Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Rozměr: px
Začít zobrazení ze stránky:

Download "Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace"

Transkript

1 Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu je ma fa m Klascká defnce pravděpodobnost: pro m je f A P(A) pravděpodobnost výskytu jevu A.Platí pro statstcky stablní jevy, kdy pro m konverguje f A ke konstantě P(A).

2 Základní pojmy II Dskrétní náhodná proměnná: nabývá pouze jstých hodnot 0,,,... K. Pravděpodobnostní funkce P( X ) udává pravděpodobnost s jakou X nabývá hodnoty právě. echť n je počet realzací př hodnotě " " a je celkový počet realzací. Pak n PX ( ) Platí, že ΣP(X) F() P () o () o Základní pojmy III Spojtá náhodná proměnná: nabývá lbovolné hodnoty z defnčního ntervalu. P( X + d) f() d F() f() Tedy pro spojté náhodné velčny ny P(X) 0 Hustota pravděpodobnost platí pro ní P ( X + d) f( ) d ormalzační podmínka f() d () o () o P d f() není pravděpodobnost, ale

3 Základní pojmy IV Hustota pravděpodobnost f() (probablty densty functon) Vlastnost f():. kladná f() 0. normalzovaná f() d Dstrbuční funkce F() (cumulatve densty functon). Vlastnost F():. Ohrančená zdola F(- ) 0, a shora F( ). eklesající F(+d) F() 3. P(X ) F() Platí, že P( X < ) F( ) - F( ) Základní pojmy IV Kvantlová funkce Q(u) pro 0 u<. ~ α ~ α Qu ( ) F ( ) f( d ) ~ α Q(α) označení α-kvantl. Platí, že P(X < ) α Kvantlová funkce je nverzní k dstrbuční Q(u) F - (). f() F() Q(u) ~ α α α ~ α ~ α u

4 K MK f( ) d M K Základní pojmy V Specální momenty: Střední hodnota (matematcké očekávání) M E(X) μ První centrální moment C 0 Rozptyl C D(X) σ Vlastnost střední hodnoty: E(X) M (μ) Konstanty A, B E(A X ± B) A.E(X) ± B Vlastnost rozptylu: D(X) C σ D(X) E((X - E(X)) E(X - X E(X) + E(X) ) E(X ) - E(X) Konstanty A, B K CK ( M ) f( ) d ( M C K ) D(A X ± B) A D(X) K K Autokorelace ε ρ *ε + u Modely měření I ( ) D ( ) Adtvní model μ + ε Heteroskedastcta kde μ skutečná hodnota a ε je náhodná dh( ) D( h( )) * σ chyba s rozdělením f (ε ) d Du Předpoklady o chybách: střední hodnota je nulová, E( ε ) 0 rozptyl je konstantní D( ε ) σ chyby jsou vzájemně nezávslé E( ε * ε j ) 0 chyby mají normální rozdělení ε (0, σ ) Pokud tyto předpoklady o chybách platí, že výsledky měření mají normální rozdělení. ( μ, σ ) σ σ ρ Dh ( ( )) h()ln() σ δ δ.. varační koefcent

5 Modely měření II Multplkatvní model ln() ln( μ ) + ε kde předpoklady o náhodných chybách ε jsou stejné jako pro advní model Pokud platí, že ln( ) ( ν, τ ) má výsledek měření lognormální rozdělení s parametry μ ep( ν + τ / ) σ μ (ep( τ ) ) Geometrcký průměr μ * ep( ε) μ ep( E(ln( ))) P( μ ) P( ep( ν )) P(ln( ) ν ) 0.5 G med ( ) G ep( ν ) μ G ep( ν ) Škmost 0.35 a vyšší ukazuje na nutnost použít tří parametrový model s prahovou hodnotou A Multplkatvní model -analýza Logartmcká transformace adtvních dat ln( ) ln( μ + ε ) ln μ + ln( + ε / μ) A () () + * ( n) ( n) ~ 0.5 * ~ Odhady parametrů ˆ ν ln ˆ μ ep( ˆ ν + ˆ τ / ) τˆ (ln ˆ) ν μ D( ˆ) μ Rozptyly [ep( τ ) ] D( ˆ μ ) E( ˆ μ ) [ep( τ / ) ] G G ln( ) ln( μ + ε ) ln μ + ε / μ 0.5 * ( ε / μ) E(ln ) ln μ 0.5* δ D(ln ) * δ 4 6 δ +.5 * δ * δ * δ E( ˆ μ G ) ep( ν + τ δ σ / μ + ( ε / μ) 3 / ) / 3 ( ε / μ) / 4...

