PRAVDĚPODOBNOST A STATISTIKA

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "PRAVDĚPODOBNOST A STATISTIKA"

Transkript

1 PRAVDĚPODOBOST A STATISTIKA

2 Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl: D( X ) 0 Pozámka: Jedá se o kostatí áhodou roměou.

3 Alterativí (Beroulliovo) rozděleí A() áhodá veličia X s alterativím rozděleím X ~A(), (0, 1) má základí rostor Z = {0,1} a ravděodobostí fukci: (0) (1) 1 Charakteristiky: středí hodota: E( X ) roztyl: D( X ) (1 ) koeficiet šikmosti: A 3 ( X ) 1 2 (1 ) koeficiet šičatosti: A 4 ( 1 6 (1 ) X ) (1 )

4 Klasické rozděleí (diskrétí rovoměré rozděleí) C() áhodá veličia X s klasickým rozděleím X~C(), má základí rostor Z = {1, 2,, } a ravděodobostí fukci: ( ) 1 Z Charakteristiky: středí hodota: roztyl: mediá: 1 E( X ) D( X ) 12 1 liché ~ 2 sudé 2 koeficiet šikmosti: A3 ( X ) 0

5 Biomické rozděleí Bi(,) áhodá veličia X s biomickým rozděleím X~Bi(,),, (0, 1) má základí rostor Z = {0,1, 2,, } a ravděodobostí fukci: ( ) (1 ) Charakteristiky: středí hodota: E( X ) roztyl: mediá: koeficiet šikmosti: koeficiet šičatosti: D( X ) (1 ) ~ ( 1) 1, ( 1) 1 2 A3( X ) (1 ) 1 6 (1 ) A4 ( X ) (1 )

6 Biomické rozděleí Bi(,) Biomické rozděleí výběr s vraceím ázev rozděleí ochází ze skutečosti, že ravděodobosti () jsou čley biomického rozvoje 1 1 ( (1 )) ( )

7 Biomické rozděleí Bi(,0.5) středí hodota: roztyl: E( X ) 2 D( X ) 4 koeficiet šikmosti: A3 ( X ) 0 koeficiet šičatosti: A X 2 4( )

8 Biomické rozděleí Bi(,) Ad2) Pro áhodou roměou oisující očet adutí 6 ři 10okusech je jedo zda hodím jedou kostkou 10 - A(1/6), ebo 10 kostkami 1 -Bi(10,1/6).

9 Zobecěé biomické rozděleí Bi( 1,, k, 1,, k ) áhodé veličiy X 1,, X k s zobecěým biomickým rozděleím, 1,, k, 1,, k (0, 1) fukci: Charakteristiky: ( k i1 i! k i1 i 1 1,, k ) 2 1! 2! k! 1 má ravděodobostí k středí hodota: E( X,, X k ) ( 1,, 1 k )

10 Geometrické rozděleí Ge() áhodá veličia X s geometrickým rozděleím X~Ge(), (0, 1) má základí rostor Z = {0,1, 2,,, } a ravděodobostí fukci: ( ) (1 ) Pokus oakujeme tak dlouho, až astae úsěch. () je ravděodobost, že rovedeme eúsěšých okusů. Charakteristiky: středí hodota: roztyl: mediá: E( X ) 1 1 D( X ) 2 ~ 0

11 egativí biomické (Pascalovo) rozděleí B(k,) áhodá veličia X s egativě biomickým rozděleím X~B(k,), k, (0, 1) má základí rostor Z = {0,1, 2,,, } a ravděodobostí fukci: k 1 k ( ) (1 ) Pokus oakujeme tak dlouho, až astae k úsěchů. () je ravděodobost, že rovedeme eúsěšých okusů řed k-tým úsěšým okusem. Charakteristiky: středí hodota: roztyl: mediá: E( X ) k 1 1 D( X ) k 2 ~ k 1

12 Pascalovo (egativí biomické ) rozděleí Ps(k,) Pojmeováo odle Blaise Pascala ( ).

13 Zobecěé Pascalovo (egativí biomické) rozděleí Ps(k,) áhodá veličia X s ascalovým rozděleím X~Ps(k,), kr, k >0, (0, 1) má základí rostor Z = {0,1, 2,,, } a ravděodobostí fukci: k 1 k ( ) (1 ) kde místo faktoriálu oužijeme Gama fukci: k k t! ( k 1) t e dt 0

14 áhodá veličia X s hyergeometrickým rozděleím X~H(,M,), kde libovolé celé číslo, 1 M <, 1 <, základí rostor Z = {ma{0, M-+},, mi{m,} ravděodobostí fukci: Hyergeometrické rozděleí H(,M,) Charakteristiky: středí hodota: roztyl: mediá: M M ) ( M X E ) ( 1 1 ) ( M M X D , ~ M M S1P áhodá roměá vybraá rozděleí

