Pravděpodobnost a aplikovaná statistika

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Pravděpodobnost a aplikovaná statistika"

Transkript

1 Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA

2 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost, že při vyrobeí 1000 výrobků bude zmetků. Řešeí: X počet zmetků v 1000 výrobcích X~Bi ; p ~Bi 1000; 0,5 E X = p = ,5 = 500, σ 2 X = p 1 p = ,5 1 0,5 = 250, σ X = σ 2 X = 250 Pravděpodobost, že počet zmetků bude v rozmezí 400 až 600 lze vyjádřit ve tvaru: P 400 < X < 600) = P( X 500 < 100

3 Opakováí: Čebyševova erovost příklad Čebyševova erovost: P 400 < X < 600) = P( X 500 < 100 P X E X < ε σ 1 1 ε2, kde σ = var X Vyjádříme-li si povoleou odchylku (ε σ = 100) od středí hodoty (E X = 500) jako ásobek směrodaté odchylky (σ = 250), pak Čebyševovou erovostí zjistíme P X 500 < 100 = P X 500 < = = 1 0,025 = 0,

4 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí áhodých jevů) 2. Podmíěá pravděpodobost 3. Náhodá veličia 4. Statistické charakteristiky 5. Slabý záko velkých čísel 6. Cetrálí limití věta (teorém) 7. Bodový a itervalový odhad 8. Testováí hypotéz 9. Korelace a regrese

5 6.1 Normálí rozděleí Normálí rozděleí pravděpodobosti (Gaussovo) historie o ěmecký matematik Carl Friedrich Gauss ( ) je považová za objevitele o v roce 1908 aglický statistik Karl Pearso alezl historické spisy, které dokazují, že ormálí rozděleí objevil ve skutečosti o století dříve Abraham de Moivre ( ) objevil záko chyb

6 6.1 Normálí rozděleí Normálí rozděleí pravděpodobosti defiice Spojitá áhodá veličia X má ormálí rozděleí pravděpodobosti, pokud existují kostaty μ R a σ 2 > 0 tak, že její fukce hustoty f X má tvar f X x = 1 x μ 2 exp σ 2π 2σ 2 pro každé x R. Zkráceě zapisujeme, že X má rozděleí N(μ, σ 2 ). Pokud má X rozděleí N(0,1), pak říkáme, že X má stadardí ormálí rozděleí pravděpodobosti.

7 6.1 Normálí rozděleí

8 6.1 Normálí rozděleí středí hodota a rozptyl Mějme spojitou áhodou veličiu X s rozděleím N μ, σ 2. Hustota pravděpodobosti f X x : f X x = 1 x μ 2 exp σ 2π 2σ 2 Středí hodota μ x : μ X = E X = = μ, Rozptyl σ 2 x : σ 2 X = E X 2 E X 2 = = μ 2 + σ 2 μ 2 = σ 2. Normálí rozděleí je dáo svou středí hodotou a rozptylem.

9 6.1 Normálí rozděleí Mějme spojitou áhodou veličiu X s rozděleím N μ, σ 2. Fukce hustoty: f X x = 1 σ 2π Distribučí fukce: Φ a = P X a = x μ 2 exp 2σ 2 = 1 2π x 2 e 2, a 1 2π e x 2 2 dx. Pozor: Φ eí elemetárí fukce (její hodoty se umericky aproximují) jsou tabelováy

10 6.1 Normálí rozděleí empirické pravidlo Uvažujme výběr x 1, x 2,, x s výběrovým průměrem x a výběrovou směrodatou odchylkou s. Pokud má histogram tvar zvou pak: cca 68 % dat z výběru se achází v itervalu x s, x + s, cca 95 % dat z výběru se achází v itervalu x 2s, x + 2s, cca 99,7 % dat z výběru se achází v itervalu x 3s, x + 3s.

