14. B o d o v é o d h a d y p a r a m e t r ů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "14. B o d o v é o d h a d y p a r a m e t r ů"

Transkript

1 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž úlohu, ve které hledáme odhady ezámých parametrů rozděleí. 4.. Formulace úlohy. Předpokládáme, že je dá áhodý výběr X, X 2,..., X z rozděleí s hustotou f(x, θ, θ 2,..., θ m ), či pravděpodobostí fukcí p(x, θ, θ 2,..., θ m ), kde θ = (θ, θ 2,..., θ m ) jsou parametry rozděleí. Na základě hodot áhodého výběru odhadujeme parametry rozděleí tak, aby co ejlépe odpovídaly hodotám áhodého výběru. Odhad provádíme pomocí vhodě zvoleé fukce áhodého výběru, statistiky τ, která je odhadem parametrů θ či jejich fukce γ(θ). O takové úloze mluvíme jako o bodovém odhadu parametrů. Příklad: V případě ormálího rozděleí, kdy X i N(µ; σ 2 ), je θ = µ a θ 2 = σ 2. Pro expoeciálí rozděleí, kde X i Exp(A; δ), je třeba θ = A + δ a θ 2 = δ, eboť je středí hodota rova A + δ a rozptyl je δ Testováí vhodosti a kvality odhadů.. Nestraost odhadů. Statistika τ je estraým odhadem fukce parametrů γ(θ), jestliže je E(τ) = γ(θ). Příklad: Je-li X, X 2,..., X áhodý výběr z rozděleí, pro které je E(X i ) = µ, pak je statistika výběrový průměr τ = X = X i estraým odhadem středí hodoty µ. Je-li rozptyl D(X i ) = σ 2, pak je statistika výběrový rozptyl estraým odhadem rozptylu σ 2. τ = S 2 = (X i X) 2 Pozámka: Pro středí hodotu statistiky τ je ěkdy splěa slabší podmíka lim E(τ) = γ(θ). Takový odhad azýváme asymptoticky estraý. Příklad: Statistika τ = s 2 = (X i X) 2 je asymptoticky estraým odhadem rozptylu σ 2, eboť je E(s 2 ) = σ2. 2. Kozistetost odhadu. Statistika τ je kozistetím odhadem fukce parametrů γ(θ), jestliže platí lim P ( τ γ(θ) < ε) = pro každé ε > 0. 82

2 Pozámka: Z Čebyševovy erovosti vyplývá, že estraé odhady s koečým rozptylem jsou kozistetí. Je totiž E(τ) = γ(θ) a P ( τ γ(θ) < ε) D(τ) ε 2. Příklad: Je-li áhodý výběr výběrem z ormálího rozděleí N(µ; σ 2 ), pak pro výběrový průměr platí: E(τ) = E(X) = µ a D(τ) = D(X) = σ2. Je tedy výběrový průměr X estraým a kozistetím odhadem středí hodoty µ. Pro výběrový rozptyl S 2 je E(S 2 ) = σ 2 a D(S 2 ) = ( ) ( 3)σ4 µ 4, 3 je tedy statistika S 2 estraým a kozistetím odhadem rozptylu σ Vydatost odhadu. Nestraý odhad τ fukce parametrů γ(θ), pro který je rozptyl D(τ) = E[(τ γ(θ)) 2 ] miimálí, se azývá ejlepší estraý odhad. Metody hledáí bodových odhadů Metoda maximálí věrohodosti je založea a vlastostech sdružeé hustoty či pravděpodobostí fukce. Je-li X, X 2,..., X z rozděleí s hustotou, či pravděpodobostí fukcí f(x, θ, θ 2,..., θ m ), pak má áhodý vektor (X, X 2,..., X ) sdružeou hustotu, či pravděpodobostí fukci Tuto fukci ozačujeme f(x, θ, θ 2,..., θ m ).f(x 2, θ, θ 2,..., θ m )... f(x, θ, θ 2,..., θ m ). ( ) L(x, x 2,..., x, θ) a azýváme ji věrohodostí fukcí. Hodotu ˆθ, pro kterou je věrohodostí fukce maximálí, azýváme maximálě věrohodým odhadem parametrů θ. Protože má v řadě případů hustota expoeciálí průběh používáme místo věrohodostí fukce L(x, θ) její logaritmus. Maximálě věrohodý odhad ˆθ je řešeím soustavy věrohodostích rovic L(x, x 2,..., x, θ) θ k = 0 l L(x, x 2,..., x, θ) θ k = 0, k m. Odhadujeme-li fukci γ(θ), pak je jejím maximálě věrohodým odhadem fukce γ(ˆθ) Příklad: Normálí rozděleí. Pro ormálí rozděleí N(µ; σ 2 ) je hustota rova f(x) = σ (x µ) 2 2π e 2σ 2 83

