Testování statistických hypotéz

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "Testování statistických hypotéz"

Transkript

1 Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím souboru; tvrzeí o ezámém parametru ZS (parametrcké testy ebo o růzých vlastostech ZS (eparametrcké testy. - Testováí umožňuje rozhodout, zda určtou hypotézu zamíteme (evet. přjmeme, a to s malým, předem zvoleým rzkem. Symbolka:... ulová (testovaá hypotéza... alteratví hypotéza Testové krterum (t: - vhodá charakterstka, která má př platost zámé pravděpodobostí rozděleí; - prostor hodot testového krtera rozdělíme a dva dsjuktí obory (W a V. Krtcký obor (W: je tvoře hodotam TK, které jsou př platost tak extrémí, že pravděpodobost jejch výskytu je velm malá. Jde tedy o oblast přjetí. Obor přjetí (V: je tvoře těm hodotam TK, které svědčí ve prospěch. lada výzamost (= pravděpodobost chyby. druhu: pravděpodobost že zamíteme, ačkol platí. Pravděpodobost chyby. druhu (β: pravděpodobost, že ezamíteme, ačkol eplatí. Síla testu (- β: pravděpodobost správého zamítutí (schopost testu zamítout eplatou. Stadardí testovací postup: - obecý, bez ohledu a kokrétí typ testu; - provádí se v ěkolka krocích.. Formulace hypotéz a.. Volba testového krtéra: zvolíme vhodou charakterstku, jejíž rozděleí př platost záme. 3. Vymezeí krtckého oboru: je omeze kvatly rozděleí TK př platost (= krtcké hodoty. 4. Výpočet hodoty TK z výběrových dat. 5. Formulace závěru o výsledku testu: velm důležté, exstují dvě možost. I. TK leží v krtckém oboru (TK Є W: pak zamítáme, tz. prokázal jsme. II. TK leží v oboru přjetí (TK Є V: pak ezamítáme, tz. eprokázal jsme. Některé parametrcké testy hypotéz Test parametru µ ormálího rozděleí. Formulace hypotéz : µ = µ a µ µ oboustraá alteratví hypotéza b µ µ pravostraá alteratví hypotéza c µ < µ levostraá alteratví hypotéza

2 . Volba testového krtéra Rozlšujeme tř případy: záme rozptyl ZS σ x µ σ = N(, ezáme rozptyl ZS σ ; výběr má velký rozsah = x µ N(, 3 ezáme rozptyl ZS σ ; výběr má malý rozsah t = x µ t ( 3. Staoveí krtckého oboru Pro případy a a růzé typy alteratvích hypotéz : a W ; u u b W ; u W ; u Pro případ 3 a růzé typy alteratvích hypotéz : a W t; t t ( t t ( W t; t t ( t; t t ( b c W Test parametru π alteratvího rozděleí Je třeba mít k dspozc výběr dostatečě velkého rozsahu; to je zajštěo splěím podmíky π ( π. : π = π a π π b π π c π < π 9.

3 . p π = N(, π ( π 3. a W ; u u b W ; u W ; u Test parametru σ ormálího rozděleí. σ = : σ : σ : σ : σ < a σ b σ c σ. V prax je častější případ, kdy ezáme parametr µ, proto se a ěj zaměříme. χ ( = χ ( σ b W χ ; χ χ 3. a W χ ; χ χ ( χ χ ( ( χ ; χ χ ( W Test shody rozptylů dvou ormálích rozděleí. Formulace hypotéz : σ = σ a σ σ b σ σ c σ < σ 3

