1.1 Numerické integrování

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1 Numerické integrování"

Transkript

1 1.1 Numerické integrování Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme integrál v (1.1) spočítt nlyticky, Tedy npř.: f(x)dx = F (b) F (). (1.) π sin(x)dx = [ ] π cos x =. (1.3) Obvykle le primitivní funkci neznáme integrál (1.1) musíme počítt numericky. Mluvíme o numerické kvdrtuře. Lze npř. využít součtové definice určitého integrálu. Intervl, b rozdělíme body x < x 1 < x <... < x n 1 < x n b (1.4) n dosttečně mlé intervly x k 1, x k, k = 1,,..., n. Pk n I f(ξ k ) x k, (1.5) k=1 kde x k = x k x k 1 je šířk k-tého podintervlu ξ k je jeho libovolný bod, npř. ξ k = x k nebo ξ k = x k 1+x k. Pro rozumné funkce f konverguje sum n prvé strně vzthu (1.5) pro x k k přesné hodnotě I. Jiná metod spočívá v nhrzení funkce f(x) vhodnou proximující funkcí p(x), jejíž integrál dokážeme spočítt nlyticky. Z přibližné rovnosti f(x) p(x) vyplývá I p(x)dx. (1.6) Funkci p(x) volíme zprvidl ve formě interpolčního polynomu. Polynom n-tého stupně p(x) = q n x n + q n 1 x n q 1 x + q (1.7) obshuje n + 1 koeficientů q n, q n 1,..., q 1, q. Ty jsou určeny soustvou n + 1 rovnic p(x k ) = f(x k ), k =, 1,,..., n.

2 Po rozepsání x n q n + x n 1 q n x q 1 + q = f(x ), x n 1q n + x n 1 1 q n x 1 q 1 + q = f(x 1 ), (1.8). x n nq n + x n 1 n q n x n q 1 + q = f(x n ). Dělící body x k intervlu, b (viz(1.)) jsou zprvidl voleny jko ekvidistntní. V prxi se obvykle používá kombince obou předchozích metod - součtové interpolční: intervl, b se rozdělí n podintervly x k 1, x k, I = f(x)dx = N k=1 x k x k 1 f(x)dx, (1.9) poté se funkce f(x) proximuje funkcí p(x) zvlášť n jednotlivých podintervlech, x k x k 1 f(x)dx x k x k 1 p(x)dx. (1.1) Jsou-li podintervly x k 1, x k dosttečně úzké, vystčíme s polynomy p nízkého stupně Interpolční metod Nším úkolem je n intervlu, b interpolovt funkci f(x) polynomem n-tého stupně p(x) (1.7). Interpolční uzly x k, k =, 1,,..., n zvolíme pro jednoduchost jko ekvidistntní, x k = + kh, k =, 1,,..., n, h b n. (1.11) Omezíme se n polynom nultého stupně (proximce funkce f(x) konstntou, obdélníková metod interpolce), prvního stupně (proximce lineární funkcí, lichoběžníková metod) stupně druhého (proximce kvdrtickou funkcí, Simpsonov metod). ) Obdélníková metod Obdélníková metod vychází z proximce kde q je konstnt. Zvolíme-li q = f( +b ), pk I = f(x)dx f(x) q pro x, b, (1.1) ( ) ( ) + b + b f dx = (b )f. (1.13)

3 Geometricky odpovídá tto proximce nhrzení plochy pod křivkou f(x) plochou obdélník o výšce f( +b ) (obr.1). b) Lichoběžníková metod V tomto přípdě je funkce f(x) n intervlu, b proximován funkcí lineární, f(x) p(x) q 1 x + q. (1.14) Koeficienty p 1, p určíme z interpolčních podmínek p() = f(), p(b) = f(b): q 1 + q = f(), bq 1 + q = f(b). (1.15) Řešením této jednoduché soustvy je f(b) f() q 1 =, q = b Aproximce integrálu je tedy bf() f(b). (1.16) b I (q 1 x + q )dx = [ q 1 x + q x ] b = (b ) f() + f(b). (1.17) Geometricky odpovídá tto proximce nhrzení plochy pod křivkou f(x) lichoběžníkem o výšce b zákldnách f(), f(b) (obr.).

