1.1 Numerické integrování

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1 Numerické integrování"

Transkript

1 1.1 Numerické integrování Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme integrál v (1.1) spočítt nlyticky, Tedy npř.: f(x)dx = F (b) F (). (1.) π sin(x)dx = [ ] π cos x =. (1.3) Obvykle le primitivní funkci neznáme integrál (1.1) musíme počítt numericky. Mluvíme o numerické kvdrtuře. Lze npř. využít součtové definice určitého integrálu. Intervl, b rozdělíme body x < x 1 < x <... < x n 1 < x n b (1.4) n dosttečně mlé intervly x k 1, x k, k = 1,,..., n. Pk n I f(ξ k ) x k, (1.5) k=1 kde x k = x k x k 1 je šířk k-tého podintervlu ξ k je jeho libovolný bod, npř. ξ k = x k nebo ξ k = x k 1+x k. Pro rozumné funkce f konverguje sum n prvé strně vzthu (1.5) pro x k k přesné hodnotě I. Jiná metod spočívá v nhrzení funkce f(x) vhodnou proximující funkcí p(x), jejíž integrál dokážeme spočítt nlyticky. Z přibližné rovnosti f(x) p(x) vyplývá I p(x)dx. (1.6) Funkci p(x) volíme zprvidl ve formě interpolčního polynomu. Polynom n-tého stupně p(x) = q n x n + q n 1 x n q 1 x + q (1.7) obshuje n + 1 koeficientů q n, q n 1,..., q 1, q. Ty jsou určeny soustvou n + 1 rovnic p(x k ) = f(x k ), k =, 1,,..., n.

2 Po rozepsání x n q n + x n 1 q n x q 1 + q = f(x ), x n 1q n + x n 1 1 q n x 1 q 1 + q = f(x 1 ), (1.8). x n nq n + x n 1 n q n x n q 1 + q = f(x n ). Dělící body x k intervlu, b (viz(1.)) jsou zprvidl voleny jko ekvidistntní. V prxi se obvykle používá kombince obou předchozích metod - součtové interpolční: intervl, b se rozdělí n podintervly x k 1, x k, I = f(x)dx = N k=1 x k x k 1 f(x)dx, (1.9) poté se funkce f(x) proximuje funkcí p(x) zvlášť n jednotlivých podintervlech, x k x k 1 f(x)dx x k x k 1 p(x)dx. (1.1) Jsou-li podintervly x k 1, x k dosttečně úzké, vystčíme s polynomy p nízkého stupně Interpolční metod Nším úkolem je n intervlu, b interpolovt funkci f(x) polynomem n-tého stupně p(x) (1.7). Interpolční uzly x k, k =, 1,,..., n zvolíme pro jednoduchost jko ekvidistntní, x k = + kh, k =, 1,,..., n, h b n. (1.11) Omezíme se n polynom nultého stupně (proximce funkce f(x) konstntou, obdélníková metod interpolce), prvního stupně (proximce lineární funkcí, lichoběžníková metod) stupně druhého (proximce kvdrtickou funkcí, Simpsonov metod). ) Obdélníková metod Obdélníková metod vychází z proximce kde q je konstnt. Zvolíme-li q = f( +b ), pk I = f(x)dx f(x) q pro x, b, (1.1) ( ) ( ) + b + b f dx = (b )f. (1.13)

3 Geometricky odpovídá tto proximce nhrzení plochy pod křivkou f(x) plochou obdélník o výšce f( +b ) (obr.1). b) Lichoběžníková metod V tomto přípdě je funkce f(x) n intervlu, b proximován funkcí lineární, f(x) p(x) q 1 x + q. (1.14) Koeficienty p 1, p určíme z interpolčních podmínek p() = f(), p(b) = f(b): q 1 + q = f(), bq 1 + q = f(b). (1.15) Řešením této jednoduché soustvy je f(b) f() q 1 =, q = b Aproximce integrálu je tedy bf() f(b). (1.16) b I (q 1 x + q )dx = [ q 1 x + q x ] b = (b ) f() + f(b). (1.17) Geometricky odpovídá tto proximce nhrzení plochy pod křivkou f(x) lichoběžníkem o výšce b zákldnách f(), f(b) (obr.).