11 6.1 Normálí rozděleí empirické pravidlo - důkaz Chceme dokázat: P μ 3σ < X < μ + 3σ = 0,997 Použitím Čebyševovy erovosti: P μ 3σ < X < μ + 3σ = P 3σ < X μ < 3σ = = P X μ < 3σ = 9 1 = = 0,8889 Toto platí obecě bez ohledu a typ rozděleí. Použitím kvatilů ormálího rozděleí: P μ 3σ < X < μ + 3σ = P 3σ < X μ < 3σ = X μ = P 3 < < 3 = Φ 3 Φ 3 = Φ 3 1 Φ 3 = σ = 2 Φ 3 1 = 2 0, = 0,9973

12 6.2 Normálí rozděleí příklad testu ormality Jarqueův a Beryho test ormality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque ad Ail K. Bera Předpoklady: Výběrová data mohou obsahovat chybějící pozorováí (chybějící hodoty) vhodé zejméa pro časové řady Teto test je tím silější, čím více pozorováí (dat) je k dispozici

13 6.2 Normálí rozděleí příklad testu ormality Jarqueův a Beryho test ormality (Jarque-Bera Test, JB test) Použití: JB test testuje, zda data pochází z ormálího rozděleí Nulová hypotéza: H 0 : x ~ N( ), kde N( ) ozačuje distribučí fukci ormálího rozděleí Alterativí hypotéza: H A : x N( )

14 6.2 Normálí rozděleí příklad testu ormality Testová statistika: JB testová statistika je spočtea a základě výběrové šikmosti a špičatosti. Je defiováa jako: JB = 6 S2 + K2 4 kde S ozačuje výběrovou šikmost, K výběrovou špičatost a je počet echybějících hodot ve výběru (v datovém souboru).

15 6.2 Normálí rozděleí příklad testu ormality Testová statistika: JB = 6 S2 + K2 4 JB statistika má asymptoticky (tj. pro ) χ 2 rozděleí o dvou stupích volosti 2 JB~ χ ν=2 (α) Lze ji použít pro testováí ulové hypotézy, že data pochází z ormálího rozděleí.

16 6.2 Normálí rozděleí příklad testu ormality Testová statistika: JB = 6 S2 + K2 4 ~ χ 2 ν=2(α) Obecě platí zamítací pravidlo: H 0 zamítám, pokud 2 JB > χ ν=2 (α) Jedá se o jedostraý test, a tak vypočteá p-hodota může být srováváa přímo s hladiou výzamosti α. Obecě platí zamítací pravidlo: H 0 zamítám, pokud je vypočteá p-hodota meší ež zvoleá hladia výzamosti α, tedy pokud p < α.

17 JB test pro vitří teplotu Testovaá proměá: x průměrá vitří teplota Nulová hypotéza: H 0 : x ~ N( ) Alterativí hypotéza: H A : x N( ) Výběrová šikmost: S = g 1 = m 3 (m 2 ) 3 2 i=1 = Výběrová špičatost: K = a 4 = g 2 = m 4 m = Testová statistika: JB = 6 S2 + K2 4 = Tabulková hodota: χ ν=2 α = χ 2 2 0,05 = 5,99 i=1 x i X 3 x i X i=1 i=1 = 0,4994 x i X 4 x i X = 0,3033 0, , = 16, 5732 Závěr: Neboť JB statistika je vyšší ež tabulková hodota, platí zamítací pravidlo, a tedy Zamítáme ulovou hypotézu, že průměrá vitří teplota má ormálí rozděleí

18 JB test pro vekoví teplotu Testovaá proměá: x průměrá vekoví teplota Nulová hypotéza: H 0 : x ~ N( ) Alterativí hypotéza: H A : x N( ) Výběrová šikmost: S = g 1 = m 3 (m 2 ) 3 2 i=1 = Výběrová špičatost: K = a 4 = g 2 = m 4 m = i=1 x i X 3 x i X i=1 i=1 = 0,1883 x i X 4 x i X = 0,2445 Testová statistika: JB = 6 S2 + K2 4 = ( 0,1883) 2 + ( 0,2445)2 4 = 3, Tabulková hodota: χ ν=2 α = χ 2 2 0,05 = 5,99 Závěr: Neboť JB statistika je ižší ež tabulková hodota, eplatí zamítací pravidlo, a tedy Nezamítáme ulovou hypotézu, že průměrá vekoví teplota má ormálí rozděleí