15 Hyergeometrické rozděleí H(,M,) Hyergeometrické rozděleí výběr bez vraceím

16 Poissoovo rozděleí Po(λ) áhodá veličia X s Poissoovým rozděleím X~Po(λ), λ R, λ>0 má základí rostor Z = {0,1, 2,,, } a ravděodobostí fukci: ( ) e! Charakteristiky: středí hodota: roztyl: E(X ) D(X ) mediá: ~ 1, koeficiet šikmosti: A3 ( X ) 1

17 Poissoovo rozděleí Po(λ) Poissoovo rozděleí rozděleí, které oisuje výskyt áhodého jevu v ředem daém časovém úseku. λ lze ovažovat jako růměrý očet událostí za časový úsek

18 Poissoův roces zkoumá ravděodobost, že se v časovém itervalu délky t stae rávě událostí. Podmíky: 1) očet událostí v disjukích itervalech jsou ezávislé 2) ravděodobost, že se během itervalu délky dt stae rávě jeda událost je rova λdt 3) ravděodobost, že se během itervalu délky dt stae dvě a více událostí je rova 0dt Hustota ravděodobosti, že se v časovém itervalu délky t stae rávě událostí. t t f ( t) e! Pro evý časový iterval délky t ozačme: λt=τ f ( t) t e!

19 Aroimace diskrétích rozděleí Za vhodých odmíek lze jedo rozděleí ahradit jiým aroimace Biomického rozděleí: V rai můžeme Biomické rozděleí Bi(,)ahradit Poissoovým Po(λ) za těchto odmíek: < 0.1 a > 30. Tedy λ=. Bi(,) Po() Chyba aroimace je < 10-2.

20 Aroimace diskrétích rozděleí Za vhodých odmíek lze jedo rozděleí ahradit jiým aroimace Biomického rozděleí:

21 Aroimace diskrétích rozděleí Aroimace Hyergeometrického rozděleí: Biomické rozděleí výběr s vraceím Hyergeometrické rozděleí výběr vez vracei Pokud budeme mít velký očet rvků a očet vybraých rvků bude malý, tak výsledek okusu bude málo ovlivě vraceím. Pokud 0,1, tak lze Hyergeometrické rozděleí ahradit Biomickým. M H(,M,) Bi(, )

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení S1P áhodá roměá vybraá rozděleí PRAVDĚPODOBOST A STATISTIKA áhodá roměá vybraá rozděleí S1P áhodá roměá vybraá rozděleí Vybraá rozděleí diskrétí P Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

PRAVDĚPODOBNOST A STATISTIKA. Metoda momentů Metoda maximální věrohodnosti

PRAVDĚPODOBNOST A STATISTIKA. Metoda momentů Metoda maximální věrohodnosti SP3 Odhady arametrů PRAVDĚPODOBNOST A STATISTIKA Metoda momentů Metoda maimální věrohodnosti SP3 Odhady arametrů Metoda momentů Vychází se z: - P - ravděodobnostní rostor - X je náhodná roměnná s hustotou

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

PRAVDĚPODOBNOST ... m n

PRAVDĚPODOBNOST ... m n RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout rocesy, ovlivěé áhodou. Náhodé okusy:

Více

můžeme toto číslo považovat za pravděpodobnost jevu A.

můžeme toto číslo považovat za pravděpodobnost jevu A. RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout áhodé rocesy. Náhodé okusy: rocesy,

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Statistika pro metrologii

Statistika pro metrologii Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy Pravděpodobost a statistika Výpisky z cvičeí Odřeje Chocholy Ja Štětia 9. listopadu 9 Cviˇceí 3.9.9 Úloha: Máme 4 kostky. Ω = {a, b, c, d}, Ω = 6 4 A = 6 5 4 3 P(A) = 6 5 4 3 6 4 Naejvýš l kostek: m...

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evroský sociálí od Praha & EU: Ivestujeme do vaší budoucosti eto materiál vzikl díky Oeračímu rogramu Praha Adatabilita CZ..7/3../3354 Maažerské kvatitativí metody II - ředáška č.3 - Queuig theory teorie

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

Testujeme hypotézu: proti alternativě. Jednoduché třídění: Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

7. Odhady populačních průměrů a ostatních parametrů populace

7. Odhady populačních průměrů a ostatních parametrů populace 7. Odhady populačích průměrů a ostatích parametrů populace Jak sme zišťovali v kapitole. e možé pro každou populaci sestroit možství parametrů, které i charakterizue. Pro účely základího pozáí e evýzaměší

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národí iformačí středisko pro podpor jakosti Kozltačí středisko statistických metod při NIS-PJ Výpočet koeficietů reglačích diagramů pro obecé riziko Ig. Václav Chmelík, CSc Ústav strojíreské techologie,