3 a tedy věrohodostí fukce je rova L(x, x 2,..., x, µ, σ 2 ) = (σ 2π) e (x i µ) 2 2σ 2 Pro logaritmus věrohodostí fukce l L tedy platí: l L(x, x 2,..., x, µ, σ 2 ) = 2 l (σ2 ) l ( 2π) 2σ 2 Potom je soustava věrohodostích rovic rova: l L µ = 2σ 2 2 (x i µ)( ) = 0, (x i µ) 2 Z prví rovice dostaeme l L σ 2 = 2σ 2 + 2σ 4 (x i µ) 2 = 0. Po dosazeí do druhé rovice dostaeme (x i µ) = 0 ˆµ = X i = X. σ 2 = (X i µ) 2 ˆσ 2 = (X i X) 2. Všimeme si, že odhad středí hodoty µ je estraý a kozistetí odhad a odhad rozptylu σ 2 je asymptoticky estraý Příklad: Poissoovo rozděleí P o(λ) má pravděpodobostí fukci p(k) = λk k! e λ, k = 0,, 2,... a E(X i ) = D(X i ) = λ. Je tedy věrohodostí fukce rova a její logaritmus je rove L(k, k 2,..., k, λ) = λk +k k k!k 2!... k e λ l L(k, k 2,..., k, λ) = λ + (k + k k ) l λ l (k!k 2!... k!). Odtud dostaeme věrohodostí rovici l L λ = + λ (k + k k ) = 0 λ = (k + k k ). Maximálě věrohodý odhad parametru λ je rove ˆλ = X i = X. 84

4 Protože je E(X) = λ a D(X) = λ je získaý odhad estraý a kozistetí Příklad: Expoeciálí rozděleí Exp(0; δ) má hustotu f(x) = δ e x δ, x > 0, pro které je E(X i ) = δ. Věrohodostí fukce je rova a její logaritmus je rove L(x, x 2,..., x, δ) = δ e δ x i l L(x, x 2,..., x, δ) = l δ δ Odtud dostaeme věrohodostí rovici x i. l L δ = δ + δ 2 x i = 0. Maximálě věrohodý odhad parametru δ je Teto odhad je estraý a kozistetí. ˆδ = X i = X Příklad: Expoeciálí rozděleí Exp(A; δ) má hustotu f(x) = x A e δ, x > A, δ pro které je E(X i ) = A + δ a D(X i ) = δ. Věrohodostí fukce je rova a její logaritmus je rove L(x, x 2,..., x, A, δ) = δ e δ (x i A) l L(x, x 2,..., x, A, δ) = l δ (x i A). δ Musí být X i A, i a tudíž fukce l L má maximálí hodotu pro  = mi{x, X 2,..., X }. Věrohodostí rovice pro parametr δ je l L δ = δ + δ 2 (x i A) = 0. Maximálě věrohodý odhad parametru δ je ˆδ = (X i Â) = X Â. 85

5 Protože je E(Â) = A + δ eí teto odhad estraý, je vychýleý, asymptoticky estraý, ale je kozistetí. Dále je E(ˆδ) = δ, tudíž je teto odhad rověž asymptoticky estraý Příklad: Rovoměré rozděleí v itervalu (µ h, µ + h) má hustotu f(x) = 2h, µ h < x < µ + h, kde E(X i ) = µ a D(X i ) = h2 3. Věrohodostí fukce je a její logaritmus je rove L(x, x 2,..., x, µ, h) = (2h), µ h < x i < µ + h l L(x, x 2,..., x, µ, h) = l (2h) Tato fukce má maximálí hodotu pro miimálí volbu parametru h. Je tedy maximálě věrohodý odhad parametru h rove ĥ = 2 (max{x i; i } mi{x i ; i }). Pro maximálě věrohodý odhad středí hodoty dostaeme ˆµ = 2 (max{x i; i } + mi{x i ; i }). Z rozděleí uspořádaého výběru dostaeme, že E(ĥ) = h + a E(ˆµ) = µ. Odhad ˆµ je estraý, odhad ĥ je asymptoticky estraý a oba jsou kozistetí. Metoda mometů je založea a rovosti výběrových mometů a mometů rozděleí Defiice: Je-li X, X 2,..., X áhodý výběr, pak defiujeme k-tý výběrový momet jako M k = Xi k, k a k-tý cetrálí výběrový momet jako i M k = (X i X) k, k. Pokud má rozděleí, ze kterého provádíme áhodý výběr, parametry θ, θ 2,..., θ m, pak jejich odhad θ, θ 2,..., θ m určíme z rovic kde µ k jsou obecé momety rozděleí. M k = µ k, k m, 86

6 Pozámka: Nejčastěji používáme prví dva momety, pro které platí: M = X i = X a M 2 = Xi Příklad: Biomické rozděleí Bi(, p) má středí hodotu E(X i ) = p a rozptyl D(X i ) = p( p). Odhad parametru p určíme z rovice p = M = X i p = 2 X i = X. Protože je je odhad p estraý a kozistetí. E(p ) = 2.p = p a D(p ) = p( p) Příklad: Normálí rozděleí N(µ; σ 2 ). Pro ormálí rozděleí je E(X i ) = µ, D(X i ) = σ 2 a E(X 2 i ) = σ2 + µ 2. Odhady parametrů µ a σ 2 dostaeme z rovic tedy µ = M = X, σ 2 + µ 2 = M 2 = Xi 2, µ = X a σ 2 = Xi 2 (X) 2. Odhady jsou shodé s maximálě věrohodými odhady z odstavce Příklad: Expoeciálí rozděleí Exp(0, δ) má středí hodotu E(X i ) = δ a tudíž odhad parametru δ získáme z rovice M = µ X i = X = δ, tedy odhadem parametru δ je hodota δ = X. I teto odhad je shodý s maximálě věrohodým odhadem ˆδ z odstavce Příklad: Expoeciálí rozděleí Exp(A, δ) Má středí hodotu E(X i ) = A + δ a rozptyl D(X i ) = δ 2. Odhady parametrů rozděleí získáme z rovic tedy jejichž řešeím dostaeme δ = X = A + δ, M = µ a M 2 = µ 2, Xi 2 (X)2 a Xi 2 = δ 2 + (A + δ) 2, A = X 87 Xi 2 (X)2.

7 Všimeme si, že jsme získali jié odhady ež jsou maximálě věrohodé odhady z odstavce Příklad: Rovoměré rozděleí v itervalu (µ h, µ+h) má středí hodotu E(X i ) = µ a roztyl D(X i ) = h2 3. Pro odhady parametrů µ a h dostaeme rovice M = µ a M 2 = µ 2 + h2 3. Jejich řešeím dostaeme pro odhady vyjádřeí ( µ = X a h = 3 Xi ), 2 (X)2 což jsou hodoty odlišé od maximálě věrohodých odhadů z odstavce

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

Bc. Barbora Šimková. Odhady parametrů rozdělení náhodných veličin

Bc. Barbora Šimková. Odhady parametrů rozdělení náhodných veličin Uiverzita Karlova v Praze Pedagogická fakulta BAKALÁŘSKÁ PRÁCE Bc. Barbora Šimková Odhady parametrů rozděleí áhodých veliči Katedra matematiky a didaktiky matematiky Vedoucí bakalářské práce: Studijí program:

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy Pravděpodobost a statistika Výpisky z cvičeí Odřeje Chocholy Ja Štětia 9. listopadu 9 Cviˇceí 3.9.9 Úloha: Máme 4 kostky. Ω = {a, b, c, d}, Ω = 6 4 A = 6 5 4 3 P(A) = 6 5 4 3 6 4 Naejvýš l kostek: m...

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

Teorie odhadů 2 Teorie odhadů... 3 Odhad parametrů... 4

Teorie odhadů 2 Teorie odhadů... 3 Odhad parametrů... 4 Metody odhadováí parametrů. Metoda mometů. Maximálě věrohodé odhady. Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

Pravděpodobnost a statistika II

Pravděpodobnost a statistika II Pravděpodobost a statistika II RNDr. Marie Forbelská, Ph.D. Mgr. Ja Koláček, Ph.D. Přírodovědecká fakulta Masarykovy uiverzity p 0 (x p (x β α µ 0 µ W 0 Vytvořeo ve spolupráci se Servisím střediskem pro

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/psi 13 1 016 Obsah 1 O čem to

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/mvt http://cmpfelkcvutcz/ avara/psi

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení S1P áhodá roměá vybraá rozděleí PRAVDĚPODOBOST A STATISTIKA áhodá roměá vybraá rozděleí S1P áhodá roměá vybraá rozděleí Vybraá rozděleí diskrétí P Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