19 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou hypotézu a alterativí hypotézu, testovou statistiku a typ jejího rozděleí. Dále ukažte použití testu pro testováí kokrétí hypotézy a zadaých datech. Jedovýběrový t-test Dvouvýběrový t-test, včetě Satterthwaitova a Welchova testu Test shody dvou rozptylů pro ormálě rozděleé výběry Zamékový test Párový test pro výběr z ormálího rozděleí a z obecého dvojrozměrého rozděleí Jedovýběrový a dvouvýběrový Wilcoxoův test Studetův t-test pro parametr lieárího regresího modelu Fisherův-Sedecorův F-test pro lieárí regresí model Kruskalův-Wallisův test Aalýza rozptylu jedoduchého tříděí (ANOVA), včetě Bartlettova, Hartleyova a Cochraova testu χ2 test dobré shody při zámých i ezámých parametrech, χ 2 test ormality Jedovýběrový a dvouvýběrový Kolmogorovův-Smirovův test Test ezávislosti, včetě testu v kotigečí tabulce (Pearsoův χ 2 test)

20 3. Úkol zadáí pro statistické testy Postup: 1. Nastudovat vylosovaý test 2. Zvolit vhodá data 3. Formulovat ulovou a alterativí hypotézu 4. Zaslat mailem a echat si schválit 5. Zpracovat test (do šabloy a webu) 6. Zpracovat data 7. Odeslat práci mailem 8. Připravit prezetaci, včetě detailího postupu ukázky a datech 9. Test odprezetovat

21 6.3 Cetrálí limití věta (CLV, CLT) (CLV1) Nechť X 1, X 2,, X je posloupost áhodých veliči s koečými druhými momety. Ozačme E(X i ) = μ i, var X i = σ i 2, i = 1,2,. Za velmi obecých podmíek pak platí, že veličiy Y = 1 i=1 X i μ i mají asymptoticky ormálí rozděleí (tj. při ). Každé tvrzeí tohoto typu se azývá cetrálí limití věta (CLV, CLT). Prví z ich zformuloval již Laplace v roce Důkazy i těch ejjedodušších cetrálích limitích vět jsou začě dlouhé!!!

22 6.3 Cetrálí limití věta Lideberg a Lévy: (CLV 2) Nechť X 1, X 2,, X je posloupost ezávislých stejě rozděleých áhodých veliči se středí hodotou E(X i ) = μ a s koečým kladým rozptylem var(x i ) = σ 2. Pak Y = 1 má při asymptotické rozděleí N(0, σ 2 ). i=1 X i μ (CLV 3) Nechť X 1, X 2,, X je posloupost ezávislých stejě rozděleých p-rozměrých áhodých vektorů se středí hodotou E(X i ) = μ a variačí maticí V = var(x i ). Pak Y = 1 má při asymptotické rozděleí N(0, V). i=1 X i μ

23 6.3 Cetrálí limití věta (CLV 4) Nechť X 1, X 2,, X jsou ezávislé stejě rozděleé áhodé veličiy se středí hodotou E(X i ) = μ a rozptylem var(x i ) = σ 2, i = 1,2,,, pro které platí E X i 3 <. Pak součet těchto veliči S = X i má asymptoticky ormálí rozděleí N( μ, σ 2 ) pro a aritmetický průměr i=1 X = 1 i=1 X i má asymptoticky ormálí rozděleí N(μ, σ2 ) pro.

24 6.3 Cetrálí limití věta (CLV 5) Nechť X je průměr -prvkového áhodého vektoru s rozděleím se středí hodotou μ a rozptylem σ 2 > 0. Pak X μ W = σ má asymptoticky stadardí ormálí rozděleí N(0,1) pro. Poz.: W = X μ σ = X μ σ

25 6.3 Cetrálí limití věta (CLV 6 přímý důsledek CLV 5) Pokud je počet pozorováí áhodého výběru dost velký, tz. pro, pak: W = X μ σ = 1 i=1 X i μ σ = 1 i=1 X i μ σ = = i=1 X i μ σ má asymptoticky stadardí ormálí rozděleí N 0,1.

