PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor"

Transkript

1 SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák

2 SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a tedy a sledovaou hodotu ezáme. Přesto bychom chtěl teto pokus popsat. K tomu slouží áhodý vektor. Náhodý vektor se skládá z více áhodých velč. yto áhodé velčy esou popsáy samostatě ale všechy dohromady. Hovoříme o tzv. smultáím sdružeém popsu.

3 SP Náhodý vektor Lbor Žák Náhodý vektor Nechť Ω e základí prostor a příslušé evové pole. Zobrazeí : Ω R se azývá áhodý vektor pokud pro lbovolé R moža. Ozačeí: Možu budeme zkráceě zapsovat { = } Možu budeme zkráceě zapsovat { < }

4 SP Náhodý vektor Lbor Žák Náhodý vektor Protože pro každé R lze spočítat pravděpodobost tohoto áhodého evu a tím lze defovat fukc F: F P F P ato fukce se azývá sdružeá dstrbučí fukce áhodého vektoru. F: R 0.

5 Některé vlastost dstrbučí fukce áhodého vektoru: F e eklesaící ve všech proměých F e zleva spotá ve všech proměých 3 F má evýše spočetě moho bodů espotost 4 pro každé 5 6 Náhodý vektor 0 lm F lm F Lbor Žák SP Náhodý vektor a a R b b R b a b a b F b b F b a b a P a a F b a a b F

6 SP Náhodý vektor Lbor Žák Náhodý vektor Obor hodot áhodého vektoru azýváme základí soubor a ozačíme Z. Z R ; Pokud moža Z e koečá ebo spočetá áhodý vektor se azývá dskrétí. Pokud moža Z e espočetá áhodý vektor se azývá spotý.

7 SP Náhodý vektor Lbor Žák Dskrétí áhodý vektor Pokud e áhodý vektor dskrétí tak eí sdružeá dstrbučí fukce roste skokově pouze v koečě č spočetě moha zolovaých bodech prostoru R. Z Z k Pak velkost růstu dstrbučí fukce v bodě k lze vyádřt P = k. Ozačme: p = P = p P Fukc p azýváme sdružeou pravděpodobostí fukcí dskrétího áhodého vektoru.

8 Dskrétí áhodý vektor vlastost p t t t t p F F Lbor Žák SP Náhodý vektor Vlastost p: 3 4 Pomocí pravděpodobostí fukce lze vytvořt příslušou sdružeou dstrbučí fukc vztahem: p R 0 Z p B Z B p B P Β

9 SP Náhodý vektor Lbor Žák Spotý áhodý vektor Základí soubor u spotého áhodého vektoru e espočetá moža. Z e tedy podmoža možy možy R. Dstrbučí fukce spoté áhodé proměé e spotá fukce. Sdružeá hustota pravděpodobost spoté áhodé proměé e fukce: pro kterou platí: f : R 0 f d f d d

10 Vlastost f: 3 4 Pomocí hustoty pravděpodobost lze vytvořt příslušou dstrbučí fukc vztahem: Spotý áhodý vektor vlastost f Lbor Žák SP Náhodý vektor f R 0 B B d d f B P Β F f dt dt t t f F F

11 SP Náhodý vektor Lbor Žák Náhodý vektor V další část budeme uvažovat áhodý vektor o dvou složkách Pak pro dskrétí áhodý vektor dostáváme: p a pro spotý áhodý vektor dostáváme: F f : R p t t t t 0 f dd F f t t dt dt

12 SP Náhodý vektor Lbor Žák Dskrétí áhodý vektor - příklad Ukázka sdružeé pravděpodobostí fukce a sdružeé dstrbučí fukce pro dskrétí áhodý vektor:

13 SP Náhodý vektor Lbor Žák Dskrétí áhodý vektor - příklad Ukázka sdružeé pravděpodobostí fukce a sdružeé dstrbučí fukce pro dskrétí áhodý vektor:

14 SP Náhodý vektor Lbor Žák Spotý áhodý vektor - příklad Ukázka sdružeé hustoty a sdružeé dstrbučí fukce pro spotý áhodý vektor:

15 SP Náhodý vektor Lbor Žák Spotý áhodý vektor - příklad Ukázka sdružeé pravděpodobostí fukce a sdružeé dstrbučí fukce pro dskrétí áhodý vektor:

16 SP Náhodý vektor Lbor Žák Náhodý vektor Margálí rozděleí Pokud bereme v úvahu celý áhodý vektor hovoříme o sdružeých fukcích. Pokud se chceme zaměřt a chováí edotlvých složek podmož složek hovoříme o margálích fukcích. V případě áhodého vektoru lze uvažovat pouze o margálích fukcích vzhledem k a. Margálí dstrbučí fukce: F P P F lm F F P P F lm F

17 SP Náhodý vektor Lbor Žák Náhodý vektor Margálí rozděleí V případě dskrétího áhodého vektoru hovoříme o margálí pravděpodobostí fukc: p p p p V případě spotého áhodého vektoru hovoříme o margálí hustotě pravděpodobost: f f d f f d

