1.1 Numerické integrování

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1 Numerické integrování"

Transkript

1 1.1 Numerické integrování Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme integrál v (1.1) spočítt nlyticky, Tedy npř.: f(x)dx = F (b) F (). (1.) π sin(x)dx = [ ] π cos x =. (1.3) Obvykle le primitivní funkci neznáme integrál (1.1) musíme počítt numericky. Mluvíme o numerické kvdrtuře. Lze npř. využít součtové definice určitého integrálu. Intervl, b rozdělíme body x < x 1 < x <... < x n 1 < x n b (1.4) n dosttečně mlé intervly x k 1, x k, k = 1,,..., n. Pk n I f(ξ k ) x k, (1.5) k=1 kde x k = x k x k 1 je šířk k-tého podintervlu ξ k je jeho libovolný bod, npř. ξ k = x k nebo ξ k = x k 1+x k. Pro rozumné funkce f konverguje sum n prvé strně vzthu (1.5) pro x k k přesné hodnotě I. Jiná metod spočívá v nhrzení funkce f(x) vhodnou proximující funkcí p(x), jejíž integrál dokážeme spočítt nlyticky. Z přibližné rovnosti f(x) p(x) vyplývá I p(x)dx. (1.6) Funkci p(x) volíme zprvidl ve formě interpolčního polynomu. Polynom n-tého stupně p(x) = q n x n + q n 1 x n q 1 x + q (1.7) obshuje n + 1 koeficientů q n, q n 1,..., q 1, q. Ty jsou určeny soustvou n + 1 rovnic p(x k ) = f(x k ), k =, 1,,..., n.

2 Po rozepsání x n q n + x n 1 q n x q 1 + q = f(x ), x n 1q n + x n 1 1 q n x 1 q 1 + q = f(x 1 ), (1.8). x n nq n + x n 1 n q n x n q 1 + q = f(x n ). Dělící body x k intervlu, b (viz(1.)) jsou zprvidl voleny jko ekvidistntní. V prxi se obvykle používá kombince obou předchozích metod - součtové interpolční: intervl, b se rozdělí n podintervly x k 1, x k, I = f(x)dx = N k=1 x k x k 1 f(x)dx, (1.9) poté se funkce f(x) proximuje funkcí p(x) zvlášť n jednotlivých podintervlech, x k x k 1 f(x)dx x k x k 1 p(x)dx. (1.1) Jsou-li podintervly x k 1, x k dosttečně úzké, vystčíme s polynomy p nízkého stupně Interpolční metod Nším úkolem je n intervlu, b interpolovt funkci f(x) polynomem n-tého stupně p(x) (1.7). Interpolční uzly x k, k =, 1,,..., n zvolíme pro jednoduchost jko ekvidistntní, x k = + kh, k =, 1,,..., n, h b n. (1.11) Omezíme se n polynom nultého stupně (proximce funkce f(x) konstntou, obdélníková metod interpolce), prvního stupně (proximce lineární funkcí, lichoběžníková metod) stupně druhého (proximce kvdrtickou funkcí, Simpsonov metod). ) Obdélníková metod Obdélníková metod vychází z proximce kde q je konstnt. Zvolíme-li q = f( +b ), pk I = f(x)dx f(x) q pro x, b, (1.1) ( ) ( ) + b + b f dx = (b )f. (1.13)

3 Geometricky odpovídá tto proximce nhrzení plochy pod křivkou f(x) plochou obdélník o výšce f( +b ) (obr.1). b) Lichoběžníková metod V tomto přípdě je funkce f(x) n intervlu, b proximován funkcí lineární, f(x) p(x) q 1 x + q. (1.14) Koeficienty p 1, p určíme z interpolčních podmínek p() = f(), p(b) = f(b): q 1 + q = f(), bq 1 + q = f(b). (1.15) Řešením této jednoduché soustvy je f(b) f() q 1 =, q = b Aproximce integrálu je tedy bf() f(b). (1.16) b I (q 1 x + q )dx = [ q 1 x + q x ] b = (b ) f() + f(b). (1.17) Geometricky odpovídá tto proximce nhrzení plochy pod křivkou f(x) lichoběžníkem o výšce b zákldnách f(), f(b) (obr.).

