb je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se vzájemně natáčejí kolem osy ležící v
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 2009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková Ing.
VíceANALÝZA KONSTRUKCÍ. 5. přednáška
ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:
VíceSTATIKA STAVEBNÍCH KONSTRUKCÍ I
VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka
Více7. Základní formulace lineární PP
p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje
VícePřednáška 01 Úvod + Jednoosá napjatost
Přednáška 01 Úvod + Jednoosá napjatost Pružnost a pevnost A (PRA) Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St 9.15-11.30 Webové stránky předmětu https://mech.fsv.cvut.cz/student/
VíceLineární stabilita a teorie II. řádu
Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková, Ph.D.
VíceAnalýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
VíceProgramový systém ANSYS
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Programový systém ANSYS Materiál pro interní potřebu FAST Jiří Brožovský Kancelář: LP H406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
VícePrizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
Více12. Prostý krut Definice
p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí
VíceLibor Kasl 1, Alois Materna 2
SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými
VíceCAD/CAE. Fyzikální model. (fyzikální podstata problémů, počáteční a okrajové podmínky, materiálové modely)
CAD/CAE ÚNOD: Jan Tippner, Václav Sebera, Miroslav Trcala, Eva Troppová. Fyzikální model (fyzikální podstata problémů, počáteční a okrajové podmínky, materiálové modely) Podpořeno projektem Průřezová inovace
VíceKapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).
Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace
VíceOrganizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
VíceKONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková Ing. Radoslav
VíceCAD/CAE. Fyzikální model. (fyzikální podstata problémů, počáteční a okrajové podmínky, materiálové modely)
CAD/CAE ÚNOD: Jan Tippner, Václav Sebera, Miroslav Trcala, Eva Troppová. Fyzikální model (fyzikální podstata problémů, počáteční a okrajové podmínky, materiálové modely) Podpořeno projektem Průřezová inovace
VícePružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
VíceEnergetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
VíceOTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
Více1. Úvod do pružnosti a pevnosti
1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků
VíceNumerické metody. Numerické modelování v aplikované geologii. David Mašín. Ústav hydrogeologie, inženýrské geologie a užité geofyziky
Numerické modelování v aplikované geologii David Mašín Ústav hydrogeologie, inženýrské geologie a užité geofyziky Přírodovědecká fakulta Karlova Univerzita v Praze Přednášky pro obor Geotechnologie David
VíceVybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Více