18 SP Náhodý vektor Lbor Žák Náhodý vektor Margálí rozděleí Margálí rozděleí k předcházeícímu příkladu:

19 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Pokud uvažueme složky áhodého vektoru spolu s ech margálím popsem tak lze každou složku uvažovat ako áhodou proměou a spočítat pro příslušé charakterstky. Jedá se zeméa o E E a D D. Pro celý vektor uvažueme o středí hodotě áhodého vektoru: E E E Středí hodota áhodého vektoru e vektor středích hodot edotlvých složek kde E p p Z Z Z f d f d E d

20 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Pro celý vektor vektoru: uvažueme o středí hodotě áhodého E E E Středí hodota áhodého vektoru e vektor středích hodot edotlvých složek kde E E p Z Z R p f d f d

21 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Vlastost středí hodoty: Nechť e áhodý vektor a estuí středí hodoty: E E a R m B e matce typu m E E 3 E a B a BE P E E

22 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Kovarace složek a složek a : Nechť e áhodý vektor a echť estuí koečé momety: E. Pak reálé číslo C azýváme kovarací složek k a. Pokud C ekorelovaé C E E E 0 složky a. áhodého vektoru azýváme Matc var C azýváme varačí matcí vektoru

23 Vlastost kovarace složek : Číselé charakterstky áhodého vektoru SP Náhodý vektor Lbor Žák 0 a a C a C a C bb C b a b a C D C C C E E E C m m C C C D C D D

24 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Vlastost varačí matce: Nechť e áhodý vektor a estuí středí hodoty: E E a R m B e matce typu m. var E E E var E E E 3 var a B B var B 4 Matce var C e symetrcká poztvě deftí

25 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Nechť a Y Y Y Y m sou áhodé vektory. Pak pod pomem kovaračí matce rozumíme matc: cov Y C Y m Vlastost kovaračí matce: Nechť Y Y Y Y m sou áhodé vektory a R m B e matce typu k c R D e matce typu km cov Y E cov Y E Y E Y cov Y cov Y cov var E Y E E Y cov a B c DY Bcov Y D

26 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Korelace složek a složek a : Nechť e áhodý vektor a echť estuí koečé momety: E k a S k 0. Pak reálé číslo ρ azýváme korelací složek a C S S Pokud 0 složky áhodého vektoru azýváme ekorelovaé

27 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Vlastost korelace složek : 3 a a a a 0 4 pokud a b a b 0 b 0 s pravděpodobostí 5 6 a b a b sg bb

28 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Nechť a Y Y Y Y m sou áhodé vektory. Pak pod pomem korelačí matce rozumíme matc: cor Y Y m Vlastost korelačí matce: Nechť Y Y Y Y m sou áhodé vektory a R m B e matce typu k c R D e matce typu km matce cor cor e symetrcká a má v dagoále edčky cor Y cor Y 3 cor a c Y cor Y

29 SP Náhodý vektor Lbor Žák Číselé charakterstky áhodého vektoru Cauchy Schwarzova Buňakovského erovost Nechť sou áhodé velčy s eulovým rozptyly D: 0 D 0. Pak C D D a rovost e dosažeo právě tehdy když estuí a.b R že: P a b

30 SP Náhodý vektor Lbor Žák Základí prostor: Ω = { aso zatažeo déšť } Ω = { škola výlet hospoda doma} R : Nechť e adefovaá áhodá proměá ásledově: aso=0 zatažeo= dešť=3 a echť e adefovaá áhodá proměá ásledově: škola=0 výlet= hospoda=3 doma=4. Pravděpodobostí fukce: Dskrétí áhodý vektor - příklad : R : Spočtěte dstrbučí fukc margálí pravděpodobostí fukce charakterstky áhodého vektoru. R /5 /5 /5 3/ /5 3/ /5 /5

31 SP Náhodý vektor Lbor Žák Spotý áhodý vektor - příklad Měme spotý áhodý vektor s sdružeou hustotou pravděpodobost: f c 0 [ ] 6 ak 0 Spočtěte: c sdružeou dstrbučí fukc margálí hustoty pravděpodobost charakterstky áhodého vektoru.

32 SP Náhodý vektor Lbor Žák Vybraá rozděleí dskrétí NV Multomcké rozděleí Mup p k Náhodý vektor k s multomckým rozděleím k Mup p k N p p 0 k p Charakterstky: k má pravděpodobostí fukc: p p! středí hodota: E E k p p k rozptyl: var dag p pp p k k p p!! k! p k k

33 SP Náhodý vektor Lbor Žák Vybraá rozděleí spotý NV -rozměré ormálí rozděleí N Náhodý vektor s -rozměrý ormálím rozděleím N R Σ e symetrcká poztvě deftí matce má pravděpodobostí fukc: f Σ ep μ Σ μ Charakterstky: středí hodota: rozptyl: E var μ Σ