4 c) Simpsonov metod Funkce f je n intervlu, b proximován kvdrtickou funkcí p(x) = q x + q 1 x + q. Intervl, b rozdělíme uzly x =, x 1 = + b, x = b (1.18) n dv podintervly o šířce h = b. Koeficienty q, q 1, q jsou určeny soustvou tří lineárních rovnic (1.8) pro n =. Tento postup je dosti těžkopádný, to prcujeme s polynomy pouze. řádu! Elegntnější způsob nlezení interpolčního polynomu nbízí Lgrngeov metod. Polynom p(x) n-tého řádu, procházející n + 1 body [x k, f(x k )], k =, 1,,..., n, je v této metodě vyjádřen ve tvru kde n p(x) = f(x i )l i (x), (1.19) i=1 l i (x) = (x x )(x x 1 )... (x x i 1 )(x x i+1 )... (x x n ) (x i x )(x i x 1 )... (x i x i 1 )(x i x i+1 )... (x i x n ) jsou tzv. Lgrngeovy polynomy. Ty jsou zkonstruovány tk, by l i (x k ) = 1, k = i, k i, (1.) (1.1)

5 tkže p(x k ) = tj. grf polynomu p(x) prochází body [x k, f(x k )]. Z přibližného vzthu f(x) p(x) dostáváme n f(x i )l i (x k ) = f(x k )1, (1.) i= b b n n b I p(x)dx = f(x i )l i (x)dx = f(x i )w i, w i l i (x)dx. (1.3) i= i= Koeficienty w i se nzývjí váhy v uzlech x i. Speciálně pro polynom. řádu s uzly (1.18), dává Lgrngeov metod interpolci f(x) p(x) = f(x ) (x x 1)(x x ) (x x 1 )(x x ) + +f(x 1 ) (x x )(x x ) (x 1 x )(x 1 x ) + f(x ) (x x )(x x 1 ) (x x )(x x 1 ). (1.4) Při výpočtu váhových fktorů w, w 1, w budeme využívt substituci x = + ht, dx = hdt, t. w = w 1 = = h b w = (x x 1 )(x x ) (x x 1 )(x x ) dx = (t 1)(t )dt = 1 3 h, } {{ } 3 (x x )(x x ) (x 1 x )(x 1 x ) dx = = h = h t(t )dt = 4 3 h, (x x )(x x 1 ) (x x )(x x 1 ) dx = t(t 1)dt = 1 3 h. ( + ht h)( + ht h) hdt = ( h)( h) ( + ht )( + ht h) hdt = (1.5) h( h) ( + ht )( + ht h) hdt = hh

6 Simpsonův vzorec má tedy tvr I f(x ) 1 3 h + f(x 1) 4 3 h + f(x ) 1 3 h = h 3 [f(x ) + 4f(x 1 ) + f(x )] (1.6) Anlogicky bychom odvodili interpolční formule vyšších řádů Složené vzorce Čím užší bude intervl integrce, tím přesnější bude proximce funkce f polynomem p(x). Intervl, b proto rozložíme n mlé podintervly x k 1, x k, n nichž lze chybu proximce f(x) p(x) očekávt reltivně mlou. Uzly x k ze vzthu (1.4) zvolíme pro jednoduchost ekvidistntní s krokem h, ) Složená obdélníková metod x k = + kh, k =, 1,,..., n, h = b n. (1.7) Formule (1.9) spolu s formulí (1.13) plikovnou n dílčí intervly x k 1, x k dávjí pro tento přípd [ I h f b) Složená lichoběžníková metod ( ) ( ) ( x + x 1 x1 + x xn 1 + x n + f f )]. (1.8) Lichoběžníkovou proximci (1.17) plikujeme n jednotlivé intervly x k 1, x k : I h [( ) ( ) ( )] f(x ) + f(x 1 ) + f(x 1 ) + f(x ) f(x n 1 ) + f(x n ), (1.9) tj. [ 1 I h f(x ) + f(x 1 ) + f(x ) f(x n 1 ) + 1 ] f(x n). (1.3) c) Složená Simpsonov metod V tomto přípdě musíme mít sudý počet uzlů, n = m, h = b. Simpsonův vzorec m (1.6) plikujeme postupně n intervly x, x, x, x 4,..., x m 1, x m : I h [( ) ( ) f(x ) + 4f(x 1 ) + f(x ) + f(x ) + 4f(x 3 ) + f(x 4 ) + ( )] f(x m ) + 4f(x m 1 ) + f(x m ). (1.31)