4 c) Simpsonov metod Funkce f je n intervlu, b proximován kvdrtickou funkcí p(x) = q x + q 1 x + q. Intervl, b rozdělíme uzly x =, x 1 = + b, x = b (1.18) n dv podintervly o šířce h = b. Koeficienty q, q 1, q jsou určeny soustvou tří lineárních rovnic (1.8) pro n =. Tento postup je dosti těžkopádný, to prcujeme s polynomy pouze. řádu! Elegntnější způsob nlezení interpolčního polynomu nbízí Lgrngeov metod. Polynom p(x) n-tého řádu, procházející n + 1 body [x k, f(x k )], k =, 1,,..., n, je v této metodě vyjádřen ve tvru kde n p(x) = f(x i )l i (x), (1.19) i=1 l i (x) = (x x )(x x 1 )... (x x i 1 )(x x i+1 )... (x x n ) (x i x )(x i x 1 )... (x i x i 1 )(x i x i+1 )... (x i x n ) jsou tzv. Lgrngeovy polynomy. Ty jsou zkonstruovány tk, by l i (x k ) = 1, k = i, k i, (1.) (1.1)

5 tkže p(x k ) = tj. grf polynomu p(x) prochází body [x k, f(x k )]. Z přibližného vzthu f(x) p(x) dostáváme n f(x i )l i (x k ) = f(x k )1, (1.) i= b b n n b I p(x)dx = f(x i )l i (x)dx = f(x i )w i, w i l i (x)dx. (1.3) i= i= Koeficienty w i se nzývjí váhy v uzlech x i. Speciálně pro polynom. řádu s uzly (1.18), dává Lgrngeov metod interpolci f(x) p(x) = f(x ) (x x 1)(x x ) (x x 1 )(x x ) + +f(x 1 ) (x x )(x x ) (x 1 x )(x 1 x ) + f(x ) (x x )(x x 1 ) (x x )(x x 1 ). (1.4) Při výpočtu váhových fktorů w, w 1, w budeme využívt substituci x = + ht, dx = hdt, t. w = w 1 = = h b w = (x x 1 )(x x ) (x x 1 )(x x ) dx = (t 1)(t )dt = 1 3 h, } {{ } 3 (x x )(x x ) (x 1 x )(x 1 x ) dx = = h = h t(t )dt = 4 3 h, (x x )(x x 1 ) (x x )(x x 1 ) dx = t(t 1)dt = 1 3 h. ( + ht h)( + ht h) hdt = ( h)( h) ( + ht )( + ht h) hdt = (1.5) h( h) ( + ht )( + ht h) hdt = hh

6 Simpsonův vzorec má tedy tvr I f(x ) 1 3 h + f(x 1) 4 3 h + f(x ) 1 3 h = h 3 [f(x ) + 4f(x 1 ) + f(x )] (1.6) Anlogicky bychom odvodili interpolční formule vyšších řádů Složené vzorce Čím užší bude intervl integrce, tím přesnější bude proximce funkce f polynomem p(x). Intervl, b proto rozložíme n mlé podintervly x k 1, x k, n nichž lze chybu proximce f(x) p(x) očekávt reltivně mlou. Uzly x k ze vzthu (1.4) zvolíme pro jednoduchost ekvidistntní s krokem h, ) Složená obdélníková metod x k = + kh, k =, 1,,..., n, h = b n. (1.7) Formule (1.9) spolu s formulí (1.13) plikovnou n dílčí intervly x k 1, x k dávjí pro tento přípd [ I h f b) Složená lichoběžníková metod ( ) ( ) ( x + x 1 x1 + x xn 1 + x n + f f )]. (1.8) Lichoběžníkovou proximci (1.17) plikujeme n jednotlivé intervly x k 1, x k : I h [( ) ( ) ( )] f(x ) + f(x 1 ) + f(x 1 ) + f(x ) f(x n 1 ) + f(x n ), (1.9) tj. [ 1 I h f(x ) + f(x 1 ) + f(x ) f(x n 1 ) + 1 ] f(x n). (1.3) c) Složená Simpsonov metod V tomto přípdě musíme mít sudý počet uzlů, n = m, h = b. Simpsonův vzorec m (1.6) plikujeme postupně n intervly x, x, x, x 4,..., x m 1, x m : I h [( ) ( ) f(x ) + 4f(x 1 ) + f(x ) + f(x ) + 4f(x 3 ) + f(x 4 ) + ( )] f(x m ) + 4f(x m 1 ) + f(x m ). (1.31)

7 Po úprvě I h [ f(x ) + 4f(x 1 ) + f(x ) + 4f(x 3 )+ 3 ] f(x m ) + 4f(x m 1 ) + f(x m ). (1.3) Povšimněte si, že i složené kvdrturní vzorce lze vyjádřit pomocí tbelizovných hodnot f(x k ) váhových fktorů w k v uzlech x k, n f(x)dx f(x k )w k. (1.33) k= Pro lichoběžníkovou metodu je kdežto pro Simpsonovu metodu w = w n = h, w 1 = w =... = w n 1 = h, (1.34) w = w m = 1 3 h, w 1 = w 3 =... = w m 1 = 4 3 h, w = w 4 =... = w m = h. (1.35) Cykly složených metod, Richrdsonov metod Oznčme numerickou kvdrturu integrálu symbolem N chybu integrce jko E. Přesná hodnot I je tedy Pro lichoběžníkovou metodu lze chybu E vyjádřit ve tvru I = N + E. (1.36) (b ) E = f (η)h, (1.37) 1 kde f (η) znčí druhou derivci integrovné funkce f v blíže nespecifikovném bodě η intervlu, b. Lichoběžníková metod poskytuje tedy přesný výsledek pro lineární funkce, které mjí druhou derivci nulovou. Protože bod η není znám, odhdujeme chybu E shor. Oznčme Pk M k = mx,b f (k) (x). (b ) E M h. (1.38) 1 Chyb je druhého řádu v mocninách kroku h. Lze ji rovněž vyjádřit ve formě E = Ch + členy vyšších řádů v h, (1.39)

8 kde C je konstnt nezávislá n kroku h. Pro složenou Simpsonovu metodu lze odvodit (b ) E = 18 f (1.39) (η)h 4. (1.4) Simpsonov metod dává přesnou hodnotu integrálu pro polynomy do třetího řádu, neboť mjí čtvrtou derivci nulovou. Anlogií vzthů (1.39), (1.4) jsou pro Simpsonovu metodu vzthy E (b ) 18 M 4h 4, (1.41) E = Ch 4 + členy vyšších řádů. (1.4) Poždovné přesnosti integrce lze dosáhnout zmenšováním integrčního kroku. Mámeli nvíc numerickou integrci provedenou pro dv různé kroky h 1, h, můžeme provést tzv. Richrdsonovu extrpolci n krok h =, odpovídjící přesné hodnotě integrálu. Pro kroky h 1, h pišme I. = N 1 + Ch k 1, I. = N + Ch k, (1.43) V tomto vzthu jsou N 1, N numerické hodnoty integrálu získné s kroky h 1, h. V rozvoji chyby E (vzthy (1.39), (1.4)) jsme se omezili n hlvní člen, přičemž k = pro lichoběžníkovou k = 4 pro Simpsonovu metodu. Vzthy (1.43) jsou proto jen přibližné. Vzthy (1.43) předstvují soustvu dvou rovnic pro neznámé I, C. Aproximci přesné hodnoty I dostneme nejsnáze tk, že první rovnici vynásobíme h k, druhou h k 1, obě rovnice poté od sebe odečteme. Dostneme I =. N h k 1 N 1 h k. (1.44) h k 1 h k Při zjemňování kroku h je výhodné v kždé iterci zdvojnásobit počet dělících bodů, neboť pk v následujícím kroku plně využijeme dělící body funkční hodnoty z kroku předchozího. Dosdíme-li h 1 = h do (1.44), obdržíme I =. k N N 1. (1.45) k 1 Speciálně pro lichoběžníkovou metodu dává předchozí formule I =. 4N N 1, (1.46) 3 to všk odpovídá metodě Simpsonově. Rozdělme intervl, b n n = m stejných dílků s rozestupem h uzly x k,

9 h = b m, x k = + kh, k =, 1,,..., m. (1.47) Kvdrtur s krokem h dává N = h ( 1 y + y 1 + y y M kdežto kvdrtur s dvojnásobným krokem dává N 1 = h ( 1 y + y + y y M Po doszení (1.48), (1.49) do (1.46) dostneme což je le Simpsonov sumce Jk je to v Mtlbu Funkce QUAD ), (1.48) ). (1.49) I. = h 3 (y + 4y 1 + y y M ), (1.5) QU AD = Numerické vyhodnocení integrálu, dptivní Simpsonov metod. Q = QU AD(F U N, A, B) proximuje integrl funkce F U N v mezích od A do B, kromě chyby 1.e 6 s použitím rekurzivní dptivní Sipsonovy metody. Funkce Y = F UN(X) prcuje s vektorem X jko výsledek vrcí vektor Y, vyhodnocený integrnd kždého z prvků vektoru X. Q = QUAD(F UN, A, B, T OL) používá bsolutní chybu tolernce T OL nmísto implicitní hodnoty 1.e 6. Větší hodnoty tolernce T OL, poté proběhne méně výpočtů funkce tedy rychleji výpočet, le n úkor přesnosti výsledků. Funkce QU AD ve verzi MATLAB 5.3 používá méně spolehlivý lgoritmus implicitní tolernce má hodnotu 1.e 3. [Q, F CNT ] = QUAD(...) vrcí počet vyhodnocení funkce. QUAD(F UN, A, B, T OL, T RACE) s nenulovou stopou (TRACE) ukáže hodnotu [fcnt b Q] během rekurze. QUAD(F UN, A, B, T OL, T RACE, P 1, P,...) poskytuje jko dlší rgumenty P 1, P,... předány přímo funkci F UN, F UN(X, P 1, P,...). Průchod prázdné mtice co se týče T OL nebo T RACE k použití implicitních hodnot. Použití mticových operátorů.,./. v definici F UN tk, že to lze vyhodnotit s vektorovým rgumentem (vektor). Funkce QU ADL může prcovt více účinně s vysokou přesností hldkou integrovnou funkcí.

10 Příkld: F UN můžeme zdt třemi různými způsoby. Řetězcové vyjádření umocnění jednoduché proměnné: Q = qud( 1./(x. 3 x 5),, ); Inline objekt: F = inline( 1./(x. 3 x 5) ); Q = qud(f,, ); Ukztel funkce Q = ); kde myfun.m je M-soubor: function y = myfun(x) y = 1./(x. 3 x 5); Funkce QUADL QU ADL = číselné vyhodnocení integrálu, dptivní Lobttov metod. Q = QUADL(F UN, A, B) vyšetřujeme přibližnou hodnotu integrálu funkce F UN v mezích od A do B, kromě chyby 1.e 6 s použitím vysoce uspořádné rekurzivní dptivní metody. Funkce Y = F UN(X) prcuje s vektorem X jko výsledek vrcí vektor Y, vyhodnocený integrnd kždého z prvků vektoru X. Q = QUADL(F UN, A, B, T OL) používá bsolutní chybu tolernce T OL nmísto implicitní hodnoty 1.e 6. Větší hodnoty tolernce T OL, poté proběhne méně výpočtů funkce tedy rychleji výpočet, le n úkor přesnosti výsledků. [Q, F CNT ] = QUADL(...) vrcí počet vyhodnocení funkce. QUADL(F UN, A, B, T OL, T RACE) s nenulovou stopou (TRACE) ukáže hodnotu [fcnt b Q] během rekurze. QUADL(F UN, A, B, T OL, T RACE, P 1, P,...) poskytuje jko dlší rgumenty P 1, P,... předány přímo funkci F UN, F UN(X, P 1, P,...). Průchod prázdné mtice co se týče T OL nebo T RACE k použití implicitních hodnot. Použití mticových operátorů.,./. v definici F UN tkže to lze vyhodnotit s vektorovým rgumentem (vektor). Příkld: F UN můžeme zdt třemi různými způsoby.

11 Řetězcové vyjádření umocnění jednoduché proměnné: Q = qudl( 1./(x. 3 x 5),, ); Inline objekt: F = inline( 1./(x. 3 x 5) ); Q = qudl(f,, ); Ukztel funkce Q = ); kde myfun.m je M-soubor: function y = myfun(x) y = 1./(x. 3 x 5);

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík Zákldy vyšší mtemtiky(nejen) pro rboristy Robert Mřík 2.září2014 Ústv mtemtiky lesnická dřevřská fkult Mendelov univerzit v Brně E-mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik Podpořeno projektem

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou MATMATIKA (NJN) PRO KRAJINÁŘ A NÁBYTKÁŘ Robert Mřík 26. říjn 2012 KAT. MATMATIKY FAKULTA LSNICKÁ A DŘVAŘSKÁ MNDLOVA UNIVRZITA V BRNĚ -mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik ABSTRAKT. Předkládný

Více

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz Příručk k portálu Ktlog sociálních služeb v Ústeckém krji socilnisluzby.kr-ustecky.cz Uživtelská příručk k portálu socilnisluzby.kr-ustecky.cz 0 BrusTech s.r.o. Všechn práv vyhrzen. Žádná část této publikce

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí Numerické algoritmy KAPITOLA 11 V této kapitole: Vyhledávání nulových bodů funkcí Iterativní výpočet hodnot funkce Interpolace funkcí Lagrangeovou metodou Derivování funkcí Integrování funkcí Simpsonovou

