VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE PRO 4ST201
|
|
- Dominik Slavík
- před 8 lety
- Počet zobrazení:
Transkript
1 VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravděodobo TATITIKA VZORCE RO 4T verze. oledí aalzace:.9.8 KT 8
2 oá aa,,..., % z z,5 z, 5 z H H H G... G... R ma - m ( ( ( ( ( ( V KT.9.8
3 ravděodobo oče ravděodobo A ( m ( ( A B A B B ( (A B (A (B (A B (A (B - (A B (A B (A (B (A B (A (BA (B (AB (A ( A B ( A B ( ( AB Náhodé velč ( (X F( (X ( ( X ( F( - F( F( (X f ( d f ( F ( f ( d ( X f ( d F( - F( F( F ( EX ( ( EX ( f( d DX ( ( ( ( X D( X X,..,, E( X µ, D( X ezávlé D ( X f ( d f ( d E( X µ, D( X ravděodoboí rozděleí Aleraví rozděleí A[π] ( π ( - π -,, π E(X π D(X π( - π E( X µ, D( X Bomcé rozděleí B[;π] ( ( π π,,,...,, >, π E(X π D(X π( - π ooovo rozděleí o[λ] λ ( e!,,..., λ >, E(X λ D(X λ KT.9.8
4 ravděodobo Hergeomercé rozděleí H[N;M;] M N M (, ma(, M-N,..., m(m,, >, N, M N N M M M N E ( X DX ( N N N N Eoecálí rozděleí E[A;δ] A, δ > A F ( E(X A δ D(X δ ( A δ e > A Normálí rozděleí N[µ; ] -, - µ, > E(X µ D(X µ µ F( Φ( Φ( µ µ X µ µ ( X ( U Φ( Φ ( Normovaé ormálí rozděleí N[;] U X µ E(U D(U Φ( Φ (- Φ(- Φ( Logarmco-ormálí rozděleí LN[µ; ] U lx µ ~ N[;] >, - µ, > l µ F ( Φ ( e( µ µ E(X e / µ e e D(X ( µ E(lX l(e(x- / D( X D(lX l( ( EX ( Chí-vadrá rozděleí χ [ν] > Rozděleí (deovo [ν] F - rozděleí (Fherovo edecorovo F[ν ;ν ] >, F ( ν, ν F ( ν, ν 3 KT 8.9.8
5 KT Maemacá aa ( ' Odhad aramerů ředí hodoa e µ µˆ e Nµ N ormálí rozděleí a zámé µ / / µ µ b ezámé µ / / ~ [ ] µ µ obecé rozděleí, ezámé, velý výběr ( > 3 ( / / X E ( X E ( X E rozl (ormálí rozděleí e ˆ aramer π aleravího rozděleí (odhad relaví čeo záladího obor e π πˆ e Nπ N π ( ( / / π ( π (
6 Teováí hoéz ředí hodoa ormálího rozděleí maemacá aa H H Teové rérm Krcý obor µ µ µ > µ zámé W {U - } µ µ µ W {U - - } µ µ U U ~ N[;] W { U -/ } ezámé W { - } µ W { - - } ~ [ ] W { -/ } ředí hodoa, obecé rozděleí, velý výběr H H Teové rérm Krcý obor E(X µ Ε(X > µ ezámé ( > 3 W {U - } Ε(X µ µ W {U - - } Ε(X µ U U N[;] W { U -/ } Rozl v ormálím rozděleí H H Teové rérm Krcý obor > ( χ χ ~ χ [-] aramer π aleravího rozděleí (velé výběr W {χ χ } - W {χ χ } W {χ χ / χ χ } -/ H H Teové rérm Krcý obor π π π > π π W {U - } U U ~ N[;] π π π ( π W {U - - } π π W { U -/ } Rovo ředích hodo dvo rozděleí ormálí rozděleí (ezávlé áhodé výběr z ormálího rozděleí H H Teové rérm Krcý obor µ µ µ - µ µ > µ µ µ µ µ a, zámé U U ~ N[;], ezámé, ale ředoládáme, že ( ( ~ [ ] W {U - } W {U - - } W { U -/ } W { - } W { - - } W { -/ } 5 KT 8.9.8
7 maemacá aa, ezámé, ale ředoládáme, že ~ [ν] W { - } W { - - } W { -/ } ν velé ezávlé výběr H H Teové rérm Krcý obor µ µ µ - µ µ > µ µ µ µ µ, ezámé U U N[;] W {U - } W {U - - } W { U -/ } závlé výběr z ormálího rozděleí (árový -e H H Teové rérm Krcý obor µ µ µ - µ µ > µ µ µ µ µ d ~ [ ] d d,,,.., W { - } W { - - } W { -/ } Rovo rozlů dvo ormálích rozděleí H H Teové rérm Krcý obor > W {F F - } F F ~ F[ ; ] W {F F } W {F F / F F -/ } Chí-vadrá e dobré hod H a H Teové rérm Krcý obor H : π π,,.., H : o H G, ππ, χ χ [-] W {χ χ -} π, 5 6 KT 8.9.8
8 Aalýza závloí Kogečí abla (r. r '.. j j. j j j ' j j 5 H H Teové rérm Krcý obor π j π. π.j o H r W ( r j íj {G χ -} G G χ [(r - ( - ] j j íj C G G V G, m m (r, ( m Tabla ( G.... Aalýza rozl ( j.m.ν j,m m. ( (. ν j j H H Teové rérm Krcý obor µ µ..µ o H W {F F - } F m. v. F ~ F[ ; ] Regree a orelace regreí říma β β ε, Yb b ( (. b, b b b mmm (. b ( b ( b b 7 KT.9.8