34 SP Náhodý vektor Lbor Žák Vybraá rozděleí spotý NV -rozměré ormálí rozděleí N σ σ ρ

35 SP Náhodý vektor Lbor Žák Vybraá rozděleí spotý NV -rozměré ormálí rozděleí N σ σ ρ

36 SP Náhodý vektor Lbor Žák Vybraá rozděleí spotý NV -rozměré ormálí rozděleí N Platí: Nechť áhodý vektor má rozděleí ~ N a R B e reálá regulárí matce typu. Pak Y a B ~ N a Bμ BΣB

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Náhodý vektor PRAVĚPOOBNOS A SAISIKA Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor přpomeutí pomů z SP V prví část kurzu SP s rozšíříme pomy o áhodém vektoru z SP: Nechť e áhodý vektor eho složky:

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

SP2 Korelační analýza. Korelační analýza. Libor Žák

SP2 Korelační analýza. Korelační analýza. Libor Žák Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

Náhodné jevy, jevové pole, pravděpodobnost

Náhodné jevy, jevové pole, pravděpodobnost S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

SP NV Normalita-vlastnosti

SP NV Normalita-vlastnosti SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzta Na Rybíčku, 746 0 Opava DENNÍ STUDIUM Aalytcká geometre Téma 3.: Aí zobrazeí Dece 3.. Zobrazeí aího prostoru A do aího prostoru A se azývá aí zobrazeí, estlže má ásleduící

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

S1P Popisná statistika. Popisná statistika. Libor Žák

S1P Popisná statistika. Popisná statistika. Libor Žák SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk

Více

n-rozměrné normální rozdělení pravděpodobnosti

n-rozměrné normální rozdělení pravděpodobnosti -rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení S1P áhodá roměá vybraá rozděleí PRAVDĚPODOBOST A STATISTIKA áhodá roměá vybraá rozděleí S1P áhodá roměá vybraá rozděleí Vybraá rozděleí diskrétí P Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

Kapitola 5 - Matice (nad tělesem)

Kapitola 5 - Matice (nad tělesem) Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Úvod do teorie měření

Úvod do teorie měření Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

7. Odhady populačních průměrů a ostatních parametrů populace

7. Odhady populačních průměrů a ostatních parametrů populace 7. Odhady populačích průměrů a ostatích parametrů populace Jak sme zišťovali v kapitole. e možé pro každou populaci sestroit možství parametrů, které i charakterizue. Pro účely základího pozáí e evýzaměší

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

Testujeme hypotézu: proti alternativě. Jednoduché třídění: Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charatersty a parametry áhodýh velč Úolem této aptoly je zavést pomoý aparát, terým budeme dále popsovat pomoí jedoduhýh prostředů áhodé velčy. Taovýmto aparátem jsou tzv. parametry ebo haratersty áhodé

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

PoznÁmky k přednášce

PoznÁmky k přednášce NMSA331 Matematická statistika 1 PozÁmky k předášce Naposledy upraveo de 15. úora 2019. Katedra pravd podobosti a matematické statistiky Matematicko-fysikálí fakulta Uiversity Karlovy Teto učebí text představuje

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Statistická rozdělení

Statistická rozdělení Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOS A SAISIKA Regulární systém hustot Vychází se z: -,, P - pravděpodobnostní prostor -, R neprázdná množna parametrů - X X 1,, náhodný vektor s sdruženou hustotou X n nebo s sdruženou pravděpodobnostní

Více

NMSA331 Matematická statistika 1

NMSA331 Matematická statistika 1 NMSA331 Matematická statistika 1 POZNÁMKY K PŘEDNÁŠCE Naposledy upraveo de 29. prosice 2018. Katedra pravd podobosti a matematické statistiky Matematicko-fysikálí fakulta Uiversity Karlovy Teto učebí text

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI 8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmp.felk.cvut.cz/ avara/stat 5. říja 018 Obsah 1 O

Více

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs.

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs. Předáška V. Úvod do teore odhadu Pojmy a prcpy teore odhadu Nestraé odhady Metoda mamálí věrohodost Průměr vs. medá Opakováí výběrová dstrbučí fukce Sestrojíme výběrovou dstrbučí fukc pro výšku a váhu

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmp.felk.cvut.cz/ avara/stat 5. říja 018 Obsah 1 O

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Kapitola 4 Euklidovské prostory

Kapitola 4 Euklidovské prostory Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/psi 13 1 016 Obsah 1 O čem to

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy Pravděpodobost a statistika Výpisky z cvičeí Odřeje Chocholy Ja Štětia 9. listopadu 9 Cviˇceí 3.9.9 Úloha: Máme 4 kostky. Ω = {a, b, c, d}, Ω = 6 4 A = 6 5 4 3 P(A) = 6 5 4 3 6 4 Naejvýš l kostek: m...

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/mvt http://cmpfelkcvutcz/ avara/psi

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/mvt http://cmpfelkcvutcz/ avara/psi

Více

11. INDUKTIVNÍ STATISTIKA

11. INDUKTIVNÍ STATISTIKA Pravděodobost a statstka. INDUKTIVNÍ STATISTIKA Iduktví statstka Průvodce studem Navážeme a katolu 7 a ukážeme, jak racovat se soubory, jejchž všechy rvky ejsou zámy. Předokládaé zalost Pojmy z ředchozích

Více