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti Kpitol 5 Hilbertův prostor 5.1 Zákldní vlstnosti Historická poznámk 5.1.1. Prostor X se sklárním součinem je strukturou n lineárnímprostorus nejsilnějšími xiomy.jetonormovnýlineárníprostor,vněmžje norm

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Virtuální svět genetiky 1

Virtuální svět genetiky 1 Chromozomy obshují mnoho genů pokud nejsou rozděleny crossing-overem, pk lely přítomné n mnoh lokusech kždého homologního chromozomu segregují jko jednotk během gmetogeneze. Rekombinntní gmety jsou důsledkem

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

Studijní materiál PASCAL

Studijní materiál PASCAL Obsh Studijní mteriál PASCAL /76 Obsh Obsh Algoritmus 5 Vlstnosti lgoritmu 5 Metod návrhu lgoritmu 5 3 Rekurzivní lgoritmy 5 4 Překldč jeho struktur 6 4 Druhy překldčů 6 4 Hlvní části překldče 6 Jzyk Pscl

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Porovnání výsledků analytických metod

Porovnání výsledků analytických metod Metdický lit 1 EURCHEM-ČR 212 Editr: Zbyněk Plzák (plzk@iic.c.cz) Prvnání výledků nlytických metd Chrkterizce výknnti nlytické měřící metdy je jedním z důležitých znků nlytickéh měřicíh ytému, zejmén pr

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Stabilita atomového jádra. Radioaktivita

Stabilita atomového jádra. Radioaktivita Stbilit tomového jádr Rdioktivit Proton Kldný náboj.67 0-7 kg Stbilní Atomové jádro Protony & Neutrony Neutron Bez náboje.67 0-7 kg Dlouhodobě stbilní jen v jádře Struktur jádr A Z N A nukleonové číslo

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR ŘÍJEN 2014 MINISTERSTVO PRO MÍSTNÍ ROZVOJ Odbor řízení

Více

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui Stvební firm Díky nám si postvíte svůj svět. 1.D Klár Koldovská Šárk Bronová Lucie Pncová My Anh Bui Obsh 1) Úvod 2) Přesvědčení bnky 3) Obchodní jméno, chrkteristik zákzník, propgce 4) Seznm mjetku 5)

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Základní pravidla pro psaní

Základní pravidla pro psaní Zákldní prvidl pro psní 1. Zákldní principy Je nutné volit typ písm který je vhodný pro příslušný druh dokumentu. Celý dokument by měl být pokud možno sáen jednoho typu popř. jedné rodiny písm nebo lespoň

Více

A 9. Počítejte v radiánech, ne ve stupních!

A 9. Počítejte v radiánech, ne ve stupních! A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM Ing. Michl Sedláček, Ph.D. ko-k s.r.o., Thákurov 7, Prh 6 Sptil erth pressure on circulr shft The pper present method for estimtion sptil erth pressure

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school Technická univerzit v Liberci FAKULTA PŘÍRODOVĚDNĚHUMANITNÍ A PEDAGOGICKÁ Ktedr: Studijní progrm: Studijní obor: Ktedr mtemtiky didktiky mtemtiky N750 Učitelství pro zákldní školy Učitelství fyziky pro.

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

HOBBY PREZENTACE inels. www.elkoep.cz

HOBBY PREZENTACE inels. www.elkoep.cz HOBBY PREZENTACE inels www.elkoep.cz Chytré ŘÍZENÍ DOMU Chytrý dům s jeden DŮM jeden SYSTÉM jeden OVLADAČ n VŠE Technologie v domě si rozumí Technologie prcují z Vás Přináší mximální užitek Čsové finnční

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT

SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT POLICEJNÍ AKADEMIE ČESKÉ REPUBLIKY V PRAZE AKADÉMIA POLICAJNÉHO ZBORU V BRATISLAVE pořádjí ČTVRTOU VIRTUÁLNÍ VĚDECKOU KONFERENCI s mezinárodní účstí SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT PRAHA

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

PŘEDSTAVENÍ APLIKACE SMARTSELLING

PŘEDSTAVENÍ APLIKACE SMARTSELLING PŘEDSTAVENÍ APLIKACE SMARTSELLING CO JE TO SMARTSELLING SmartSelling je první kompletní nástroj n[ českém [ slovenském trhu, který pod jednou střechou spojuje všechny nezbytné nástroje moderního online

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více