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmp.felk.cvut.cz/ avara/stat 5. říja 018 Obsah 1 O

Více

6. P o p i s n á s t a t i s t i k a

6. P o p i s n á s t a t i s t i k a 6. P o p i s á s t a t i s t i k a 6.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národí iformačí středisko ro odoru kvality Testováí zůsobilosti a výkoosti výrobího rocesu RNDr. Jiří Michálek, Sc Ústav teorie iformace a automatizace AVČR UKAZATELE ZPŮSOBILOSTI 3 UKAZATELE ZPŮSOBILOSTI

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/psi 13 1 016 Obsah 1 O čem to

Více

můžeme toto číslo považovat za pravděpodobnost jevu A.

můžeme toto číslo považovat za pravděpodobnost jevu A. RAVDĚODOBNOST - matematická discilína, která se zabývá studiem zákonitostí, jimiž se řídí hromadné náhodné jevy - vytváří ravděodobnostní modely, omocí nichž se snaží ostihnout náhodné rocesy. Náhodné

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmp.felk.cvut.cz/ avara/stat 5. říja 018 Obsah 1 O

Více

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d. ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

3. VYBRANÉ ZÁKONY ROZDĚLENÍ POUŽÍVANÉ VE SPOLEHLIVOSTI

3. VYBRANÉ ZÁKONY ROZDĚLENÍ POUŽÍVANÉ VE SPOLEHLIVOSTI 3. VYBRANÉ ZÁKONY ROZDĚLENÍ POUŽÍVANÉ VE SPOLEHLIVOSTI Po úspěšém a aktivím absolvováí této KAPITOLY Budete umět: rozpozat průběh a vlastosti, uvést základí vztahy charakteristik rozděleí spojité áhodé

Více

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x), a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte

Více

n-rozměrné normální rozdělení pravděpodobnosti

n-rozměrné normální rozdělení pravděpodobnosti -rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/mvt http://cmpfelkcvutcz/ avara/psi

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

Náhodné jevy a pravděpodobnost

Náhodné jevy a pravděpodobnost Lekce Náhodé jevy a pravděpodobost Výklad pravděpodobosti musí začít evyhutelě od základích pojmů Pravděpodobost, velmi zjedodušeě řečeo, pojedává o áhodých jevech (slově vyjádřeých výsledcích áhodých

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobost a matematická statistika Mirko Navara Cetrum strojového vímáí katedra kyberetiky FEL ČVUT Karlovo áměstí, budova G, místost 104a http://cmpfelkcvutcz/ avara/mvt http://cmpfelkcvutcz/ avara/psi

Více

ILUSTRACE ZÁKONA VELKÝCH ČÍSEL POMOCÍ SIMULACÍ THE ILLUSTRATION OF THE LAW OF LARGE NUMBERS BY SIMULATIONS

ILUSTRACE ZÁKONA VELKÝCH ČÍSEL POMOCÍ SIMULACÍ THE ILLUSTRATION OF THE LAW OF LARGE NUMBERS BY SIMULATIONS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS ILUSTRACE ZÁKONA VELKÝCH ČÍSEL POMOCÍ

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Náhodný výběr, statistiky a bodový odhad

Náhodný výběr, statistiky a bodový odhad Lekce Náhodý výběr, statistiky a bodový odhad Parametr rozděleí pravděpodobosti je ezámá kostata, jejíž přímé určeí eí možé. Nástrojem pro odhad ezámých parametrů je áhodý výběr a jeho charakteristiky

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

11 TESTOVÁNÍ HYPOTÉZ Základní pojmy

11 TESTOVÁNÍ HYPOTÉZ Základní pojmy EOVÁNÍ YPOÉZ. Základí ojmy V Kaitole jsme se sezámili s ostuem, jak odhadout ezámé arametry základího souboru oulace v říadě, že emáme k disozici všechy jeho rvky, ale je jeho část - áhodý výběr. V raxi

Více

(3n + 1) 3n Příklady pro samostatnou práci

(3n + 1) 3n Příklady pro samostatnou práci ... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM

Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM Kombiatorika- 3 doc. RNDr. Josef Kolář, CSc. Katedra teoretické iformatiky FIT České vysoké učeí techické v Praze c Josef Kolar, 2011 Základy diskrétí matematiky, BI-ZDM ZS 2011/12, Lekce 8 Evropský sociálí

Více

PoznÁmky k přednášce

PoznÁmky k přednášce NMSA331 Matematická statistika 1 PozÁmky k předášce Naposledy upraveo de 15. úora 2019. Katedra pravd podobosti a matematické statistiky Matematicko-fysikálí fakulta Uiversity Karlovy Teto učebí text představuje

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více