4 . Volba testového krtéra F s = F ( ; 3. Staoveí krtckého oboru a W F; F F ; F F W F; F F ; ( ( ; b ( W F; F F ( ; Některé eparametrcké testy χ - test dobré shody - Slouží k ověřeí shody mez teoretckým a emprckým rozděleím. - Je použtelý je v případě velkých výběrů. - Předpokladem testu je možost roztřídt výsledky áhodého výběru do určtého počtu (k dsjuktích tříd podle ějakého zaku. - Nemáme-l k dspozc dostatečě velký výběr, použjeme místo tohoto testu Kolmogorovův-Smrovův test. Požadovaý rozsah výběru: Je uté, aby rozsah výběru zajstl, že bude dostatečé obsazeí ve všech skupách, do chž je soubor roztřídě, tj. π 5 pro =,,..., k., Někdy bývá tato podmíka formulováa mírěj : ve všech třídách musí platt π a alespoň v 8 % tříd π. musí platt 5,,! Nejsou-l výše uvedeé podmíky splěy, je třeba sloučt ěkteré třídy (apř. sousedí č věcě příbuzé. Teto test se používá ve stuacích : I. udává proporce četostí v jedotlvých skupách (může být formulováo tutvě. II. přepokládá, že ZS má rozděleí určtého typu: a Pokud udává typ rozděleí jeho parametry, jedá se o úplě specfkovaý model. b Pokud udává pouze typ rozděleí bez specfkace parametrů, jde o eúplě specfkovaý model. Ad I., π = pro =,,..., k. : π : o. kde G = k ( π, π =, χ ( k... emprcká (pozorovaá, výběrová četost π... teoretcká (hypotetcká četost, tj. teoretcké obsazeí -té třídy., 4

5 3. W G; G χ ( k Ad II. a - tj. úplě specfkovaý model. : výběr pochází z Po ( (apříklad : o! Další postup (tj. body. a 3. vz. případ I. Ad II. b - tj. eúplě specfkovaý model. : výběr pochází z Po (apříklad : o. G = k ( π, π =, χ ( k p kde p... počet parametrů rozděleí, které odhadujeme. 3. W G; G χ ( k p Závěr testu: Pokud TK Є W, zamítáme (tz. přjímáme. V tom případě eí rozděleí, specfkovaé ulovou hypotézou, vhodým modelem pro emprcká data. Shoda obou rozděleí (teoretckého a emprckého se a hladě výzamost epotvrdla. 5

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hyotéz Př statstckých šetřeích se často setkáváme s roblémy tohoto druhu () Máme zjstt, zda dva daé vzorky ocházejí z téhož ZS. () Máme rozhodout, zda rozdíly hodot růměrů (res. roztylů)

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Testování hypotéz. 3.1 Základní pojmy a obecný postup při testování

Testování hypotéz. 3.1 Základní pojmy a obecný postup při testování Lekce 3 Testováí hypotéz Vlajkovou lodí matematcké statstky jsou techky testováí hypotéz. Formulace hypotéz a jejch ověřováí jsou základím mechasmem postupu ldského pozáí. Pokud jsou formace, potřebé k

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

12. Neparametrické hypotézy

12. Neparametrické hypotézy . Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Úvod do teorie měření

Úvod do teorie měření Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

Téma 4: Výběrová šetření

Téma 4: Výběrová šetření Výběrová šetřeí Téma : Výběrová šetřeí Předáška Výběrové charaktertky a jejch rozděleí Výzam a druhy výběrového šetřeí tattcké šetřeí úplé vyčerpávající eúplé výběrové výběrové šetřeí aha o to aby výběrový

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

Testujeme hypotézu: proti alternativě. Jednoduché třídění: Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

Katedra pravděpodobnosti a matematické statistiky. χ 2 test nezávislosti

Katedra pravděpodobnosti a matematické statistiky. χ 2 test nezávislosti Katedra pravděpodobosti a matematické statistiky Oborový semiář χ 2 test ezávislosti Petr Míchal 27 listopadu 2017 Situace 2 X {1,, I}, Y {1,, J} Jsou X a Y ezávislé? K dispozici máme áhodý vyběr (X 1,

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

7. cvičení 4ST201-řešení

7. cvičení 4ST201-řešení cvičící 7. cvičeí 4ST21-řešeí Obsah: Bodový odhad Itervalový odhad Testováí hypotéz Vysoká škola ekoomická 1 Úvod: bodový a itervalový odhad Statistický soubor lze popsat pomocípopisých charakteristik