4 c) Simpsonov metod Funkce f je n intervlu, b proximován kvdrtickou funkcí p(x) = q x + q 1 x + q. Intervl, b rozdělíme uzly x =, x 1 = + b, x = b (1.18) n dv podintervly o šířce h = b. Koeficienty q, q 1, q jsou určeny soustvou tří lineárních rovnic (1.8) pro n =. Tento postup je dosti těžkopádný, to prcujeme s polynomy pouze. řádu! Elegntnější způsob nlezení interpolčního polynomu nbízí Lgrngeov metod. Polynom p(x) n-tého řádu, procházející n + 1 body [x k, f(x k )], k =, 1,,..., n, je v této metodě vyjádřen ve tvru kde n p(x) = f(x i )l i (x), (1.19) i=1 l i (x) = (x x )(x x 1 )... (x x i 1 )(x x i+1 )... (x x n ) (x i x )(x i x 1 )... (x i x i 1 )(x i x i+1 )... (x i x n ) jsou tzv. Lgrngeovy polynomy. Ty jsou zkonstruovány tk, by l i (x k ) = 1, k = i, k i, (1.) (1.1)

5 tkže p(x k ) = tj. grf polynomu p(x) prochází body [x k, f(x k )]. Z přibližného vzthu f(x) p(x) dostáváme n f(x i )l i (x k ) = f(x k )1, (1.) i= b b n n b I p(x)dx = f(x i )l i (x)dx = f(x i )w i, w i l i (x)dx. (1.3) i= i= Koeficienty w i se nzývjí váhy v uzlech x i. Speciálně pro polynom. řádu s uzly (1.18), dává Lgrngeov metod interpolci f(x) p(x) = f(x ) (x x 1)(x x ) (x x 1 )(x x ) + +f(x 1 ) (x x )(x x ) (x 1 x )(x 1 x ) + f(x ) (x x )(x x 1 ) (x x )(x x 1 ). (1.4) Při výpočtu váhových fktorů w, w 1, w budeme využívt substituci x = + ht, dx = hdt, t. w = w 1 = = h b w = (x x 1 )(x x ) (x x 1 )(x x ) dx = (t 1)(t )dt = 1 3 h, } {{ } 3 (x x )(x x ) (x 1 x )(x 1 x ) dx = = h = h t(t )dt = 4 3 h, (x x )(x x 1 ) (x x )(x x 1 ) dx = t(t 1)dt = 1 3 h. ( + ht h)( + ht h) hdt = ( h)( h) ( + ht )( + ht h) hdt = (1.5) h( h) ( + ht )( + ht h) hdt = hh

6 Simpsonův vzorec má tedy tvr I f(x ) 1 3 h + f(x 1) 4 3 h + f(x ) 1 3 h = h 3 [f(x ) + 4f(x 1 ) + f(x )] (1.6) Anlogicky bychom odvodili interpolční formule vyšších řádů Složené vzorce Čím užší bude intervl integrce, tím přesnější bude proximce funkce f polynomem p(x). Intervl, b proto rozložíme n mlé podintervly x k 1, x k, n nichž lze chybu proximce f(x) p(x) očekávt reltivně mlou. Uzly x k ze vzthu (1.4) zvolíme pro jednoduchost ekvidistntní s krokem h, ) Složená obdélníková metod x k = + kh, k =, 1,,..., n, h = b n. (1.7) Formule (1.9) spolu s formulí (1.13) plikovnou n dílčí intervly x k 1, x k dávjí pro tento přípd [ I h f b) Složená lichoběžníková metod ( ) ( ) ( x + x 1 x1 + x xn 1 + x n + f f )]. (1.8) Lichoběžníkovou proximci (1.17) plikujeme n jednotlivé intervly x k 1, x k : I h [( ) ( ) ( )] f(x ) + f(x 1 ) + f(x 1 ) + f(x ) f(x n 1 ) + f(x n ), (1.9) tj. [ 1 I h f(x ) + f(x 1 ) + f(x ) f(x n 1 ) + 1 ] f(x n). (1.3) c) Složená Simpsonov metod V tomto přípdě musíme mít sudý počet uzlů, n = m, h = b. Simpsonův vzorec m (1.6) plikujeme postupně n intervly x, x, x, x 4,..., x m 1, x m : I h [( ) ( ) f(x ) + 4f(x 1 ) + f(x ) + f(x ) + 4f(x 3 ) + f(x 4 ) + ( )] f(x m ) + 4f(x m 1 ) + f(x m ). (1.31)