26 6.3 Cetrálí limití věta (http://oliestatbook.com/stat_sim/samp_dist_js/idex.html)

27 6.3 Cetrálí limití věta

28 6.3 Cetrálí limití věta příklad 1 Zadáí: Průměrá váha zavazadla cestujícího v turistické třídě a trase Praha Paříž je 20 kg a stadardí odchylka je 7 kg. Pro zavazadlo cestujícího v obchodí třídě je průměrá váha zavazadla 12,5 kg a směrodatá odchylka je 4 kg. Jestliže je v letadle 12 cestujících v obchodí třídě a 50 v turistické třídě, jaká je pravděpodobost, že celková váha všech zavazadel překročí kg?

29 6.3 Cetrálí limití věta příklad 1: řešeí Turistická třída (T) Průměrá váha zavazadla cestujícího v turistické třídě je 20 kg a stadardí odchylka je 7 kg. V letadle je 50 cestujících v turistické třídě. Váha všech zavazadel T = X 1 + X X 50 má asymptoticky ormálí rozděleí: středí hodota: μ T = rozptyl: σ T 2 =

30 6.3 Cetrálí limití věta příklad 1: řešeí Obchodí třída (B) Průměrá váha zavazadla cestujícího v obchodí třídě je 12,5 kg a stadardí odchylka je 4 kg. V letadle je 12 cestujících v obchodí třídě. Váha všech zavazadel B = X 1 + X X 12 má asymptoticky ormálí rozděleí: středí hodota: μ B = rozptyl: σ B 2 =

31 6.3 Cetrálí limití věta příklad 1: řešeí Celková váha všech zavazadel B + T a má přibližě ormálí rozděleí středí hodota: rozptyl: P B + T > 1200 =

32 6.3 Cetrálí limití věta příklad 1: řešeí P T + B > 1200 = 1 Φ 0,972755

33 6.3 Cetrálí limití věta příklad 2 Zadáí: V chemickém závodě bylo dlouhodobým sledováím zjištěo, že potřebá doba k objeveí a odstraěí poruchy zařízeí má středí hodotu 40 miut a směrodatou odchylku 30 miut. Jaká je pravděpodobost, že doba potřebá k objeveí a opraveí 100 poruch epřekročí 70 hodi?

34 6.3 Cetrálí limití věta příklad 2: řešeí X i je doba potřebá k objeveí a odstraěí i-té poruchy Pozor: převod hodi a miuty!

35 6.4 Cetrálí limití věta aproximace Bi(, p) Aproximace biomického rozděleí ormálím rozděleím Uvažujeme áhodou veličiu X, která má biomické rozděleí Bi(, p). Pravděpodobost, že áhodá veličia X abude ěkteré hodoty z itervalu a, b, kde a a b jsou přirozeá čísla, lze spočítat přesě pomocí biomického rozděleí ásledově: P X a, b = b x=a x px (1 p) x. Pozor: je-li velké, pak výpočet bude velmi áročý!

36 6.4 Cetrálí limití věta aproximace Bi(, p) Jestliže áhodá veličia X ozačuje počet výskytů určitého jevu A v ezávislých pokusech, lze ji pak vyjádřit pomocí veliči Y 1, Y 2,, Y : X = Y 1 + Y Y, kde Y i abývá hodoty 1, jestliže v i-tém pokusu jev A astal, a hodoty 0, jestliže eastal. Platí, že áhodé veličiy Y 1, Y 2,, Y jsou ezávislé, přičemž mají stejé alterativí rozděleí A p se středí hodotou E Y i = p a rozptylem Var Y i = p(1 p). Pokud se použije cetrálí limití věta, pak pro velké má X asymptoticky ormálí rozděleí N p, p 1 p, a tedy P X a, b = Φ b p p(1 p) Φ a p p 1 p.

37 6.4 Cetrálí limití věta aproximace Bi(, p) P X a, b = Φ b p p(1 p) Φ a p p 1 p Pokud použijeme tzv. opravu a spojitost, která zohledňuje situaci, že X má diskrétí a ikoliv spojité rozděleí, pak dostaeme: P X a, b = Φ b + 0,5 p p(1 p) Φ a 0,5 p p 1 p.