6 Přesnost a správnost měření přesná a nesprávná nepřesná a správná nepřesná a nesprávná přesná a správná Vybočující hodnoty Momentová metoda: pro vybočující hodnoty j platí * K. s* j c [ ] K c g *.log( / 0) *, s*.. odhady vypočtené z čstých dat. g *... odhad škmost z čstých dat ormalní rozdělení g 3 K c.89 Rovnoměrné rozdělení g.8 Kc.77 Laplaceovo rozdělení g 6 K c.09 g *. ( ) [ ( ) ] 4

7 Bnomcké rozdělení Bnomcké rozdělení B(,p)) Bnomcké rozdělení má náhodná velčna X vyjadřující počet výskytu jevu A (příznvý výsledek) v nezávslých pokusech. Pravděpodobnost výskytu jevu A (příznvý výsledek) v jednom pokusu je p a jevu A (nepříznvý výsledek) je q - p. Pravděpodobnostní funkce P Dstrbuční funkce ( ) * p *( p) F ( ) * p *( p) 0 Střední hodnota: E(X) p Rozptyl: D(X) p ( - p) X p je počet příznvých jevů v nezávslých pokusech p p Possonovo rozdělení Possonovo rozdělení Po(λ) má náhodná velčna X, která je rovna počtu jevů vdaném časovém nebo prostorovém ntervalu Pravděpodobnostní funkce P ( ) λ * e λ Dstrbuční funkce F( ) λ * e 0 Střední hodnota E(X) λ Rozptyl D(X) λ λ kde je artmetcký průměr počtu jevů v daném časovém nebo prostorovém ntervalu λ /! /!

8 ormované normální rozdělení U (0,) P( -.65 U.65 ) 0.90 f() 0.05 P( -.98 U.98 ) 0.95 f(3) 0.04 P( -3 U 3 ) f(4) ormální rozdělení ormální rozdělení ((μ, σ ): Hustota pravděpodobnost f( ) e * π Dstrbuční funkce μ F ( ) Φ( ) Φ( ) Střední hodnota: E(X) μ Rozptyl: D(X) σ Škmost: Špčatost: g 0 g 3 μ Σ / ( ) σ σ * π ( μ) / σ y ep( ) dy 0, , Matematcká statstka Populace X vzorkování Výběr { },... f(, μ, σ, g, g ) f ( ), μ, σ, g, g Symbol " " označuje odhady parametrů nebo hustoty pravděpodobnost zdat. a Bodové odhady Parametr a, odhad je náhodná proměnná. Vychýlení odhadu b a E( ) a Pokud je b 0 jde o nevychýlený odhad. Rozptyl odhadu D( ) a je charakterzací "přesnost odhadu"

9 ormální rozdělení μ Parametr odhad rozptyl Parametr σ odhad rozptyl s D ( ) σ Ds ( ) * σ 4 Intervalové odhady X d PL ( a L) α "IS": nterval obsahující se zadanou pravděpodobností (-α) parametr a. ( - α) koefcent konfdence, statstcká jstota (0.99, 0.95) α hladna významnost (α 0.0, 0.05) X μ X + d f( ) a Jednostr. f( ) a Oboustr. α α / α / větší užší IS větší σ šrší IS větší α užší IS L - a L L al

10 Platí pouze pro normální rozdělení! Konstrukce IS data... (μ, σ ) t ( μ)/ s. Studentovo rozdělení, d.f. - χ ( ). s / σ Chí-kvadrát rozdělení, d.f. - P( t ( μ)/ s. t ) α α/ α/ t./ s μ + t./ s α/ α/ f(t) v00 v5 v t f (a) α/ α/ -t -α/ 0 t -α/ Interpretace IS 95% nterval spolehlvost. správná nterpretace 95% confdence se týká četnost jevu A Jev A: X.96 σ / n < μ < X +.96 σ / P(A) % všech ntervalů spolehlvost obsahuje µ. n