9 aalýza závloí Jé regreí fce ( ( R ( Y e Y b b b Y b b b.. b ( Y ( ( Y T R Y Y ( T Y R R R T Y ( Y R R R I R T Te hoéz o regreích aramerech I I ADJ ADJ ( I R I H H Teové rérm Krcý obor β β b W { -/ } ~ [ ] b ( Te o model H H Teové rérm Krcý obor β c o H W {F F - } T β... F F ~ F[ ; ] R β orelačí oefce r r ( ( ( ( H H Teové rérm Krcý obor ρ ρ r W { -/ } ~ [ ] r 8 KT 8.9.8
10 Čaové řad d 3 d... d d... d d Klozavé růměr m m m (.. m m Deomozce čaové řad T C ε T C ε T β β Tˆ b b T β β β Tˆ b b b β T β lt lβ β l l( T ˆ lb b l ME ( T Aalýza ezóí lož. Meoda emrcých deů (déla ezóo r lozavé růměr dél r (ařílad r 4 ezóí de ezoí de z é ezó růměrý ezóí de oče hodo z é ezó adardzovaý ezóí de r j r růměrý ezoí de,,., r (ař.r 4 j.růměrý ezoí de. Regreí meoda mělým roměým (leárí red, ezóo dél 4 T ε β β 3 3 ε a a a3 a 4 j a a,,3 4 4 j a Tˆ ( b a b 4 9 KT.9.8
11 Ideí aalýza I/ I I I... I I/ I / / 3/ / / Q q q Q Iq q q q IQ Q Q Q q Q I q Iqq. q I(Σ q q q q Q q IQQ. Q I(Σ Q Iq Q Q q Q Q Q q Q q q I Q q Q q q Q q I. q IQ. ( L I q q Q IQ ( Σq q q ( ΣQ Q Q q q q q q q Q ( I q q Q I I I I. I ( F ( L ( q Iq. q IqQ. ( L Iq q q Q q q Q q q Q ( Iq Iq Iq Iq I Iq ( F ( L ( Q q IQQ. Q I(Σ Q Q Q q Q IQ ( ΣQ q q KT.9.8
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE PRO 4ST201
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravděodobo TATITIKA VZORCE RO 4T verze.3 oledí aualzace: 4.9.9 KT 9 oá aa,,..., ɶ < z < + < z < + +,5 z +, 5 z H H H G... G... R
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE PRO 4ST201
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravděodobo TATITIKA VZORCE RO 4T verze 4. oledí aualzace: 6.8.6 KT 6 oá aa oá aa =,,..., () ()...,,,, z z z z z H H H G... R = ma
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE. k bakalářské zkoušce
VYOKÁ ŠKOLA EKONOMCKÁ V RAZE FAKULTA NFORMATKY A TATTKY Kaeda a a avděodobo TATTKA VZORCE baalářé zošce veze 3. oledí aalzace: 3.9.7 KT 7 oá aa Rozděleí čeoí,,..., Kval % z ůmě H H H G... Rozěí R ma -
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a ravděodobos AIIKA VZORCE RO 4 a 4 verze 8 osledí aualzace:. 9. 8 K 8 osá sasa,,...,... ( ( (,, z +, ( z ( z + ( z+, z H H H G... R ma
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a pravděpodobos AIIKA VZORCE RO 4 a 4 verze 8 posledí aualzace:. 9. 8 K 8 opsá sasa p p =,,...,... () () ( ),, z, ( z ) ( z ) ( z), z
1 3VYSOK 0 9 0 7KOLA EKONOMICK 0 9 V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravd їpodobnosti STATISTIKA VZORCE PRO 4ST201
3VYOK 9 7KOLA EKONOMICK 9 V PRAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravd їodobo TATITIKA VZORCE PRO 4T verze 3. oled aualzace: 6..5 KTP 5 3Po aa =,,..., P P zp z P,5 z, 5 z H H H G G...... R =
SP2 Korelační analýza. Korelační analýza. Libor Žák
Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet
14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
PRAVDĚPODOBNOST A STATISTIKA. Testy hypotéz
SP3 Tey hypoéz PRAVDĚPODOBNOST A STATISTIKA Tey hypoéz Lbor Žá SP3 Tey hypoéz Lbor Žá Tey hypoéz- úvod Nechť X X e áhodý výběr T X X X áhodý veor ezávlé ložy erý má rozděleí závlé a parameru θ Θ Θ R Ozačme:
V. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
STATISTICKÝ ODHAD A TESTOVÁNÍ PRŮKAZNOSTI EKONOMETRICKÉHO MODELU Výběrové metody Výhody a nevýhody Využití při statistické indukci Rozsah výběru
TATITICÝ ODHAD A TETOVÁNÍ RŮAZNOTI EONOMETRICÉHO MODELU Výěové meod Výhod a evýhod Vuží př acé duc Rozah výěu Výpočeí poup Gafcý poup Bodový odhad Ievalový odhad Oouaý a edoaý eval polehlvo Ieval polehlvo
4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Testujeme hypotézu: proti alternativě. Jednoduché třídění:
Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