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení Odhad parametrů ormálího rozděleí a testy hypotéz o těchto parametrech * Věty o výběru z ormálího rozděleí Nechť, X, X je áhodý výběr z rozděleí N ( µ, ) X, Ozačme výběrový průměr a = X = i = X i i = (

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d. ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

Přednášky část 7 Statistické metody vyhodnocování dat

Přednášky část 7 Statistické metody vyhodnocování dat DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo

Více

DVOUVÝBĚROVÉ PODMÍNĚNÉ POŘADOVÉ TESTY VANALÝZEPŘEŽITÍ

DVOUVÝBĚROVÉ PODMÍNĚNÉ POŘADOVÉ TESTY VANALÝZEPŘEŽITÍ ROBUST 2000, 3 8 c JČMF 200 DVOUVÝBĚROVÉ ODMÍNĚNÉ OŘADOVÉ TESTY VANALÝZEŘEŽITÍ LENKA KOBLÍŽKOVÁ Abstrakt The preset paper deals with coditioal rak tests i survival aalysis for two sample problem with radomly

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy

8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBOST A STATISTIKA Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl:

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Uiverzita Karlova v Praze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ PRÁCE Kateřia Jaoušková Dvouvýběrové testy Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské práce: Studijí program:

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/psi 13 1 016 Obsah 1 O čem to

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

BAKALÁŘSKÁ STA I. + II.

BAKALÁŘSKÁ STA I. + II. Statistika I. - Teorie ) Statistika - Číselé údaje o hromadých jevech. Praktická čiost - sběr, zpracováí a vyhodocováí statistických údajů - Teoretická disciplía - metody k odhalováí zákoitostí při působeí

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/mvt http://cmpfelkcvutcz/ avara/psi

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Zimní semestr akademického roku 2015/ listopadu 2015

Zimní semestr akademického roku 2015/ listopadu 2015 Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY. Statistické chyby v medicínském výzkumu

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY. Statistické chyby v medicínském výzkumu UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Statistické chyby v medicíském výzkumu Vedoucí diplomové práce: Mgr. Jaa Vrbková

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

35! n! n k! = n k k! n k! k! = n k

35! n! n k! = n k k! n k! k! = n k Do školí jídely přišla skupia 35 žáků. Určete kolika způsoby se mohli seřadit do froty u výdeje obědů. Řešeí: Počet možostí je 1 2... 35=35! (Permutace bez opakováí) Permutací bez opakováí z -prvkové možiy

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

7. cvičení 4ST201-řešení

7. cvičení 4ST201-řešení cvičící 7. cvičeí 4ST21-řešeí Obsah: Bodový odhad Itervalový odhad Testováí hypotéz Vysoká škola ekoomická 1 Úvod: bodový a itervalový odhad Statistický soubor lze popsat pomocípopisých charakteristik

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Náhodný výběr, statistiky a bodový odhad

Náhodný výběr, statistiky a bodový odhad Lekce Náhodý výběr, statistiky a bodový odhad Parametr rozděleí pravděpodobosti je ezámá kostata, jejíž přímé určeí eí možé. Nástrojem pro odhad ezámých parametrů je áhodý výběr a jeho charakteristiky

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

Mocninné řady - sbírka příkladů

Mocninné řady - sbírka příkladů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.

Více

Statistika. Poznámky z přednášek

Statistika. Poznámky z přednášek Statistika Pozámky z předášek Materiál obsahuje pozámky ze předášek plus to co se musíme doučit včetě ukázkových příkladů, které se objevily a předášce, ebo z aplikace etstorage. J.T. OBSAH Úvodí stráka

Více

Bc. Barbora Šimková. Odhady parametrů rozdělení náhodných veličin

Bc. Barbora Šimková. Odhady parametrů rozdělení náhodných veličin Uiverzita Karlova v Praze Pedagogická fakulta BAKALÁŘSKÁ PRÁCE Bc. Barbora Šimková Odhady parametrů rozděleí áhodých veliči Katedra matematiky a didaktiky matematiky Vedoucí bakalářské práce: Studijí program:

Více

Seriál XXX.II Zpracování dat fyzikálních měření

Seriál XXX.II Zpracování dat fyzikálních měření Seriál: Zpracováí dat fyzikálích měřeí V miulém díle seriálu jsme se sezámili s tím, co je to áhodá veličia, hustota pravděpodobosti a jak se dá v ěkterých případech odhadout typ rozděleí áhodé veličiy

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více