11 Testování hypotéz I Hypotéza: předpoklad o rozdělení a jeho parametrech (H) Testování: rozhodnutí o H na základě nformací z výběru H 0 : základní (bázová) hypotéza H A : alternatvní (přjatá, když nelze přjmout H 0 ) Testovací statstka: T(,... n ) f(t) H a : μ > μ 0 A H 0 : μ μ 0 H a : μ μ 0 A H 0 (α 0.05) H A H A α 0.05 C C C Testování hypotéz II Chyba prvního druhu [α]: H 0 platí, ale nebyla testem přjata Chyba druhého druhu [β]: H 0 neplatí, ale byla testem přjata f(t) H 0 H A A R T -α α β α F β -β

12 Test o střední hodnotě σ : neznámé ulová hypotéza: H 0 : μ μ 0 μ Testová statstka: t 0 s / n Alternatvní Hypotéza H H H a a a : μ > μ : μ < μ : μ μ ether Oblast zamítnutí t t t t t t α, n α, n α /, n or t t α /, n Testy ormální data

13 6% 4% % Škály měření: 6% 6% 9% A. omnální ( jmenná) B. Ordnální ( pořadová) C. Kardnální ( číselná) 7% 6% 7% 0% % 8% 9% Uspořádání dle množství nformací o měřených znacích. Škála vyššího typu zahrnuje škály předcházející omnální škála ejslabší typ a... a... a k počty prvků K kategore n n n k absolutní četnost n Operace: určení různost resp. rovnost ( ) a a a a Relatvní četnost n n n f f k f k Rozložení souboru na dsjunktní část, mez kterým nejsou žádné relace. Třídy (část) mohou být lbovolně pojmenovány. (Čísla jména). Vhodné pouze pro klasfkac objektů. Požadavky: jednoznačnost zařazení, estence, rozlštelnost Relatvní četnost f - odhad pravděpodobnost p Interval spolehlvost f ± u * f ( f )/ α /

14 66 výrobků: pravděpodobnost nevyhovujícího 0.5 Zpracování dat Testy pravděpodobnost (podílů) ulová 60 hypotéza: H 0 : p p 0 40 pˆ p Testová 0 0 statstka : z 00 leží pv 0( tomto p0) / nntervalu. p Alternatvní Hypotézy Oblast nepřjetí n H a : p > p0 z zα 05. ( 05. ) H : p < p z z H a a : p 0. p Smulated Data: p ether 0.44 z Jde o bnomcké rozdělení a musí platt 95% of výběrových podílů z α or z z α / α / Proporton of Successes p ± u /* p ( p )/ α u -α/,98~ np0 0 and n( p0) Relatvní četnost f - odhad pravděpodobnost p Zpracování dat Testy pravděpodobnost (podílů) ulová hypotéza: H 0 : p p 0 Testová statstka : z Alternatvní Hypotézy H H H a a a : : : p > p < p p p p ( p Jde o bnomcké rozdělení a musí platt p 0 pˆ p ether 0 0 ) / n Oblast nepřjetí z z z z α z z α or z z α / α / np0 0 and n( p0) 0.

15 Ordnální škála a... a... a k počty prvků k kategore n n n k absolutní četnost a) Určení různost a nerovnost n b) Určení vztahu větší/menší > < kumulatvní četnost F F f F f + f j F k Dohoda: od nejslabšího Příklad: stupnce jakost k nejlepšímu. Obecně bodování nebo známkování Stálost ( - 5 ) Světlo ( - 8 ) Vzhled ( - 5 ) j evyhovující 0 A Podprůměrná B Průměrná C Dobrá 3 D Vynkající 4 E f j Charakterzace rozdělení Poloha:. Medánová kategore ( kategore, kde je 50 % dat) ME... [F ME - < 0.5 ; F ME 0.5]. Medán ordnálního znaku ~ FMe Me+ 05. f Me c Kde c je část dat medánové kategore zařazených k horní polovně

16 Vlastnost ordnálního medánu ~ 05. K ~ 05. f ~. K f k 05 ~ Me f f 05. ~ 05 Me K Me+ Hodnota. ukazuje posun 50 %-ního dělícího bodu, čím je vyšší, tím se data koncentrují ve vyšších kategorích. Charakterzace rozdělení Varablta: Dskrétní ordnální varace dorvar K K K dor var. F. ( F). F F Vlastnost 0 dor var ( K ) / dor var 0 pro případ, že f dor var ( K ) / pro případ, že f f K 05. Čím více jsou rozptýlená data, tím je dorvar větší

17 Interval spolehlvost pro populační medán Med Kumulatvní četnost α005. Pro Z α Určení kategore D, kde leží Výpočet korekcí * FD FD d f D Interval spolehlvost * * ( FD FH) F D * h * *, ( FD FH), 05. ± α.. Z n Určení kategore H, kde leží F * H f F DH H SM D d HM H h S Med H M M F H * F D * 05.. * H Příklad F D H d 07. h Subjektvní hodnocení omaku tetle (00 dívek) S M H M třída n f F evyhovující Podprůměrný Průměrný Dobrý Vynkající Medán: Me 4 ~ Med 4083.

18 Tř stavy Znaménková a preferenční data Asymetre přrozená A* případ f + A* - případ f - A* 0 případ f + f - A* > 0 převaha + A* < 0 převaha - A* f+ f Zhoršení eutrální Zlepšení n -, f - n 0, f 0 n +, f + Asymetre vzhledem ke krajům A případ f - 0 A - případ f + 0 A 0 případ f - f + A > 0 převaha + A < 0 převaha - f + f A f + f + ( > 30; n -, n + > 5) Interval spolehlvost pro A eparametrcký postup A D tgh( a ) A tgh( a ) D H P( A < A < A ) α ad a Z α/. sa ah a + Z α /. s a f + ln f s + A n+ n A < A < D A H D H a H

19 Příklad Vlv změny střhu na pocty př nošení u 48 respondentů n 7 0 f 0,354 0,438 0,08 A a s A ln a D a H AD tgh( 033. ) 03. A H tgh ( ) < A < 058. edošlo k výraznému zlepšení! Kardnální škála ejslnější typ (číselná proměnná) - metrka. Jsou přípustné artmetrcké operace. Intervalová škála Určená s přesností do lneární transformace Yc.+b. Příklad: měření teploty. Poměrová škála má přrozený pořádek (b 0) a je určena s přesností do proporconální transformace Y a. Příklad: fyzkální měření (délka, hmotnost, pevnost,...) Většna užtných vlastností je v kardnálních škálách.

20 Zpracování dat ekategorzovaná data { },... je náhodný výběr složený z nezávslých prvků homogenní normálně rozdělený Ověření těchto předpokladů (vz ZED) ormalta: Q - Q grafy, vynáší se () prot u P, P /(+) Vybočující hodnoty: metoda barer (vz ZED) Ranktové grafy normální zeškmení vlevo 3 zeškmení vpravo 4dlouhékonce 5 krátké konce () < () <... < () P + Ranktové grafy Q TS (P ) u P kvantly normovaného normálního rozdělení. Apromace () T + u P S Q TS ( P ) ( ) 9,4 * ln(/ P ) P ep( ln(/ P ) 4 + π 3 () u P 5 / ) d 4 u P u P

21 Odhady parametrů Poloha: Rozptýlení: průměr medán ~ rozptyl s 05. směrodatná odchylka s Varační koefcent v s /.00 Pro případ normálního rozdělení dat ~ ( μσ, ) D( ) σ D( ~. 05. ) πσ. 4. σ σ Ds ( ) Ds ( ).( ) + δ.(. + ) Dv ( ) δ. δ..( + ) populační medán μ σ Klascká analýza s a 00. ( - α) % má nterval spolehlvost střední hodnoty s t α/ ( ). μ + t α/ ( ). Varační koefcent v [%] a nterval spolehlvost pro δ asymptotcky v v Z α/. D( v) δ + Z α/. D( v) Účelem je odhad střední hodnoty měřeného parametru a jeho nepřesnost s

22 Robustní analýza Medán ~ 05., robustní odhad rozptylu s R a nterval spolehlvost pro populační medán Med ( k+ ) ( k ) + sr k Z α/. / 4. Z α / Obyčejně se volí α 0.05 ( u - α/..96). Pro nterval spolehlvost je ~ t ( ). s Med ~ + t ( ). s 0. 5 α/ R 0. 5 α/ R Etrémně malé výběry ( 0) Vždy vysoká nejstota velký vlv vybočujících měření.. Určí se z {, } %-ní IS. 7 μ +. 7 Obecně se místo koefcentu.7 dává koefcent závslý na typu rozdělení 3. Určí se odhad *. 95 %-ní IS pro μ je (průměr ze dvou nejblžších hodnot) s s * 43. μ *

23 Etrémně malé výběry ( >4) Hornův postup: (pro malé výběry ) { } -,,... Pořádkové statstky { () } {,3,,6,.5} {,.5,,3,6} Hloubka pvotů: nt [( + ) / nt ] [(( + ) / ) + ] H H Kvantly K Dolní pvot: D () pro různá (H) K () Horní pvot: U ( + -H ) Poloha D + U PL Rozptýlení RL U D %-ní IS střední hodnoty P R. K ( ) μ P + R. K ( ) L L L L Příklad Měření pevnost ba vláken. { },... 5 {0.53, 0.677, 0.7, 0.065, 0.848} { () } {0.065, 0.7, 0.53, 0.677, 0.848} H D ( ) 07. U ( 6 ) P L 044. R L L K ( 5) 094. U.33 μ. 8

24 Kategorzovaná data Vznkají tříděním číselných údajů do ntervalů, které jsou třídam nového znaku. Jednotlvým třídám přřazujeme číselné hodnoty j (střed ntervalu,...). Dskrétní, kardnální, četností kategorzace, pseudo kategorzace. Třída j n j f j F j Délka vláken Třídy přrozené číselné vyjádření (počet vad) sloučení údajů {,,... K } {,,... K} A a a a K < K Sloučení údajů: n n n 3 * průměr D, H D * třídní nterval H H D * D 3 3 * D 3 * D + ( H D )/ ( D + H )/ délka třídy Δ H D

25 Volba kategorzace Parametry: D, K,Δ D + K Δ >. ( ) [ ] 0. Δ ( ) 0 < ( ) Δ k Δ D > 00 K nt [ 0.log( ) ] f() K nt [. ] < 00 K nt [ ln( ) ] Unversálně K nt [ 64..( ) 04. ] stejné plochy delší kratší kratší delší ekonstatní délka tříd Ekv pravděpodobnostní prncp. Charakterstky polohy Me... medánová kategore a) Konstantní Δ Medán ~.. /. F Me Me + Δ Δ b) obecně: l ~ FMe Me ΔMe. Medán f 05. K K Artmetcký průměr: f. * n. * * f * f ( A) mn pro A K Geometrcký průměr: (kladná data velký rozsah) K K C f j G ( j*) ep f.ln( *) j

26 Směrodatná odchylka s s ( f. * ) Dorvar Rozptyl Vlastnost: Charakterstky rozptýlení Dor var. Δ. F.( F ) K K. s 0...všechna data v jedné třídě f. Mamálně s ma ( K* - * ) / 4 f f K Čím větší s tím více se data vzdalují od. K s f.( * ) ( f. * ) K Špčatost Charakterstky asymetre A s f.( * ) s. s 3 f() A s > 0 A s 0 symetre A s > 0 zeškmené vpravo A s < 0 zeškmené vlevo f() A s < 0

27 n df d f d f f( ) f( ) n!. ( ) ( ) d!. ( ) ( ).. d n!. ( ) ( ) d epřímá měření Měření{ },..., s Výsledek y f () f (. ) ne-lneární známá funkce průměr-plocha Odhad y, s y Taylorův rozvoj : v okolí df() Ef ( ) y f d E d f() () () + ( ) +. E ( ) d 0 s d f() y f() +.. df( ) s Df ( ( ) f( ) ) s D y. ( ) d d df( ). s d s y df( ) d. s n Příklad Měříme poloměr r (,..., ) a máme určt plochu příčného řezu ze znalost, r A π.r A p π. r + π. sr π.( r + s s 4. π. r. s y varační koefcent v s Ap π. r.( + v ) r ) s r Obecně D ( ) E ( ) E ( ) E( ) D( ) + E( ) přesné měření v 0. S 0.. π. r nepřesné měření v 05. S 5.. π. r

28 Měření Případ více proměnných, s,..., m s m známe f (,..., ) m Vektor průměrů (,,..., m ) s m m f ( ) f ( ) f ( ) f ( ) + ( ) + ( ) + m m f ( ) + ( )( j j ) +... j> m m m f( ) f y f( ) +. ( ) s + cov(, j ) y j> j m f( ) m m f f m m ( ) ( ) f( ) s j s s +...cov(, ) +.. j j> j j> j běžně se zanedbává j Příklad Měření hmotností g a délek L vláken. Účelem je výpočet jemnost př znalost: T g, s, L, s g L Měření jsou nekorelovaná cov (g,l) 0 g g T L L s g +. L.( + v 3 L) L Střední hodnota jemnost souvsí pouze s přesností měření délky