SP NV Normalita-vlastnosti
SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
ů é Č ů Ú Řď ů ů ý ý ý ů ů ý ň ď Ť Ť Ť é é ý ů ý É ň é ů ý é ý ů ů ý ý ů ů é ů ý ý ý é é Ť ý é ý ď ý é ý Ó Ů ý Ů Ů Ů ú ů ďů é ý ý é ď ý ý ý ů ů é ů ů é ů é ý é Ů é é é ý Ť ů Ť é é é é ů é ý ý é Ť é é Ú
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
PRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
Interval spolehlivosti pro podíl
Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této
8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
Matematická rozcvička pro KMA/MAT1 a KMA/MT1
Matematická rozcvička pro KMA/MAT a KMA/MT Pro rozhýbání použijeme část z podařených podpůrných materiálů ke knize Sally Jordan, Shelagh Ross, and Pat Murphy: Maths for Science. Oxford University Press,
Náhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
!!! #!! # % & ()!+ %& #( ) +,,!,!!./0./01 2 34 % 00 (1!#! #! #23 + )!!,,5,!+ 4)!005!! 6 )! %,76!,8, )! 44 %!! #! #236!!1 1 5 6 5+!!1 ( 9 9!5 6 + /+ # % 7 8 % : 4; 2,/! = %
Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Hartreeho-Fockova metoda (HF)
Staonární Shrödngerova rovne H Ψ = EΨ Metoda konfgurační nterake Metoda vázanýh klastrů Poruhová teore Zahrnutí el. korelae Bornova-Oppenhemerova aproxmae Model nezávslýh elektronů Vlnová funke ve tvaru
Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Odhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
} kvantitativní znaky
Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
Matematická rozcvička pro KMA/MAT1 a KMA/MT1
Matematická rozcvička pro KMA/MAT a KMA/MT Pro rozhýbání použijeme část podpůrných materiálů ke knize Sally Jordan, Shelagh Ross, and Pat Murphy: Maths for Science. Oxford University Press, 0. Začneme
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
n-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY. Statistika. Vzorce a tabulky
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY Statistia Vzorce a tabuly Martina Litschmannová 3. března 05 Oficiální vzorce a tabuly KOMBINATORIKA Bez opaování Uspořádané
PRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
Statistická rozdělení
Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
PRAVDĚPODOBNOST A STATISTIKA
SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é
- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - zákldě výběrových d zjeme obecější kečo, ýkjící e zákldího obor rovádíme zevšeobecňjící (dkví) údek - dkví zováí omocí memcko-ckých meod je zv. cká dkce - dkví vžováí ebo vždy
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
é č í é ě í ž ý í Ú á í ž ý í ý Á í ÁŘ É Á ý á ář é í á í ž ý í Ř ú á á č ý š á í š í řá ě č á í í é ář é á é é č á ú í ář é á á ů ě ž é é č é é ě ý ží á ý ý í ář é á ě ž é ří é ď ý é ě í í č í č íčá é
PRAVDĚPODOBNOST A STATISTIKA
SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P
❷ s é 2s é í t é Pr 3 t str í Úst 2 t t t r 2 2 á rá t r t í str t r 3 tí t 2 2 r á rs ý í rá á 2 í P ZADÁNÍ DIPLOMOVÉ PRÁCE I. OSOBNÍ A STUDIJNÍ ÚDAJE Příjmení: Hurský Jméno: Tomáš Fakulta/ústav: Fakulta
1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
5. B o d o v é o d h a d y p a r a m e t r ů
5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme
ó Á řř ů Ářř Ť Á Á ř š ř š ď ř š é é ď é ř ů ú ď ř ř ř ř ú š ř š ď š ď Č é ď ř ř ř ě ř é ř ě ě ř é ě é ř ř é ř é ě š ě š š ř é ě é é Ť ě š é é Š Š ď ě ř é é ř ó ř ř é ř ř é ř ě ř é ř ě š ř š ď š ř ď ř
Matematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
Lineární a adaptivní zpracování dat. 8. Modely časových řad I.
Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Téma 4: Výběrová šetření
Výběrová šetřeí Téma : Výběrová šetřeí Předáška Výběrové charaktertky a jejch rozděleí Výzam a druhy výběrového šetřeí tattcké šetřeí úplé vyčerpávající eúplé výběrové výběrové šetřeí aha o to aby výběrový
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Vlastnosti odhadů ukazatelů způsobilosti
Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
= = ε =. = ( + ) =. = = ε =. = ( + ) =. = =, = = =, = ( ) = + ϱ = + = = (ϱ ϱ ) = = = ϱ = ϱ = ϱ = ϱ = ϱ = + +, + +, + + +, + + =, +, + + = = =, = (ϱ ϱ ) = (,,,,,, (,, ) = ) = =. ( =.) ( =.) ( = ) ΔU ΔQ
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
k n ( k) n k F n N n C F n F n C F F q n N C F n k 0 C [n, k] [n, k] q C [n, k] k n C C (n k) n C u C u T = T. [n, k] C (n k) n T = k (n k). F n N u = (u 1,..., u n ) v = (v 1,..., v n ) F n d(u, v) u
,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3
Př 7: S 95% polehlivotí odhaděte variabilitu (protředictvím odhadu měrodaté odchylky) a tředí hodotu obahu vitamíu C u rajčat. Záte-li výledky rozboru 0-ti vzorků rajčat: 3 4 5 6 7 8 9 0 9,6 3,4 30 3,6
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních
vají statistické metody v biomedicíně
Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk
PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení
S1P áhodá roměá vybraá rozděleí PRAVDĚPODOBOST A STATISTIKA áhodá roměá vybraá rozděleí S1P áhodá roměá vybraá rozděleí Vybraá rozděleí diskrétí P Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu
PRAVDĚPODOBNOST A STATISTIKA. Metoda momentů Metoda maximální věrohodnosti
SP3 Odhady arametrů PRAVDĚPODOBNOST A STATISTIKA Metoda momentů Metoda maimální věrohodnosti SP3 Odhady arametrů Metoda momentů Vychází se z: - P - ravděodobnostní rostor - X je náhodná roměnná s hustotou
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a
SIC1602A20. Komunikační protokol
SIC1602A20 Komunikační protokol SIC1602A20 Mechanické parametry Rozměr displeje 80 x 36 mm Montážní otvory 75 x 31 mm, průměr 2.5mm Distanční sloupky s vnitřním závitem M2.5, možno využít 4mm hloubky Konektor
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.
Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ
Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
5. Aplikace výsledků pro průřezy 4. třídy.
5. plikace výsledků pro průřez 4. tříd. eff / eff / Výsledk únosnosti se používají ve tvaru součinitele oulení ρ : ρ f eff kde d 0 Stěn namáhané tlakem a momentem: Základní případ: stlačovaná stěna: výsledk
1.6. Srovnání empirických a teoretických parametrů (4.-5.předn.)
.6. rováí empirických a eoreických paramerů (4.-5.před.) Cíle: - pravděpodobosí zkoumáí výběrového saisického souboru: kvaifikace eoreických paramerů, srováí eoreických a empirických paramerů (Probable
Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBOST A STATISTIKA Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl:
Náhodná veličina-označení Parametry Obor platnosti Normální N(µ,σ) Střední hodnota µ Střední směr. odchylka σ. Střední hodnota µ
ředáša č 4 Teoretcé sojté áhodé velčy ožtí těchto áhodých velč je ro říady, dy velča může abývat lbovolých hodot v omezeém č eomezeém terval V techcé rax se jedá o os vlastostí solehlvost výrob (doba do
Parciální diferenciální rovnice. Dirichletova úloha pro Laplaceovu (Poissonovu) rovnici Rovnice vedení tepla
arálí dereálí rove Drleova úloa ro Lalaeov ossoov rov Rove vedeí ela Vlová rove Klasae leárí arálí dereálí rov.řád d ě ý ve dvo roměý V oblas Ω E de a b d e a g jso sojé je dáa rove ro [ ] Ω oložíme g
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)
. Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě