Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace"

Transkript

1 Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu je ma fa m Klascká defnce pravděpodobnost: pro m je f A P(A) pravděpodobnost výskytu jevu A.Platí pro statstcky stablní jevy, kdy pro m konverguje f A ke konstantě P(A).

2 Základní pojmy II Dskrétní náhodná proměnná: nabývá pouze jstých hodnot 0,,,... K. Pravděpodobnostní funkce P( X ) udává pravděpodobnost s jakou X nabývá hodnoty právě. echť n je počet realzací př hodnotě " " a je celkový počet realzací. Pak n PX ( ) Platí, že ΣP(X) F() P () o () o Základní pojmy III Spojtá náhodná proměnná: nabývá lbovolné hodnoty z defnčního ntervalu. P( X + d) f() d F() f() Tedy pro spojté náhodné velčny ny P(X) 0 Hustota pravděpodobnost platí pro ní P ( X + d) f( ) d ormalzační podmínka f() d () o () o P d f() není pravděpodobnost, ale

3 Základní pojmy IV Hustota pravděpodobnost f() (probablty densty functon) Vlastnost f():. kladná f() 0. normalzovaná f() d Dstrbuční funkce F() (cumulatve densty functon). Vlastnost F():. Ohrančená zdola F(- ) 0, a shora F( ). eklesající F(+d) F() 3. P(X ) F() Platí, že P( X < ) F( ) - F( ) Základní pojmy IV Kvantlová funkce Q(u) pro 0 u<. ~ α ~ α Qu ( ) F ( ) f( d ) ~ α Q(α) označení α-kvantl. Platí, že P(X < ) α Kvantlová funkce je nverzní k dstrbuční Q(u) F - (). f() F() Q(u) ~ α α α ~ α ~ α u

4 K MK f( ) d M K Základní pojmy V Specální momenty: Střední hodnota (matematcké očekávání) M E(X) μ První centrální moment C 0 Rozptyl C D(X) σ Vlastnost střední hodnoty: E(X) M (μ) Konstanty A, B E(A X ± B) A.E(X) ± B Vlastnost rozptylu: D(X) C σ D(X) E((X - E(X)) E(X - X E(X) + E(X) ) E(X ) - E(X) Konstanty A, B K CK ( M ) f( ) d ( M C K ) D(A X ± B) A D(X) K K Autokorelace ε ρ *ε + u Modely měření I ( ) D ( ) Adtvní model μ + ε Heteroskedastcta kde μ skutečná hodnota a ε je náhodná dh( ) D( h( )) * σ chyba s rozdělením f (ε ) d Du Předpoklady o chybách: střední hodnota je nulová, E( ε ) 0 rozptyl je konstantní D( ε ) σ chyby jsou vzájemně nezávslé E( ε * ε j ) 0 chyby mají normální rozdělení ε (0, σ ) Pokud tyto předpoklady o chybách platí, že výsledky měření mají normální rozdělení. ( μ, σ ) σ σ ρ Dh ( ( )) h()ln() σ δ δ.. varační koefcent

5 Modely měření II Multplkatvní model ln() ln( μ ) + ε kde předpoklady o náhodných chybách ε jsou stejné jako pro advní model Pokud platí, že ln( ) ( ν, τ ) má výsledek měření lognormální rozdělení s parametry μ ep( ν + τ / ) σ μ (ep( τ ) ) Geometrcký průměr μ * ep( ε) μ ep( E(ln( ))) P( μ ) P( ep( ν )) P(ln( ) ν ) 0.5 G med ( ) G ep( ν ) μ G ep( ν ) Škmost 0.35 a vyšší ukazuje na nutnost použít tří parametrový model s prahovou hodnotou A Multplkatvní model -analýza Logartmcká transformace adtvních dat ln( ) ln( μ + ε ) ln μ + ln( + ε / μ) A () () + * ( n) ( n) ~ 0.5 * ~ Odhady parametrů ˆ ν ln ˆ μ ep( ˆ ν + ˆ τ / ) τˆ (ln ˆ) ν μ D( ˆ) μ Rozptyly [ep( τ ) ] D( ˆ μ ) E( ˆ μ ) [ep( τ / ) ] G G ln( ) ln( μ + ε ) ln μ + ε / μ 0.5 * ( ε / μ) E(ln ) ln μ 0.5* δ D(ln ) * δ 4 6 δ +.5 * δ * δ * δ E( ˆ μ G ) ep( ν + τ δ σ / μ + ( ε / μ) 3 / ) / 3 ( ε / μ) / 4...

6 Přesnost a správnost měření přesná a nesprávná nepřesná a správná nepřesná a nesprávná přesná a správná Vybočující hodnoty Momentová metoda: pro vybočující hodnoty j platí * K. s* j c [ ] K c g *.log( / 0) *, s*.. odhady vypočtené z čstých dat. g *... odhad škmost z čstých dat ormalní rozdělení g 3 K c.89 Rovnoměrné rozdělení g.8 Kc.77 Laplaceovo rozdělení g 6 K c.09 g *. ( ) [ ( ) ] 4

7 Bnomcké rozdělení Bnomcké rozdělení B(,p)) Bnomcké rozdělení má náhodná velčna X vyjadřující počet výskytu jevu A (příznvý výsledek) v nezávslých pokusech. Pravděpodobnost výskytu jevu A (příznvý výsledek) v jednom pokusu je p a jevu A (nepříznvý výsledek) je q - p. Pravděpodobnostní funkce P Dstrbuční funkce ( ) * p *( p) F ( ) * p *( p) 0 Střední hodnota: E(X) p Rozptyl: D(X) p ( - p) X p je počet příznvých jevů v nezávslých pokusech p p Possonovo rozdělení Possonovo rozdělení Po(λ) má náhodná velčna X, která je rovna počtu jevů vdaném časovém nebo prostorovém ntervalu Pravděpodobnostní funkce P ( ) λ * e λ Dstrbuční funkce F( ) λ * e 0 Střední hodnota E(X) λ Rozptyl D(X) λ λ kde je artmetcký průměr počtu jevů v daném časovém nebo prostorovém ntervalu λ /! /!

8 ormované normální rozdělení U (0,) P( -.65 U.65 ) 0.90 f() 0.05 P( -.98 U.98 ) 0.95 f(3) 0.04 P( -3 U 3 ) f(4) ormální rozdělení ormální rozdělení ((μ, σ ): Hustota pravděpodobnost f( ) e * π Dstrbuční funkce μ F ( ) Φ( ) Φ( ) Střední hodnota: E(X) μ Rozptyl: D(X) σ Škmost: Špčatost: g 0 g 3 μ Σ / ( ) σ σ * π ( μ) / σ y ep( ) dy 0, , Matematcká statstka Populace X vzorkování Výběr { },... f(, μ, σ, g, g ) f ( ), μ, σ, g, g Symbol " " označuje odhady parametrů nebo hustoty pravděpodobnost zdat. a Bodové odhady Parametr a, odhad je náhodná proměnná. Vychýlení odhadu b a E( ) a Pokud je b 0 jde o nevychýlený odhad. Rozptyl odhadu D( ) a je charakterzací "přesnost odhadu"

9 ormální rozdělení μ Parametr odhad rozptyl Parametr σ odhad rozptyl s D ( ) σ Ds ( ) * σ 4 Intervalové odhady X d PL ( a L) α "IS": nterval obsahující se zadanou pravděpodobností (-α) parametr a. ( - α) koefcent konfdence, statstcká jstota (0.99, 0.95) α hladna významnost (α 0.0, 0.05) X μ X + d f( ) a Jednostr. f( ) a Oboustr. α α / α / větší užší IS větší σ šrší IS větší α užší IS L - a L L al

10 Platí pouze pro normální rozdělení! Konstrukce IS data... (μ, σ ) t ( μ)/ s. Studentovo rozdělení, d.f. - χ ( ). s / σ Chí-kvadrát rozdělení, d.f. - P( t ( μ)/ s. t ) α α/ α/ t./ s μ + t./ s α/ α/ f(t) v00 v5 v t f (a) α/ α/ -t -α/ 0 t -α/ Interpretace IS 95% nterval spolehlvost. správná nterpretace 95% confdence se týká četnost jevu A Jev A: X.96 σ / n < μ < X +.96 σ / P(A) % všech ntervalů spolehlvost obsahuje µ. n

11 Testování hypotéz I Hypotéza: předpoklad o rozdělení a jeho parametrech (H) Testování: rozhodnutí o H na základě nformací z výběru H 0 : základní (bázová) hypotéza H A : alternatvní (přjatá, když nelze přjmout H 0 ) Testovací statstka: T(,... n ) f(t) H a : μ > μ 0 A H 0 : μ μ 0 H a : μ μ 0 A H 0 (α 0.05) H A H A α 0.05 C C C Testování hypotéz II Chyba prvního druhu [α]: H 0 platí, ale nebyla testem přjata Chyba druhého druhu [β]: H 0 neplatí, ale byla testem přjata f(t) H 0 H A A R T -α α β α F β -β

12 Test o střední hodnotě σ : neznámé ulová hypotéza: H 0 : μ μ 0 μ Testová statstka: t 0 s / n Alternatvní Hypotéza H H H a a a : μ > μ : μ < μ : μ μ ether Oblast zamítnutí t t t t t t α, n α, n α /, n or t t α /, n Testy ormální data

13 6% 4% % Škály měření: 6% 6% 9% A. omnální ( jmenná) B. Ordnální ( pořadová) C. Kardnální ( číselná) 7% 6% 7% 0% % 8% 9% Uspořádání dle množství nformací o měřených znacích. Škála vyššího typu zahrnuje škály předcházející omnální škála ejslabší typ a... a... a k počty prvků K kategore n n n k absolutní četnost n Operace: určení různost resp. rovnost ( ) a a a a Relatvní četnost n n n f f k f k Rozložení souboru na dsjunktní část, mez kterým nejsou žádné relace. Třídy (část) mohou být lbovolně pojmenovány. (Čísla jména). Vhodné pouze pro klasfkac objektů. Požadavky: jednoznačnost zařazení, estence, rozlštelnost Relatvní četnost f - odhad pravděpodobnost p Interval spolehlvost f ± u * f ( f )/ α /

14 66 výrobků: pravděpodobnost nevyhovujícího 0.5 Zpracování dat Testy pravděpodobnost (podílů) ulová 60 hypotéza: H 0 : p p 0 40 pˆ p Testová 0 0 statstka : z 00 leží pv 0( tomto p0) / nntervalu. p Alternatvní Hypotézy Oblast nepřjetí n H a : p > p0 z zα 05. ( 05. ) H : p < p z z H a a : p 0. p Smulated Data: p ether 0.44 z Jde o bnomcké rozdělení a musí platt 95% of výběrových podílů z α or z z α / α / Proporton of Successes p ± u /* p ( p )/ α u -α/,98~ np0 0 and n( p0) Relatvní četnost f - odhad pravděpodobnost p Zpracování dat Testy pravděpodobnost (podílů) ulová hypotéza: H 0 : p p 0 Testová statstka : z Alternatvní Hypotézy H H H a a a : : : p > p < p p p p ( p Jde o bnomcké rozdělení a musí platt p 0 pˆ p ether 0 0 ) / n Oblast nepřjetí z z z z α z z α or z z α / α / np0 0 and n( p0) 0.

15 Ordnální škála a... a... a k počty prvků k kategore n n n k absolutní četnost a) Určení různost a nerovnost n b) Určení vztahu větší/menší > < kumulatvní četnost F F f F f + f j F k Dohoda: od nejslabšího Příklad: stupnce jakost k nejlepšímu. Obecně bodování nebo známkování Stálost ( - 5 ) Světlo ( - 8 ) Vzhled ( - 5 ) j evyhovující 0 A Podprůměrná B Průměrná C Dobrá 3 D Vynkající 4 E f j Charakterzace rozdělení Poloha:. Medánová kategore ( kategore, kde je 50 % dat) ME... [F ME - < 0.5 ; F ME 0.5]. Medán ordnálního znaku ~ FMe Me+ 05. f Me c Kde c je část dat medánové kategore zařazených k horní polovně

16 Vlastnost ordnálního medánu ~ 05. K ~ 05. f ~. K f k 05 ~ Me f f 05. ~ 05 Me K Me+ Hodnota. ukazuje posun 50 %-ního dělícího bodu, čím je vyšší, tím se data koncentrují ve vyšších kategorích. Charakterzace rozdělení Varablta: Dskrétní ordnální varace dorvar K K K dor var. F. ( F). F F Vlastnost 0 dor var ( K ) / dor var 0 pro případ, že f dor var ( K ) / pro případ, že f f K 05. Čím více jsou rozptýlená data, tím je dorvar větší

17 Interval spolehlvost pro populační medán Med Kumulatvní četnost α005. Pro Z α Určení kategore D, kde leží Výpočet korekcí * FD FD d f D Interval spolehlvost * * ( FD FH) F D * h * *, ( FD FH), 05. ± α.. Z n Určení kategore H, kde leží F * H f F DH H SM D d HM H h S Med H M M F H * F D * 05.. * H Příklad F D H d 07. h Subjektvní hodnocení omaku tetle (00 dívek) S M H M třída n f F evyhovující Podprůměrný Průměrný Dobrý Vynkající Medán: Me 4 ~ Med 4083.

18 Tř stavy Znaménková a preferenční data Asymetre přrozená A* případ f + A* - případ f - A* 0 případ f + f - A* > 0 převaha + A* < 0 převaha - A* f+ f Zhoršení eutrální Zlepšení n -, f - n 0, f 0 n +, f + Asymetre vzhledem ke krajům A případ f - 0 A - případ f + 0 A 0 případ f - f + A > 0 převaha + A < 0 převaha - f + f A f + f + ( > 30; n -, n + > 5) Interval spolehlvost pro A eparametrcký postup A D tgh( a ) A tgh( a ) D H P( A < A < A ) α ad a Z α/. sa ah a + Z α /. s a f + ln f s + A n+ n A < A < D A H D H a H

19 Příklad Vlv změny střhu na pocty př nošení u 48 respondentů n 7 0 f 0,354 0,438 0,08 A a s A ln a D a H AD tgh( 033. ) 03. A H tgh ( ) < A < 058. edošlo k výraznému zlepšení! Kardnální škála ejslnější typ (číselná proměnná) - metrka. Jsou přípustné artmetrcké operace. Intervalová škála Určená s přesností do lneární transformace Yc.+b. Příklad: měření teploty. Poměrová škála má přrozený pořádek (b 0) a je určena s přesností do proporconální transformace Y a. Příklad: fyzkální měření (délka, hmotnost, pevnost,...) Většna užtných vlastností je v kardnálních škálách.

20 Zpracování dat ekategorzovaná data { },... je náhodný výběr složený z nezávslých prvků homogenní normálně rozdělený Ověření těchto předpokladů (vz ZED) ormalta: Q - Q grafy, vynáší se () prot u P, P /(+) Vybočující hodnoty: metoda barer (vz ZED) Ranktové grafy normální zeškmení vlevo 3 zeškmení vpravo 4dlouhékonce 5 krátké konce () < () <... < () P + Ranktové grafy Q TS (P ) u P kvantly normovaného normálního rozdělení. Apromace () T + u P S Q TS ( P ) ( ) 9,4 * ln(/ P ) P ep( ln(/ P ) 4 + π 3 () u P 5 / ) d 4 u P u P

21 Odhady parametrů Poloha: Rozptýlení: průměr medán ~ rozptyl s 05. směrodatná odchylka s Varační koefcent v s /.00 Pro případ normálního rozdělení dat ~ ( μσ, ) D( ) σ D( ~. 05. ) πσ. 4. σ σ Ds ( ) Ds ( ).( ) + δ.(. + ) Dv ( ) δ. δ..( + ) populační medán μ σ Klascká analýza s a 00. ( - α) % má nterval spolehlvost střední hodnoty s t α/ ( ). μ + t α/ ( ). Varační koefcent v [%] a nterval spolehlvost pro δ asymptotcky v v Z α/. D( v) δ + Z α/. D( v) Účelem je odhad střední hodnoty měřeného parametru a jeho nepřesnost s

22 Robustní analýza Medán ~ 05., robustní odhad rozptylu s R a nterval spolehlvost pro populační medán Med ( k+ ) ( k ) + sr k Z α/. / 4. Z α / Obyčejně se volí α 0.05 ( u - α/..96). Pro nterval spolehlvost je ~ t ( ). s Med ~ + t ( ). s 0. 5 α/ R 0. 5 α/ R Etrémně malé výběry ( 0) Vždy vysoká nejstota velký vlv vybočujících měření.. Určí se z {, } %-ní IS. 7 μ +. 7 Obecně se místo koefcentu.7 dává koefcent závslý na typu rozdělení 3. Určí se odhad *. 95 %-ní IS pro μ je (průměr ze dvou nejblžších hodnot) s s * 43. μ *

23 Etrémně malé výběry ( >4) Hornův postup: (pro malé výběry ) { } -,,... Pořádkové statstky { () } {,3,,6,.5} {,.5,,3,6} Hloubka pvotů: nt [( + ) / nt ] [(( + ) / ) + ] H H Kvantly K Dolní pvot: D () pro různá (H) K () Horní pvot: U ( + -H ) Poloha D + U PL Rozptýlení RL U D %-ní IS střední hodnoty P R. K ( ) μ P + R. K ( ) L L L L Příklad Měření pevnost ba vláken. { },... 5 {0.53, 0.677, 0.7, 0.065, 0.848} { () } {0.065, 0.7, 0.53, 0.677, 0.848} H D ( ) 07. U ( 6 ) P L 044. R L L K ( 5) 094. U.33 μ. 8

24 Kategorzovaná data Vznkají tříděním číselných údajů do ntervalů, které jsou třídam nového znaku. Jednotlvým třídám přřazujeme číselné hodnoty j (střed ntervalu,...). Dskrétní, kardnální, četností kategorzace, pseudo kategorzace. Třída j n j f j F j Délka vláken Třídy přrozené číselné vyjádření (počet vad) sloučení údajů {,,... K } {,,... K} A a a a K < K Sloučení údajů: n n n 3 * průměr D, H D * třídní nterval H H D * D 3 3 * D 3 * D + ( H D )/ ( D + H )/ délka třídy Δ H D

25 Volba kategorzace Parametry: D, K,Δ D + K Δ >. ( ) [ ] 0. Δ ( ) 0 < ( ) Δ k Δ D > 00 K nt [ 0.log( ) ] f() K nt [. ] < 00 K nt [ ln( ) ] Unversálně K nt [ 64..( ) 04. ] stejné plochy delší kratší kratší delší ekonstatní délka tříd Ekv pravděpodobnostní prncp. Charakterstky polohy Me... medánová kategore a) Konstantní Δ Medán ~.. /. F Me Me + Δ Δ b) obecně: l ~ FMe Me ΔMe. Medán f 05. K K Artmetcký průměr: f. * n. * * f * f ( A) mn pro A K Geometrcký průměr: (kladná data velký rozsah) K K C f j G ( j*) ep f.ln( *) j

26 Směrodatná odchylka s s ( f. * ) Dorvar Rozptyl Vlastnost: Charakterstky rozptýlení Dor var. Δ. F.( F ) K K. s 0...všechna data v jedné třídě f. Mamálně s ma ( K* - * ) / 4 f f K Čím větší s tím více se data vzdalují od. K s f.( * ) ( f. * ) K Špčatost Charakterstky asymetre A s f.( * ) s. s 3 f() A s > 0 A s 0 symetre A s > 0 zeškmené vpravo A s < 0 zeškmené vlevo f() A s < 0

27 n df d f d f f( ) f( ) n!. ( ) ( ) d!. ( ) ( ).. d n!. ( ) ( ) d epřímá měření Měření{ },..., s Výsledek y f () f (. ) ne-lneární známá funkce průměr-plocha Odhad y, s y Taylorův rozvoj : v okolí df() Ef ( ) y f d E d f() () () + ( ) +. E ( ) d 0 s d f() y f() +.. df( ) s Df ( ( ) f( ) ) s D y. ( ) d d df( ). s d s y df( ) d. s n Příklad Měříme poloměr r (,..., ) a máme určt plochu příčného řezu ze znalost, r A π.r A p π. r + π. sr π.( r + s s 4. π. r. s y varační koefcent v s Ap π. r.( + v ) r ) s r Obecně D ( ) E ( ) E ( ) E( ) D( ) + E( ) přesné měření v 0. S 0.. π. r nepřesné měření v 05. S 5.. π. r

28 Měření Případ více proměnných, s,..., m s m známe f (,..., ) m Vektor průměrů (,,..., m ) s m m f ( ) f ( ) f ( ) f ( ) + ( ) + ( ) + m m f ( ) + ( )( j j ) +... j> m m m f( ) f y f( ) +. ( ) s + cov(, j ) y j> j m f( ) m m f f m m ( ) ( ) f( ) s j s s +...cov(, ) +.. j j> j j> j běžně se zanedbává j Příklad Měření hmotností g a délek L vláken. Účelem je výpočet jemnost př znalost: T g, s, L, s g L Měření jsou nekorelovaná cov (g,l) 0 g g T L L s g +. L.( + v 3 L) L Střední hodnota jemnost souvsí pouze s přesností měření délky

29 Transformace dg( σ y) dat d Potřeba: Stablzace rozptylu Symetre rozdělení Přblížení k normaltě Předpoklad: ne-konstantní rozptyl, zeškmené rozdělení a ne normalta jsou důsledkem nelneární transformace F(y) původně normálních dat ) ( mean(') Rozptyl měření Transformace y g() f ( ) UCL' konst. F[mean(')] mean() g( ) c * σ ( ) f( ) F - () d f ( ) F(UCL') Konstantní relatvní chyba měřění δ σ / σ δ f() d g( ) c * ln( ) Optmální je log transformace Mocnnná transformace Pokud mělo symetrcké rozdělení s konstantním rozptylem σ,je rozdělení y f( ) P nesymetrcké s nekonstantním rozptylem. P P σ y σ P σ.( )... P P P P P P P y +.( ) s +.( )... v. Použtí symetrzační transformace: Z f( ) / P y / Z. Z y P y /. P P P...artmetcký průměr P -...harmoncký průměr P...kvadratcký průměr

30 Výpočty souvsející s jemností I -tce úseků příze délky L o hmotnostech g. Úsek.L má hmotnost g g v Cm. L g Běžný (nesprávný postup) Cm L CmA g v v v Cm [ v ] v v L L C ma.. C m + g. g + ( g g) / g g Výpočty souvsející s jemností II v Symetrzační transformace Cm ~ g P Cm v Cm v H Cm H v Cm. / v L. Cm g g. L v L g g v C m v L Cm. L g

31 Výpočty souvsející s jemností III Přepočet jemností: v Cm 000 g T ~ g L T OpětjeP - g T. L v Cm H T 000. T 000 T ení vhodný artmetcký průměr v 000 CmA T A g. L T T artmetcký průměr P Příklad Tkalcovská příručka Příze úkolem je odhadnout Čm T 5 te, v Cm A v Cm H Taylor T [ vt ] v Cm T A nesprávně vysoké rozdíl

32 Teore měření Relace vstup výstup y μ + ε { } známe y P y f() y,,... y, s s měřítko přesnost měření P y μ měřítko správnost S y y y y μ μ μ μ S 0 S 0 P-S P-S P-S P-S Typy odchylek Absolutní odchylka Relatvní odchylka Δ y μ Δ / y ( 00) δ Δ ΔS + Δ y μ + y y Obecně: Δ, Δy, ρ... korelační koefcent δ ( ρ / 3 Δ 0 Δ S Δ.. systematcká odchylka.. náhodná odchylka.. přesnost přístroje, lmtní

33 P Vyjadřuje třídu přesnost přístroje Adtvní chyby I Chyby nulové hodnoty y nterval neurčtost Δ δ δ Δ 0 Δ 0 Δ 0 Δ 0 L... dolní lmta pracovního ntervalu U... horní lmta pracovního ntervalu R... pracovní rozmezí u - L Redukovaná relatvní odchylka δ R Δ 0 / R Adtvní chyby II P Práh ctlvost: vstupní hodnota c, pro kterou je δ (00%) δr R Δ0 Δ0( Rδ0) c, δ c Rδ0 00 δ p c s c Chceme malé hodnoty δ pro malé (p 0. (0.05)). Spodní mez pracovního ntervalu Δ 0 / p / p S Omezené použtí přístrojů ( jen pro velká )! c

34 Multplkatvní chyby P (nekonstatní přesnost) Chyby ctlvost: y nterval neurčtost Δ δ δ s. δ s Třída přesnost Mezní přesnost Absolutní odchylka δ S konst. P Δ 0 δ S. U Δ P. Kombnované chyby y nterval neurčtost Δ δ P Δ δ Δ 0 + δ S δ Δ 0 /+ δ δ + R δ R 0 S / S δ0 Δ 0 /R Třída přesnost P /P : δ, P δ 0 δ p + p ( / ), Δ p + p ( ) U δ s S U

35 Odhady chyb měření I Momentové Δ,,... σ Δ Pro Δ0 (střední hodnota chyb E( Δ ) 0 ) je σδ σ, σ ( ) Pravděpodobnostní nterval Chyby mají symetrckou hustotu pravděpodobnost s E( Δ ) 0 Hustota pravděpodobnost f ( Δ) a dstrbuční funkce F( Δ). P f() -k.σ 0 k.σ μ+ Δ, f( ) f( Δ+ μ) P ( kσ Δ kσ) Fk ( σ) F( kσ) F( kσ) Pro řadu rozdělení platí, že pro P 0.9 je k.64!!! Odhady chyb měření II Kvantlové: Interkvantlová odchylka V tomto ntervalu leží P (-q). 00% chyb. f() q/ -q q/ ~ / q ~ q/ K ( ~ ~ )/ q q/ q/ P... statstcká jstota Mezní chyba měření Střední chyba Pro normální rozdělení (vhodné pro přesná měření). Pravděpodobná chyba: Pro normální rozdělení σ Δ Chyba pro neznámé rozdělení: P 0.9 Pro řadu rozdělení σ σ σ ΔP K q σ Δ05 ( ~ ~ )/... σδ σ σ Δ0 683 ( ~ ~ )/... σ Δ 09 ( ~ ~ )/ Δ σ

36 Odhady chyb měření III Sčítání dílčích chyb σδ 09. σδ09. () Obecně platí σδ P H σ H fce( P, g ) Šíření chyb měření σ V () σ + cov(, j) m j> H Z 3 [ g ] ( 6. ) / log log P σ... chyba způsobená -tým zdrojem a) nezávslé chyby σv σ geometrcký průměr () b) lneárně závslé (cov σ σ j) σv σ artmetcký průměr () Z Měřcí přístroje τ... rozptyl měřcího přístroje σ... rozptyl měřeného materálu * f ( y) f (, y) f ( ) d f( y) ( μσ, + τ ) Ctlvost měřcích přístrojů y Δy α y S b f( ) ( μ, σ ) f * (, y) (, τ ) f() f*(,y) f(y) M y Δ y dy lm Δ 0 Δ d m m y tg α Δ [jednotky] * [délka]

37 Sérová Paralelní Kompenzační vazba Kombnace prvků f f [ n,... [ ( )]] y f f f f S n... dy dy dy dyn,... d d dy dy f y n f y Σ y... f n y n y Σ f f f n () S y S [ ] n y n y f f ( y), y S d dy S S. S [ S S ] dy d / Kompenzační vazba je případ vážení! Moduly Přepočet délkových jednotek na fyzkální ma m * ma ma ( m ) + m mn mn * mn * * mn [J] Obyčejně * * ma mn * ma 0 m, m mn mn * mn * ma [d] Modul m [J / d]... násobení

38 Porovnání dvou měřcích přístrojů Mějme dva měřcí přístroje a a b pro měření téže velčny. O měřené velčně předpokládáme, že má normální rozdělení (μ, σ ) Přístroj a měří se systematckou chybou (vychýlením ) B a a chyby měření ε a mají normální rozdělení (μ, σ a ) Přístroj b měří se systematckou chybou (vychýlením ) B b a chyby měření ε b mají normální rozdělení (μ, σ b ) a b Modely měření: Přístroj a y Ba + + εa Přístroj b y z z Bb + +ε b Pak platí ekorelované chyby měření cov( ε, ε ) cov( ε, ) cov( ε, ) 0 a b a b Ey ( ) B a +μ D(y) σ + σ a Ez ( ) B b +μ D(z) σ + σ b cov( z, y) E( z* y) E( z) * E( y) B * B + μ * ( B + B ) + E( ) ( B μ)*( B μ) E( ) E ( ) σ a b a b a b Kovarance mez výsledky dvou přístrojů je tedy rovna rozptylu měřené velčny

39 Zpracování dat Měření na stejných vzorcích (y,z )... Standardním způsobem lze určt yzs,, z, sy a kovaranc czy (, ) ( y y)*( z z) Odhad varablty měřeného materálu σ je σ czy (, ) Rozdíl systematckých odchylek Odhad chyby měření pro přístroj a Odhad chyby měření pro přístroj b B B y z a b s y c ( z, y) s c ( z, y) Pro odhad střední hodnoty musíme znát alespoň jedno vychýlení nebo předpokládat, že jedno vychýlení je zanedbatelné. apř. B a 0. μ y B z y σ a σ b z b Testy I Porovnání přesnost přístrojů: H0:σa σb tj. oba přístroje jsou stejně přesné Pomocné velčny u y + z Ba + Bb + * + εa + ε b u y z B B + ε ε a b a b Snadno se určí, že D u) 4 * σ + σ + σ D(v) σ + σ cov(, ) σ σ ( a b a b Pro korelační koefcent platí, že ρ(, ) uv a b σa σb uv a b a b 4 *( σ + σ + σ )*( σ + σ )

40 Testy II Test hypotézy H0: ρ ( u, v) 0 je shodný s testem hypotézy H0:σa σb Za předpokladu normalty lze pak použít testovací statstku ρ ( uv, )* T ρ ( uv, ) Velčna T má za předpokladu platnost hypotézy H o Studentovo rozdělení s - stupn volnost. Pomocí proměnné v lze testovat hypotézu H0: v 0, což odpovídá hypotéze o stejném vychýlení obou přístrojů H0 : Ba Bb S využtím standardního t testu lze dospět ke statstce v * ( Ba Bb Tv )* σ v σ + σ * σ a b Velčna T v má za předpokladu platnost hypotézy H 0 Studentovo rozdělení s - stupn volnost. Testy III Test hypotézy, že je jeden z přístrojů přesný. Pro případ hypotézy a b (σ resp. σ 0) Pro případ hypotézy tvar H 0 a :σ 0 σσ a b ( σ ) C0 *ln[ σ *( σ + σ * σ a a b má testovací statstka Velčna C 0 má za předpokladu platnost hypotézy H 0 rozdělení χ s jedním stupněm volnost (platí, že 384 ) χ ]

41 KALIBRACE Typcký problém př nemožnost přímého měření y... nesnadno měřtelná (hledaná) velčna (T - target) Koncentrace, teplota, omak, vlhkost.... snadno měřtelný sgnál (M - measurement ) Elektrcké napětí, proud, vzdálenost,.... Postup př kalbrac a) Sestavení kalbračního modelu Kalbrační vzorky... esnadná měření y y... y n f(y) Snadná měření... n b) Použtí kalbračního modelu (výpočet predkce ) neznámý vzorek y známé měření y f - ()

42 Typy kalbrace C - kalbrace ( y... determnstcké ) f ( y, a) +... (nutná nverze př predkc ) ε σ y ce I- kalbrace (... determnstcké) y f (, b) + ε... σ y y y n (přímá predkce ) 0 - kalbrace ( obě proměnné jsou náhodné) y y y f ( + ε, b) + ε... P σ / σ P... mnmalzace kolmých vzdáleností (je třeba znát poměr rozptylů P) Modely působení poruch y G( f (, b), ε ) y adtvní.... y f (, b) + ε multplkatvní.... ln y ln f (, b) +ε λ ( ) ( λ obecné (mocnnné).... y f ) (, b) +ε

43 Kalbrační přímka I Výchozí data ( y, ),..., n Standardní výpočty parametrů n, y, sy, s, C(, y) ( y y)( ) n C - kalbrace a + a y+ ε, ε ( 0, σ ) 0 C(, y) MČ odhad + ( y y ) s y a y C(,)/ y sy, a 0 a y Predkce y /, a a a y y sy 0 ce + C(, y) ( ) Kalbrační přímka II I - kalbrace ε ε 0 σ y y y y b + b +, (, ) 0 MČ odhad (přímo predkce ) y n Cy (, ) Cy (, ) y y ( ), n + b s s Pro známé P C y /σ O - kalbrace σ c RSC n [ ( (, )) ] sy Ps y0 y Θ+ sy C y Θ + P ( ), Θ Cy (, )

44 Porovnání C a I kalbrace Platí, že ( y y) abs( y y) < abs( y y) n n ce σ e b sy n ( ) + b n sy ( y y) K < a) y n je blíže k centru než y ce, b) pro σ c 0 je K a, y n y ce c) I - kalbrace lépe vysthuje chování dat v oblast centra (, y) a C - kalbrace na krajích, d) pro je I - kalbrace lepší v oblast MSE E ( y y ) y e y e ( y s + σ / b ; y+ s + σ / b ) ce y Příklad C - kalbrace y, ce I - kalbrace y n číslo měření výsledek y měření 5 4 6,5 3 4,5 6, , ,5 7 6, , ,75 0, ,5 9,5 0,5 3 0,5

45 Kalbrační přímky Ym Xm S y S 6.07 C(,y) dm.377 dh I kalbrace C kalbrace Výběr typu kalbrace Proměnná (M) : obyčejně dost přesně stanovená (elektrcká velčna), ε zahrnuje především neuvažované proměnné (teplota,...) σ... může být nekonstantní Proměnná y (T): určená z eterních nformací (jné přístroje, etalony,... ), ε y zahrnuje chyby měření, σ y.... je obyčejně rostoucí funkcí y. Poměr rozptylů P σ y / σ se může měnt v mezích (0, ). I- nebo C- na základě rozptylů nebo použtí kalbrace.

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ 1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ Účele ěření je stanovení velkost ěřené velčny, charakterzující určtou specfckou vlastnost. Specfkace ěřené velčny ůže vyžadovat údaje o dalších

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x).

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x). 3. FUNKCE NÁHODNÉ VELIINY as ke studu: 40 mnut Cíl: Po prostudování této kaptol budete umt transformovat náhodnou velnu na náhodnou velnu Y, je l mez tmto náhodným velnam vzájemn jednoznaný vztah VÝKLAD

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

- 1 - Zdeněk Havel, Jan Hnízdil. Cvičení z Antropomotoriky. Obsah:

- 1 - Zdeněk Havel, Jan Hnízdil. Cvičení z Antropomotoriky. Obsah: - - Zdeněk Havel, Jan Hnízdl Cvčení z Antropomotorky Obsah: Úvod... S Základní charakterstky statstckých souborů...3 S Charakterstka základních výběrových technk a teoretcká rozložení četností...9 S 3

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

Pracovní list č. 3: Pracujeme s kategorizovanými daty

Pracovní list č. 3: Pracujeme s kategorizovanými daty Pracovní lt č. 3: Pracujeme kategorzovaným daty Cíl cvčení: Tento pracovní lt je určen pro cvčení ke 3. a. přednášce předmětu Kvanttatvní metody B (.1 Třídění tattckých dat a. Číelné charaktertky tattckých

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc.

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc. Unverzta Pardubce Fakulta ekonomcko-správní Modelování predkce časových řad návštěvnost web domény pomocí SVM Bc. Vlastml Flegl Dplomová práce 2011 Prohlašuj: Tuto prác jsem vypracoval samostatně. Veškeré

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Souhrnné výsledky za školu

Souhrnné výsledky za školu XYZ třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre směrodatná odchylka skóre x geometrie funkce algebra třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat Vojěch Janoušek: III. Sascké zpracování a nerpreace analyckých da Úvod III. Zpracování a nerpreace analyckých da Sascké vyhodnocení analyckých da Zdroje chyb, přesnos a správnos analýzy Sysemacké chyby,

Více

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH THE CHOICE OF EVALUATION CRITERIA IN PUBLIC PROCUREMENT Martn Schmdt Masarykova unverzta, Ekonomcko-správní fakulta m.schmdt@emal.cz Abstrakt: Článek zkoumá

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI PŘEDNÁŠKA 7 Definice: Mechanické vlastnosti materiálů - odezva na mechanické působení od vnějších sil: 1. na tah 2. na tlak 3. na ohyb 4. na krut 5. střih F F F MK F x F F F MK 1. 2. 3. 4. 5. Druhy namáhání

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

ZNALECKÝ POSUDEK. č. 101-31/99. na dendrochronologický rozbor dřevěných stavebních konstrukcí domu Vračovice č.p.2, okr.

ZNALECKÝ POSUDEK. č. 101-31/99. na dendrochronologický rozbor dřevěných stavebních konstrukcí domu Vračovice č.p.2, okr. ZNALECKÝ POSUDEK č. 101-31/99 na dendrochronologcký rozbor dřevěných stavebních konstrukcí domu Vračovce č.p.2, okr. Ústí nad Orlcí Posudek s vyžádal: SOVAMM, společnost pro obnovu vesnce a malého města

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více