7 Po úprvě I h [ f(x ) + 4f(x 1 ) + f(x ) + 4f(x 3 )+ 3 ] f(x m ) + 4f(x m 1 ) + f(x m ). (1.3) Povšimněte si, že i složené kvdrturní vzorce lze vyjádřit pomocí tbelizovných hodnot f(x k ) váhových fktorů w k v uzlech x k, n f(x)dx f(x k )w k. (1.33) k= Pro lichoběžníkovou metodu je kdežto pro Simpsonovu metodu w = w n = h, w 1 = w =... = w n 1 = h, (1.34) w = w m = 1 3 h, w 1 = w 3 =... = w m 1 = 4 3 h, w = w 4 =... = w m = h. (1.35) Cykly složených metod, Richrdsonov metod Oznčme numerickou kvdrturu integrálu symbolem N chybu integrce jko E. Přesná hodnot I je tedy Pro lichoběžníkovou metodu lze chybu E vyjádřit ve tvru I = N + E. (1.36) (b ) E = f (η)h, (1.37) 1 kde f (η) znčí druhou derivci integrovné funkce f v blíže nespecifikovném bodě η intervlu, b. Lichoběžníková metod poskytuje tedy přesný výsledek pro lineární funkce, které mjí druhou derivci nulovou. Protože bod η není znám, odhdujeme chybu E shor. Oznčme Pk M k = mx,b f (k) (x). (b ) E M h. (1.38) 1 Chyb je druhého řádu v mocninách kroku h. Lze ji rovněž vyjádřit ve formě E = Ch + členy vyšších řádů v h, (1.39)

8 kde C je konstnt nezávislá n kroku h. Pro složenou Simpsonovu metodu lze odvodit (b ) E = 18 f (1.39) (η)h 4. (1.4) Simpsonov metod dává přesnou hodnotu integrálu pro polynomy do třetího řádu, neboť mjí čtvrtou derivci nulovou. Anlogií vzthů (1.39), (1.4) jsou pro Simpsonovu metodu vzthy E (b ) 18 M 4h 4, (1.41) E = Ch 4 + členy vyšších řádů. (1.4) Poždovné přesnosti integrce lze dosáhnout zmenšováním integrčního kroku. Mámeli nvíc numerickou integrci provedenou pro dv různé kroky h 1, h, můžeme provést tzv. Richrdsonovu extrpolci n krok h =, odpovídjící přesné hodnotě integrálu. Pro kroky h 1, h pišme I. = N 1 + Ch k 1, I. = N + Ch k, (1.43) V tomto vzthu jsou N 1, N numerické hodnoty integrálu získné s kroky h 1, h. V rozvoji chyby E (vzthy (1.39), (1.4)) jsme se omezili n hlvní člen, přičemž k = pro lichoběžníkovou k = 4 pro Simpsonovu metodu. Vzthy (1.43) jsou proto jen přibližné. Vzthy (1.43) předstvují soustvu dvou rovnic pro neznámé I, C. Aproximci přesné hodnoty I dostneme nejsnáze tk, že první rovnici vynásobíme h k, druhou h k 1, obě rovnice poté od sebe odečteme. Dostneme I =. N h k 1 N 1 h k. (1.44) h k 1 h k Při zjemňování kroku h je výhodné v kždé iterci zdvojnásobit počet dělících bodů, neboť pk v následujícím kroku plně využijeme dělící body funkční hodnoty z kroku předchozího. Dosdíme-li h 1 = h do (1.44), obdržíme I =. k N N 1. (1.45) k 1 Speciálně pro lichoběžníkovou metodu dává předchozí formule I =. 4N N 1, (1.46) 3 to všk odpovídá metodě Simpsonově. Rozdělme intervl, b n n = m stejných dílků s rozestupem h uzly x k,