7 Po úprvě I h [ f(x ) + 4f(x 1 ) + f(x ) + 4f(x 3 )+ 3 ] f(x m ) + 4f(x m 1 ) + f(x m ). (1.3) Povšimněte si, že i složené kvdrturní vzorce lze vyjádřit pomocí tbelizovných hodnot f(x k ) váhových fktorů w k v uzlech x k, n f(x)dx f(x k )w k. (1.33) k= Pro lichoběžníkovou metodu je kdežto pro Simpsonovu metodu w = w n = h, w 1 = w =... = w n 1 = h, (1.34) w = w m = 1 3 h, w 1 = w 3 =... = w m 1 = 4 3 h, w = w 4 =... = w m = h. (1.35) Cykly složených metod, Richrdsonov metod Oznčme numerickou kvdrturu integrálu symbolem N chybu integrce jko E. Přesná hodnot I je tedy Pro lichoběžníkovou metodu lze chybu E vyjádřit ve tvru I = N + E. (1.36) (b ) E = f (η)h, (1.37) 1 kde f (η) znčí druhou derivci integrovné funkce f v blíže nespecifikovném bodě η intervlu, b. Lichoběžníková metod poskytuje tedy přesný výsledek pro lineární funkce, které mjí druhou derivci nulovou. Protože bod η není znám, odhdujeme chybu E shor. Oznčme Pk M k = mx,b f (k) (x). (b ) E M h. (1.38) 1 Chyb je druhého řádu v mocninách kroku h. Lze ji rovněž vyjádřit ve formě E = Ch + členy vyšších řádů v h, (1.39)

8 kde C je konstnt nezávislá n kroku h. Pro složenou Simpsonovu metodu lze odvodit (b ) E = 18 f (1.39) (η)h 4. (1.4) Simpsonov metod dává přesnou hodnotu integrálu pro polynomy do třetího řádu, neboť mjí čtvrtou derivci nulovou. Anlogií vzthů (1.39), (1.4) jsou pro Simpsonovu metodu vzthy E (b ) 18 M 4h 4, (1.41) E = Ch 4 + členy vyšších řádů. (1.4) Poždovné přesnosti integrce lze dosáhnout zmenšováním integrčního kroku. Mámeli nvíc numerickou integrci provedenou pro dv různé kroky h 1, h, můžeme provést tzv. Richrdsonovu extrpolci n krok h =, odpovídjící přesné hodnotě integrálu. Pro kroky h 1, h pišme I. = N 1 + Ch k 1, I. = N + Ch k, (1.43) V tomto vzthu jsou N 1, N numerické hodnoty integrálu získné s kroky h 1, h. V rozvoji chyby E (vzthy (1.39), (1.4)) jsme se omezili n hlvní člen, přičemž k = pro lichoběžníkovou k = 4 pro Simpsonovu metodu. Vzthy (1.43) jsou proto jen přibližné. Vzthy (1.43) předstvují soustvu dvou rovnic pro neznámé I, C. Aproximci přesné hodnoty I dostneme nejsnáze tk, že první rovnici vynásobíme h k, druhou h k 1, obě rovnice poté od sebe odečteme. Dostneme I =. N h k 1 N 1 h k. (1.44) h k 1 h k Při zjemňování kroku h je výhodné v kždé iterci zdvojnásobit počet dělících bodů, neboť pk v následujícím kroku plně využijeme dělící body funkční hodnoty z kroku předchozího. Dosdíme-li h 1 = h do (1.44), obdržíme I =. k N N 1. (1.45) k 1 Speciálně pro lichoběžníkovou metodu dává předchozí formule I =. 4N N 1, (1.46) 3 to všk odpovídá metodě Simpsonově. Rozdělme intervl, b n n = m stejných dílků s rozestupem h uzly x k,

9 h = b m, x k = + kh, k =, 1,,..., m. (1.47) Kvdrtur s krokem h dává N = h ( 1 y + y 1 + y y M kdežto kvdrtur s dvojnásobným krokem dává N 1 = h ( 1 y + y + y y M Po doszení (1.48), (1.49) do (1.46) dostneme což je le Simpsonov sumce Jk je to v Mtlbu Funkce QUAD ), (1.48) ). (1.49) I. = h 3 (y + 4y 1 + y y M ), (1.5) QU AD = Numerické vyhodnocení integrálu, dptivní Simpsonov metod. Q = QU AD(F U N, A, B) proximuje integrl funkce F U N v mezích od A do B, kromě chyby 1.e 6 s použitím rekurzivní dptivní Sipsonovy metody. Funkce Y = F UN(X) prcuje s vektorem X jko výsledek vrcí vektor Y, vyhodnocený integrnd kždého z prvků vektoru X. Q = QUAD(F UN, A, B, T OL) používá bsolutní chybu tolernce T OL nmísto implicitní hodnoty 1.e 6. Větší hodnoty tolernce T OL, poté proběhne méně výpočtů funkce tedy rychleji výpočet, le n úkor přesnosti výsledků. Funkce QU AD ve verzi MATLAB 5.3 používá méně spolehlivý lgoritmus implicitní tolernce má hodnotu 1.e 3. [Q, F CNT ] = QUAD(...) vrcí počet vyhodnocení funkce. QUAD(F UN, A, B, T OL, T RACE) s nenulovou stopou (TRACE) ukáže hodnotu [fcnt b Q] během rekurze. QUAD(F UN, A, B, T OL, T RACE, P 1, P,...) poskytuje jko dlší rgumenty P 1, P,... předány přímo funkci F UN, F UN(X, P 1, P,...). Průchod prázdné mtice co se týče T OL nebo T RACE k použití implicitních hodnot. Použití mticových operátorů.,./. v definici F UN tk, že to lze vyhodnotit s vektorovým rgumentem (vektor). Funkce QU ADL může prcovt více účinně s vysokou přesností hldkou integrovnou funkcí.

10 Příkld: F UN můžeme zdt třemi různými způsoby. Řetězcové vyjádření umocnění jednoduché proměnné: Q = qud( 1./(x. 3 x 5),, ); Inline objekt: F = inline( 1./(x. 3 x 5) ); Q = qud(f,, ); Ukztel funkce Q = ); kde myfun.m je M-soubor: function y = myfun(x) y = 1./(x. 3 x 5); Funkce QUADL QU ADL = číselné vyhodnocení integrálu, dptivní Lobttov metod. Q = QUADL(F UN, A, B) vyšetřujeme přibližnou hodnotu integrálu funkce F UN v mezích od A do B, kromě chyby 1.e 6 s použitím vysoce uspořádné rekurzivní dptivní metody. Funkce Y = F UN(X) prcuje s vektorem X jko výsledek vrcí vektor Y, vyhodnocený integrnd kždého z prvků vektoru X. Q = QUADL(F UN, A, B, T OL) používá bsolutní chybu tolernce T OL nmísto implicitní hodnoty 1.e 6. Větší hodnoty tolernce T OL, poté proběhne méně výpočtů funkce tedy rychleji výpočet, le n úkor přesnosti výsledků. [Q, F CNT ] = QUADL(...) vrcí počet vyhodnocení funkce. QUADL(F UN, A, B, T OL, T RACE) s nenulovou stopou (TRACE) ukáže hodnotu [fcnt b Q] během rekurze. QUADL(F UN, A, B, T OL, T RACE, P 1, P,...) poskytuje jko dlší rgumenty P 1, P,... předány přímo funkci F UN, F UN(X, P 1, P,...). Průchod prázdné mtice co se týče T OL nebo T RACE k použití implicitních hodnot. Použití mticových operátorů.,./. v definici F UN tkže to lze vyhodnotit s vektorovým rgumentem (vektor). Příkld: F UN můžeme zdt třemi různými způsoby.

11 Řetězcové vyjádření umocnění jednoduché proměnné: Q = qudl( 1./(x. 3 x 5),, ); Inline objekt: F = inline( 1./(x. 3 x 5) ); Q = qudl(f,, ); Ukztel funkce Q = ); kde myfun.m je M-soubor: function y = myfun(x) y = 1./(x. 3 x 5);

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

7. Integrální počet Primitivní funkce, Neurčitý integrál

7. Integrální počet Primitivní funkce, Neurčitý integrál 7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

matematických úloh N2612 Elektrotechnika a informatika 1802T007 Informační technologie Bc. Zdeněk Kybl RNDr. Dana Černá, Ph.D.

matematických úloh N2612 Elektrotechnika a informatika 1802T007 Informační technologie Bc. Zdeněk Kybl RNDr. Dana Černá, Ph.D. Aplikce pro numerické řešení mtemtických úloh Diplomová práce Studijní progrm: Studijní obor: Autor práce: Vedoucí práce: N2612 Elektrotechnik informtik 1802T007 Informční technologie Bc. Zdeněk Kybl RNDr.

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami: Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Primitivní funkce. Definice a vlastnosti primitivní funkce

Primitivní funkce. Definice a vlastnosti primitivní funkce Obsh PŘEDMLUVA OBSAH 5 I. PRIMITIVNÍ FUNKCE 7 Definice vlstnosti primitivní funkce............ 7 Metody výpočtu primitivních funkcí............. Rcionální funkce................... 7 Ircionální funkce...................

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

STANOVENÍ POMĚRNÉ PLOŠNÉ DRSNOSTI POVRCHU

STANOVENÍ POMĚRNÉ PLOŠNÉ DRSNOSTI POVRCHU STAOVEÍ POMĚRÉ PLOŠÉ DRSOSTI POVRCHU J. Tesř, J. Kuneš ové technologie výzkumné centrum, Univerzitní 8, 06 4, Plzeň Ktedr fyziky, Fkult plikovných věd, Zápdočeská univerzit, Univerzitní, 06 4, Plzeň Abstrkt

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

7. Numerický výpočet integrálu

7. Numerický výpočet integrálu 7. Numerický výpočet integrálu Tento učení text yl podpořen z Operčního progrmu Prh- Adptilit Hn Hldíková Pro numerickou proximci určitého integrálu se užívá termín numerická kvdrtur, příslušné vzorce

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2

Více

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic 7 Algebrické nelgebrické rovnice nerovnice v C. Numerické (typy lgebrických rovnic zákldní metody jejich e²ení lineární, kvdrtické, reciproké rovnice rovnice vy²²ích ád, rovnice nerovnice nelgebrické s

Více

Jemný úvod do numerických metod

Jemný úvod do numerických metod Jemný úvod do numerických metod Mtemtické lgoritmy (K611MAG) Jn Přikryl 10. přednášk 11MAG pondělí. prosince 013 verze:013-11-5 18:7 Obsh 1 Numerická integrce 1.1 Formulce úlohy....................................

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

integrály lze vypočítat snadno pomocí tabulek a klasických integračních metod jako je per partes nebo substituce. Tak například integrály

integrály lze vypočítat snadno pomocí tabulek a klasických integračních metod jako je per partes nebo substituce. Tak například integrály 6. Numerické integrování derivování Průvodce studiem Při řešení různých úloh je potřeb nlézt hodnotu určitého integrálu. Některé integrály lze vypočítt sndno pomocí tbulek klsických integrčních metod jko

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

Matematika pro ekonomy MATEMATIKA PRO EKONOMY

Matematika pro ekonomy MATEMATIKA PRO EKONOMY Mtemtik pro ekonomy MATEMATIKA PRO EKONOMY 8 ešení soustvy lineárních rovnic užitím mtic Gussov eliminní metod (GEM) MATICE 6 6 Hlvní digonál TROJÚHELNÍKOVÁ MATICE Pozn.: i... i-tý ádek mtice PIVOT = první

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

4 Numerické derivování a integrace

4 Numerické derivování a integrace Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 7, strany 85-94. Jedná se o úlohu výpočtu (první či druhé) derivace či o výpočet určitého integrálu jinými metodami,

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ . INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Kapitola Křivkový integrál 1. druhu Délka oblouku

Kapitola Křivkový integrál 1. druhu Délka oblouku x 5 x 6 x 7 x 8 pitol 3 řivkové integrály 3. řivkový integrál. druhu líčová slov: délk oblouku, délk křivky, křivkový integrál. druhu po oblouku, křivkový integrál. druhu po křivce, neorientovný křivkový

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2 Úvod do numerické mtemtiky Přednášk pro posluchče informtiky Zimní resp Letní semestr 2/2 Ivo Mrek, Petr Myer Bohuslv Sekerk 1 Úvodní poznámky Vymezení problemtiky vystihuje následující chrkteristik Numerická

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu MATEMATIKA I. prof. RNDr. Gejz Dohnl, CSc. IV. ákldy integrálního počtu 1 Mtemtik I. I. Lineární lgebr II. ákldy mtemtické nlýzy III. Diferenciální počet IV. Integrální počet 2 Mtemtik I. IV. Integrální

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Logaritmické rovnice I

Logaritmické rovnice I .9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Logaritmická funkce, logaritmus, logaritmická rovnice

Logaritmická funkce, logaritmus, logaritmická rovnice Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Matematika II: Listy k přednáškám

Matematika II: Listy k přednáškám Mtemtik II: Listy k přednáškám Rdomír Pláček, Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Kpitol 1 Integrální počet funkcí jedné proměnné 1.Řy 11

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

Vlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Vlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Ing. Bc. Michl Mlík, Ing. Bc. Jiří Prims ECHNICKÁ UNIVERZIA V LIBERCI Fkult mechtroniky, informtiky mezioborových studií ento mteriál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinncován

Více

I. termodynamický zákon

I. termodynamický zákon řednášk 4 I. termodynmický zákon I. termodynmický zákon jkožto nejobecnější zákon zchování energie je jedním ze zákldních stvebních kmenů termodynmiky. této přednášce zopkujeme znění tohoto zákon n jeho

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

f dx S(f, E) M(b a), kde D a E jsou

f dx S(f, E) M(b a), kde D a E jsou Přehled probrné látky z MAII, LS 2004/05 1. přednášk 21.2.2005. Opkování látky o primitivních funkcích ze závěru zimního semestru (23.-25. přednášk). Rozkld rcionální funkce n prciální zlomky. Popis hledání

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu:

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu: vz je lgebr ( M ; ) vzy = se dvěm binárními opercemi tková že pro libovolné prvky b c M pltí následující podmínky xiomy svzu: ( b) c = ( b c) ( b) c = ( b c) b = b b = b ( ) ( ) b = b =. Operce se nzývá

Více

Měření rozlišovací schopnosti optických soustav

Měření rozlišovací schopnosti optických soustav F Měření rozlišovcí schopnosti optických soustv Úkoly :. Měření rozlišovcí schopnosti fotogrfických objektivů v závislosti n clonovém čísle. Měření hloubky ostrosti fotogrfických objektivů v závislosti

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

1.2 Množina komplexních čísel... 10

1.2 Množina komplexních čísel... 10 Obsh Číselné množiny reálné funkce 5. Množin reálných čísel...................................... 5. Množin kompleních čísel.....................................3 Reálné funkce jedné reálné proměnné..............................

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

Nerovnosti a nerovnice

Nerovnosti a nerovnice Nerovnosti nerovnice Doc. RNDr. Leo Boček, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávcích příležitostí pro ndné žáky studenty v přírodních vědách mtemtice s využitím online prostředí, Operční

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více