7. Odhady populačních průměrů a ostatních parametrů populace

7. Odhady populačních průměrů a ostatních parametrů populace 7. Odhady populačích průměrů a ostatích parametrů populace Jak sme zišťovali v kapitole. e možé pro každou populaci sestroit možství parametrů, které i charakterizue. Pro účely základího pozáí e evýzaměší

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/mvt http://cmpfelkcvutcz/ avara/psi

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Náhodý vektor PRAVĚPOOBNOS A SAISIKA Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor přpomeutí pomů z SP V prví část kurzu SP s rozšíříme pomy o áhodém vektoru z SP: Nechť e áhodý vektor eho složky:

Více

PoznÁmky k přednášce

PoznÁmky k přednášce NMSA331 Matematická statistika 1 PozÁmky k předášce Naposledy upraveo de 15. úora 2019. Katedra pravd podobosti a matematické statistiky Matematicko-fysikálí fakulta Uiversity Karlovy Teto učebí text představuje

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

NMSA331 Matematická statistika 1

NMSA331 Matematická statistika 1 NMSA331 Matematická statistika 1 POZNÁMKY K PŘEDNÁŠCE Naposledy upraveo de 29. prosice 2018. Katedra pravd podobosti a matematické statistiky Matematicko-fysikálí fakulta Uiversity Karlovy Teto učebí text

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0 8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více

Náhodný výběr, statistiky a bodový odhad

Náhodný výběr, statistiky a bodový odhad Lekce Náhodý výběr, statistiky a bodový odhad Parametr rozděleí pravděpodobosti je ezámá kostata, jejíž přímé určeí eí možé. Nástrojem pro odhad ezámých parametrů je áhodý výběr a jeho charakteristiky

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmp.felk.cvut.cz/ avara/stat 5. říja 018 Obsah 1 O

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBOST A STATISTIKA Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl:

Více

Kvantily. Problems on statistics.nb 1

Kvantily. Problems on statistics.nb 1 Problems o statistics.b Kvatily 5.. Nechť x a, kde 0 < a

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmp.felk.cvut.cz/ avara/stat 5. říja 018 Obsah 1 O

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Pavel Pejřimovský. Katedra pravděpodobnosti a matematické statistiky

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Pavel Pejřimovský. Katedra pravděpodobnosti a matematické statistiky Uiverzita Karlova v raze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ RÁCE avel ejřimovský rofilová věrohodost Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské práce : Studijí program : Studijí

Více

Statistika pro metrologii

Statistika pro metrologii Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N? 1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí

Více

Mocninné řady - sbírka příkladů

Mocninné řady - sbírka příkladů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.

Více

Testy homoskedasticity v lineárním modelu

Testy homoskedasticity v lineárním modelu Uiverzita Karlova v Praze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ PRÁCE Ja Vávra Testy homoskedasticity v lieárím modelu Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské práce: Studijí

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

3. cvičení - LS 2017

3. cvičení - LS 2017 3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a) fx) x 5x+4 4 x b) fx) x x +4x+ c) fx) 3x 9x+ x +6x 0 d) fx) x 7x+0 4 x. Řešeí a) Nulové body čitatele a jmeovatele

Více

3. cvičení - LS 2017

3. cvičení - LS 2017 3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a fx x 5x+4 4 x b fx x x +4x+ c fx 3x 9x+ x +6x 0. Řešeí a Nulové body čitatele a jmeovatele jsou { 4}. Aby vše bylo

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Stochastické modely časových řad

Stochastické modely časových řad Stochastické modely časových řad RNDr. Marie Forbelská, Ph.D. Ústav matematiky a statistiky Přírodovědecká fakulta Masarykovy uiverzity Bro Podzimí semestr šk. roku 11/1 1 KAPITOLA 1 Teoretické základy

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

6. P o p i s n á s t a t i s t i k a

6. P o p i s n á s t a t i s t i k a 6. P o p i s á s t a t i s t i k a 6.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs.

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs. Předáška V. Úvod do teore odhadu Pojmy a prcpy teore odhadu Nestraé odhady Metoda mamálí věrohodost Průměr vs. medá Opakováí výběrová dstrbučí fukce Sestrojíme výběrovou dstrbučí fukc pro výšku a váhu

Více

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D. 3. část: Teorie hromadé obsluhy Ig. Michal Dorda, h.d. Zálady teorie pravděpodobosti Náhodý pous je děj, jehož výslede eí ai při dodržeí všech předepsaých podmíe předem zám. Náhodý jev je výsledem áhodého

Více

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n. Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více