9 h = b m, x k = + kh, k =, 1,,..., m. (1.47) Kvdrtur s krokem h dává N = h ( 1 y + y 1 + y y M kdežto kvdrtur s dvojnásobným krokem dává N 1 = h ( 1 y + y + y y M Po doszení (1.48), (1.49) do (1.46) dostneme což je le Simpsonov sumce Jk je to v Mtlbu Funkce QUAD ), (1.48) ). (1.49) I. = h 3 (y + 4y 1 + y y M ), (1.5) QU AD = Numerické vyhodnocení integrálu, dptivní Simpsonov metod. Q = QU AD(F U N, A, B) proximuje integrl funkce F U N v mezích od A do B, kromě chyby 1.e 6 s použitím rekurzivní dptivní Sipsonovy metody. Funkce Y = F UN(X) prcuje s vektorem X jko výsledek vrcí vektor Y, vyhodnocený integrnd kždého z prvků vektoru X. Q = QUAD(F UN, A, B, T OL) používá bsolutní chybu tolernce T OL nmísto implicitní hodnoty 1.e 6. Větší hodnoty tolernce T OL, poté proběhne méně výpočtů funkce tedy rychleji výpočet, le n úkor přesnosti výsledků. Funkce QU AD ve verzi MATLAB 5.3 používá méně spolehlivý lgoritmus implicitní tolernce má hodnotu 1.e 3. [Q, F CNT ] = QUAD(...) vrcí počet vyhodnocení funkce. QUAD(F UN, A, B, T OL, T RACE) s nenulovou stopou (TRACE) ukáže hodnotu [fcnt b Q] během rekurze. QUAD(F UN, A, B, T OL, T RACE, P 1, P,...) poskytuje jko dlší rgumenty P 1, P,... předány přímo funkci F UN, F UN(X, P 1, P,...). Průchod prázdné mtice co se týče T OL nebo T RACE k použití implicitních hodnot. Použití mticových operátorů.,./. v definici F UN tk, že to lze vyhodnotit s vektorovým rgumentem (vektor). Funkce QU ADL může prcovt více účinně s vysokou přesností hldkou integrovnou funkcí.

10 Příkld: F UN můžeme zdt třemi různými způsoby. Řetězcové vyjádření umocnění jednoduché proměnné: Q = qud( 1./(x. 3 x 5),, ); Inline objekt: F = inline( 1./(x. 3 x 5) ); Q = qud(f,, ); Ukztel funkce Q = ); kde myfun.m je M-soubor: function y = myfun(x) y = 1./(x. 3 x 5); Funkce QUADL QU ADL = číselné vyhodnocení integrálu, dptivní Lobttov metod. Q = QUADL(F UN, A, B) vyšetřujeme přibližnou hodnotu integrálu funkce F UN v mezích od A do B, kromě chyby 1.e 6 s použitím vysoce uspořádné rekurzivní dptivní metody. Funkce Y = F UN(X) prcuje s vektorem X jko výsledek vrcí vektor Y, vyhodnocený integrnd kždého z prvků vektoru X. Q = QUADL(F UN, A, B, T OL) používá bsolutní chybu tolernce T OL nmísto implicitní hodnoty 1.e 6. Větší hodnoty tolernce T OL, poté proběhne méně výpočtů funkce tedy rychleji výpočet, le n úkor přesnosti výsledků. [Q, F CNT ] = QUADL(...) vrcí počet vyhodnocení funkce. QUADL(F UN, A, B, T OL, T RACE) s nenulovou stopou (TRACE) ukáže hodnotu [fcnt b Q] během rekurze. QUADL(F UN, A, B, T OL, T RACE, P 1, P,...) poskytuje jko dlší rgumenty P 1, P,... předány přímo funkci F UN, F UN(X, P 1, P,...). Průchod prázdné mtice co se týče T OL nebo T RACE k použití implicitních hodnot. Použití mticových operátorů.,./. v definici F UN tkže to lze vyhodnotit s vektorovým rgumentem (vektor). Příkld: F UN můžeme zdt třemi různými způsoby.

11 Řetězcové vyjádření umocnění jednoduché proměnné: Q = qudl( 1./(x. 3 x 5),, ); Inline objekt: F = inline( 1./(x. 3 x 5) ); Q = qudl(f,, ); Ukztel funkce Q = ); kde myfun.m je M-soubor: function y = myfun(x) y = 1./(x. 3 x 5);

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

matematických úloh N2612 Elektrotechnika a informatika 1802T007 Informační technologie Bc. Zdeněk Kybl RNDr. Dana Černá, Ph.D.

matematických úloh N2612 Elektrotechnika a informatika 1802T007 Informační technologie Bc. Zdeněk Kybl RNDr. Dana Černá, Ph.D. Aplikce pro numerické řešení mtemtických úloh Diplomová práce Studijní progrm: Studijní obor: Autor práce: Vedoucí práce: N2612 Elektrotechnik informtik 1802T007 Informční technologie Bc. Zdeněk Kybl RNDr.

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

STANOVENÍ POMĚRNÉ PLOŠNÉ DRSNOSTI POVRCHU

STANOVENÍ POMĚRNÉ PLOŠNÉ DRSNOSTI POVRCHU STAOVEÍ POMĚRÉ PLOŠÉ DRSOSTI POVRCHU J. Tesř, J. Kuneš ové technologie výzkumné centrum, Univerzitní 8, 06 4, Plzeň Ktedr fyziky, Fkult plikovných věd, Zápdočeská univerzit, Univerzitní, 06 4, Plzeň Abstrkt

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2 Úvod do numerické mtemtiky Přednášk pro posluchče informtiky Zimní resp Letní semestr 2/2 Ivo Mrek, Petr Myer Bohuslv Sekerk 1 Úvodní poznámky Vymezení problemtiky vystihuje následující chrkteristik Numerická

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu:

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu: vz je lgebr ( M ; ) vzy = se dvěm binárními opercemi tková že pro libovolné prvky b c M pltí následující podmínky xiomy svzu: ( b) c = ( b c) ( b) c = ( b c) b = b b = b ( ) ( ) b = b =. Operce se nzývá

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ MATEMATIKA 1

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ MATEMATIKA 1 FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MATEMATIKA 1 Grnt předmětu: Prof. RNDr. Josef DIBLÍK, DrSc. (do 31.8.00) Prof. RNDr. Jn CHVALINA, DrSc. (od 1.9.00) Autoři

Více

Měření rozlišovací schopnosti optických soustav

Měření rozlišovací schopnosti optických soustav F Měření rozlišovcí schopnosti optických soustv Úkoly :. Měření rozlišovcí schopnosti fotogrfických objektivů v závislosti n clonovém čísle. Měření hloubky ostrosti fotogrfických objektivů v závislosti

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Seriál XXVII.III Aplikační

Seriál XXVII.III Aplikační Seriál XXVII.III Aplikční Seriál: Aplikční Tento díl seriálu bude tk trochu plikční. Minule jsme si pověděli úvod k vričním metodám ve fyzice, nyní bychom rádi nbyté znlosti plikovli n tři speciální přípdy.