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah

Více

Odhady a testy hypotéz o regresních přímkách

Odhady a testy hypotéz o regresních přímkách Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Náhodné jevy, jevové pole, pravděpodobnost

Náhodné jevy, jevové pole, pravděpodobnost S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem

Více

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE. Dvouvýběrové parametrické a neparametrické testy

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE. Dvouvýběrové parametrické a neparametrické testy MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE Dvouvýběrové parametrcké a eparametrcké testy Bro 5/6 Zuzaa Berá Prohlášeí Prohlašuj, že jsem tuto bakalářskou prác vypracovala samostatě za

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc. Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,

Více

STATISTICKÁ ANALÝZA. Doc. RNDr. Zden k Karpíšek, CSc. P ehledový u ební text pro doktorské studium. Vysoké u ení technické v Brn

STATISTICKÁ ANALÝZA. Doc. RNDr. Zden k Karpíšek, CSc. P ehledový u ební text pro doktorské studium. Vysoké u ení technické v Brn Vysoké ueí techcké v Br Fakulta strojího žeýrství STATISTICKÁ ANALÝZA Doc. RNDr. Zdek Karpíšek, CSc. Pehledový uebí tet pro doktorské studum BRNO 008 Pedášející: Doc. RNDr. Zdek Karpíšek, CSc. Cetrum pro

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

Kvantily. Problems on statistics.nb 1

Kvantily. Problems on statistics.nb 1 Problems o statistics.b Kvatily 5.. Nechť x a, kde 0 < a

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení Odhad parametrů ormálího rozděleí a testy hypotéz o těchto parametrech * Věty o výběru z ormálího rozděleí Nechť, X, X je áhodý výběr z rozděleí N ( µ, ) X, Ozačme výběrový průměr a = X = i = X i i = (

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

Kapitola 6. : Neparametrické testy o mediánech

Kapitola 6. : Neparametrické testy o mediánech Kapitola 6 : Neparametrické testy o mediáech Cíl kapitoly Po prostudováí této kapitoly budete umět - provádět testy hypotéz o mediáu jedoho spojitého rozložeí - hodotit shodu dvou ezávislých áhodých výběrů

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

B a k a l ářská práce

B a k a l ářská práce Vysoká škola ekoomcká v Praze Fakulta maagemetu v Jdřchově Hradc B a k a l ářská práce Iveta Doležalová 007 Vysoká škola ekoomcká v Praze Fakulta maagemetu v Jdřchově Hradc Katedra maagemetu formací Katedra

Více

7 LIMITNÍ VĚTY. Čas ke studiu kapitoly: 70 minut. Cíl:

7 LIMITNÍ VĚTY. Čas ke studiu kapitoly: 70 minut. Cíl: 7 LIMITNÍ VĚTY Čas ke studu kaptoly: 70 mut Cíl: o prostudováí tohoto odstavce budete umět formulovat a používat lmtí věty aproxmovat já rozděleí rozděleím ormálím - 96 - Výklad: V této kaptole adefujeme

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d. ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH ÚVOD... 3 PROGRAMOVÉ PROSTŘEDKY PRO STATISTICKÉ VÝPOČTY... 4. TABULKOVÝ PROCESOR EXCEL...4.

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Statistika - vícerozměrné metody

Statistika - vícerozměrné metody Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Domácí práce z p edm tu D01M6F Statistika

Domácí práce z p edm tu D01M6F Statistika eské vysoké u eí techcké Fakulta Elektrotechcká Domácí práce z p edm tu D0M6F Statstka Test dobré shody Bradá Marek 4.ro ík Ak. rok 004/00, LS M6F Test dobré shody Obsah Zadáí...3 Hypotéza...3 3 Zj t é

Více

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat 4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

7. Odhady populačních průměrů a ostatních parametrů populace

7. Odhady populačních průměrů a ostatních parametrů populace 7. Odhady populačích průměrů a ostatích parametrů populace Jak sme zišťovali v kapitole. e možé pro každou populaci sestroit možství parametrů, které i charakterizue. Pro účely základího pozáí e evýzaměší

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více