Více

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík Zákldy vyšší mtemtiky(nejen) pro rboristy Robert Mřík 2.září2014 Ústv mtemtiky lesnická dřevřská fkult Mendelov univerzit v Brně E-mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik Podpořeno projektem

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie ELEKTŘINA A MAGNETIZMUS Řešené úlohy postupy: Kpcit uložená energie Peter Dourmshkin MIT 6, překld: Jn Pcák (7) Osh 4. KAPACITA A ULOŽENÁ ENERGIE 4.1 ÚKOLY 4. ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ ÚLOHA 1: VÁLCOVÝ

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

MATEMATIKA B 2. Integrální počet 1

MATEMATIKA B 2. Integrální počet 1 metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

4 Mřížka tvořená body, mřížková funkce a její Fourierova transformace, reciproká mřížka

4 Mřížka tvořená body, mřížková funkce a její Fourierova transformace, reciproká mřížka 4 Mříž tvořená body, mřížová funce její Fourierov trnsformce, reciproá mříž Reciproé vetory bázi reciproých vetorů používl již olem r 880 J W Gibbs ve svých přednášách o vetorové nlýze [], str 0, 83 Do

Více

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou MATMATIKA (NJN) PRO KRAJINÁŘ A NÁBYTKÁŘ Robert Mřík 26. říjn 2012 KAT. MATMATIKY FAKULTA LSNICKÁ A DŘVAŘSKÁ MNDLOVA UNIVRZITA V BRNĚ -mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik ABSTRAKT. Předkládný

Více

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc.

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc. PLANETOVÉ PŘEVODY Pomůck do cvičení předmětu Mobilní energetické prostředky Doc.Ing. Pvel Sedlák, CSc. Pro pochopení funkce plnetových převodů jejich kinemtiky je nutné se senámit se ákldy především kinemtikou

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

STEJNOSMĚRNÉ STROJE (MOTORY) Princip činnosti motoru, konstrukční uspořádání, základní vlastnosti

STEJNOSMĚRNÉ STROJE (MOTORY) Princip činnosti motoru, konstrukční uspořádání, základní vlastnosti STEJNOSĚRNÉ STROJE (OTORY) Princip činnosti motoru, konstrukční uspořádání, zákldní vlstnosti Obr. 1. Směr siločr budicího (sttorového) obvodu stejnosměrného stroje Obr. 2. Směr proudu kotevního (rotorového)

Více

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují . Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

DIPLOMOVÁ PRÁCE. Teorie nekonečných her

DIPLOMOVÁ PRÁCE. Teorie nekonečných her UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Teorie nekonečných her Vedoucí diplomové práce: doc. Mgr. Krel Pstor, Ph.D Rok odevzdání:

Více

Cvičení KMA-MAF1 Neurčitý a určitý integrál. Jiří Fišer 9. prosince 2011

Cvičení KMA-MAF1 Neurčitý a určitý integrál. Jiří Fišer 9. prosince 2011 Cvičení KMA-MAF Neurčitý určitý integrál Jiří Fišer 9. prosince Obsh Úlohy n přímou integrci 3 Úlohy n jednoduché substituce 3. Lineárnísubstituce ux+b.... 3.. Dlšíjednoduchésubstituce... 3 3 Integrce

Více

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami / Zákldní pojmy: Číselné obory vzthy mezi nimi ČÍSELNÉ MNOŽINY Zákony pro počítání s číselnými množinmi. Přirozená čísl vyjdřují počet prvků množiny N. Celá čísl změn počtu prvků dné množiny, přírůstky

Více

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz Příručk k portálu Ktlog sociálních služeb v Ústeckém krji socilnisluzby.kr-ustecky.cz Uživtelská příručk k portálu socilnisluzby.kr-ustecky.cz 0 BrusTech s.r.o. Všechn práv vyhrzen. Žádná část této publikce

Více

Domácí telefony DT 93

Domácí telefony DT 93 Domácí telefony DT 93 4FP 110 51-55 4FP 110 73-74 OBSAH: I. Provedení možnosti použití DT93 strn 1 Obr.1 Schém DT 4FP 110 51 DT93 strn 1 Obr.2 Schém DT 4FP 110 52 DT93 strn 1 Obr.3 Schém DT 4FP 110 53

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.:

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.: Potenciometrie Poločlánek (elektrod) je heterogenní elektrochemický systém tvořeny lespoň dvěm fázemi. Jedn fáze je vodičem první třídy vede proud prostřednictvím elektronů. Druhá fáze je vodičem druhé

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

Toto dílko bylo původně tvořeno pouze jako přehled matiky k maturitě, takže jeho forma odpovídá

Toto dílko bylo původně tvořeno pouze jako přehled matiky k maturitě, takže jeho forma odpovídá Toto dílko bylo původně tvořeno pouze jko přehled mtiky k mturitě, tkže jeho form odpovídá rozshu mého učiv mým poždvkům. Docel se mi osvědčilo už během roku, bylo mi nvrženo, bych ho dl k dispozici n

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné

Více

PRAVIDELNÉ MNOHOSTĚNY

PRAVIDELNÉ MNOHOSTĚNY PRVIDELNÉ MNOHOĚNY Vlst Chmelíková, Luboš Morvec MFF UK 007 1 Úvod ento text byl vytvořen s cílem inspirovt učitele středních škol k zčlenění témtu prvidelné mnohostěny do hodin mtemtiky, neboť při výuce

Více

PŘÍČNÉ PŘEMÍSTĚNÍ VOZIDEL PŘI ANALÝZE SILNIČNÍ NEHODY

PŘÍČNÉ PŘEMÍSTĚNÍ VOZIDEL PŘI ANALÝZE SILNIČNÍ NEHODY Ing. Albert Brdáč PŘÍČNÉ PŘEMÍSTĚNÍ VOZIDEL PŘI ANALÝZE SILNIČNÍ NEHODY V příspěvku jsou prezentován výsledk disertční práce utor, zbývjící se nlýzou součsného stvu možností výpočtu čsu potřebného n příčné

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

2 i i. = m r, (1) J = r m = r V. m V

2 i i. = m r, (1) J = r m = r V. m V Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko

Více

Zadání 4. série NEW YORK. Termín odeslání: 26. únor 1996. Obr. A. Úloha IV. 1... Pozor, přímý přenos! Úloha IV. 2... opilci v New Yorku

Zadání 4. série NEW YORK. Termín odeslání: 26. únor 1996. Obr. A. Úloha IV. 1... Pozor, přímý přenos! Úloha IV. 2... opilci v New Yorku Zdání 4. série Termín odeslání: 6. únor 1996 Úloh IV. 1... Pozor, přímý přenos! Ve velké newyorské koncertní síni Crnegie Hll sedí mlý český človíček Honzíček, n progrmu je Beethovenov sedmá symfonie.

Více

Stanovení disociační konstanty acidobazického indikátoru

Stanovení disociační konstanty acidobazického indikátoru Stnovení disociční konstnty cidobzického indikátoru Teorie: cidobzické indikátory se chovjí buď jko slbé kyseliny nebo slbé báze disociují ve vodných roztocích omezeně. Kvntittivní mírou disocice je hodnot

Více

4.2. Lineární rovnice s jednou neznámou, její řešení a ekvivalentní úpravy

4.2. Lineární rovnice s jednou neznámou, její řešení a ekvivalentní úpravy 4. Lineární rovnice 8. ročník 4. Lineární rovnice 4.. Rovnost. Vlstnosti rovnosti. Rovnost v ritmetice vzth mezi dvěm číselnými výrzy Př. 4 + 8 = 0 + Skládá se z : levé strny rovnosti prvé strny rovnosti

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE ZÁKLADY MATEMATIKY 2. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE I. P íprvní úlohy. V této sérii pot ebujete znlost výpo t následujících úloh - otestujte si ji:. Vypo ítejte neur ité integrály: ) (x 2 x + ) 2 dx

Více

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti Kpitol 5 Hilbertův prostor 5.1 Zákldní vlstnosti Historická poznámk 5.1.1. Prostor X se sklárním součinem je strukturou n lineárnímprostorus nejsilnějšími xiomy.jetonormovnýlineárníprostor,vněmžje norm

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více