29 Transformace dg( σ y) dat d Potřeba: Stablzace rozptylu Symetre rozdělení Přblížení k normaltě Předpoklad: ne-konstantní rozptyl, zeškmené rozdělení a ne normalta jsou důsledkem nelneární transformace F(y) původně normálních dat ) ( mean(') Rozptyl měření Transformace y g() f ( ) UCL' konst. F[mean(')] mean() g( ) c * σ ( ) f( ) F - () d f ( ) F(UCL') Konstantní relatvní chyba měřění δ σ / σ δ f() d g( ) c * ln( ) Optmální je log transformace Mocnnná transformace Pokud mělo symetrcké rozdělení s konstantním rozptylem σ,je rozdělení y f( ) P nesymetrcké s nekonstantním rozptylem. P P σ y σ P σ.( )... P P P P P P P y +.( ) s +.( )... v. Použtí symetrzační transformace: Z f( ) / P y / Z. Z y P y /. P P P...artmetcký průměr P -...harmoncký průměr P...kvadratcký průměr

30 Výpočty souvsející s jemností I -tce úseků příze délky L o hmotnostech g. Úsek.L má hmotnost g g v Cm. L g Běžný (nesprávný postup) Cm L CmA g v v v Cm [ v ] v v L L C ma.. C m + g. g + ( g g) / g g Výpočty souvsející s jemností II v Symetrzační transformace Cm ~ g P Cm v Cm v H Cm H v Cm. / v L. Cm g g. L v L g g v C m v L Cm. L g

31 Výpočty souvsející s jemností III Přepočet jemností: v Cm 000 g T ~ g L T OpětjeP - g T. L v Cm H T 000. T 000 T ení vhodný artmetcký průměr v 000 CmA T A g. L T T artmetcký průměr P Příklad Tkalcovská příručka Příze úkolem je odhadnout Čm T 5 te, v Cm A v Cm H Taylor T [ vt ] v Cm T A nesprávně vysoké rozdíl

32 Teore měření Relace vstup výstup y μ + ε { } známe y P y f() y,,... y, s s měřítko přesnost měření P y μ měřítko správnost S y y y y μ μ μ μ S 0 S 0 P-S P-S P-S P-S Typy odchylek Absolutní odchylka Relatvní odchylka Δ y μ Δ / y ( 00) δ Δ ΔS + Δ y μ + y y Obecně: Δ, Δy, ρ... korelační koefcent δ ( ρ / 3 Δ 0 Δ S Δ.. systematcká odchylka.. náhodná odchylka.. přesnost přístroje, lmtní

33 P Vyjadřuje třídu přesnost přístroje Adtvní chyby I Chyby nulové hodnoty y nterval neurčtost Δ δ δ Δ 0 Δ 0 Δ 0 Δ 0 L... dolní lmta pracovního ntervalu U... horní lmta pracovního ntervalu R... pracovní rozmezí u - L Redukovaná relatvní odchylka δ R Δ 0 / R Adtvní chyby II P Práh ctlvost: vstupní hodnota c, pro kterou je δ (00%) δr R Δ0 Δ0( Rδ0) c, δ c Rδ0 00 δ p c s c Chceme malé hodnoty δ pro malé (p 0. (0.05)). Spodní mez pracovního ntervalu Δ 0 / p / p S Omezené použtí přístrojů ( jen pro velká )! c

34 Multplkatvní chyby P (nekonstatní přesnost) Chyby ctlvost: y nterval neurčtost Δ δ δ s. δ s Třída přesnost Mezní přesnost Absolutní odchylka δ S konst. P Δ 0 δ S. U Δ P. Kombnované chyby y nterval neurčtost Δ δ P Δ δ Δ 0 + δ S δ Δ 0 /+ δ δ + R δ R 0 S / S δ0 Δ 0 /R Třída přesnost P /P : δ, P δ 0 δ p + p ( / ), Δ p + p ( ) U δ s S U

35 Odhady chyb měření I Momentové Δ,,... σ Δ Pro Δ0 (střední hodnota chyb E( Δ ) 0 ) je σδ σ, σ ( ) Pravděpodobnostní nterval Chyby mají symetrckou hustotu pravděpodobnost s E( Δ ) 0 Hustota pravděpodobnost f ( Δ) a dstrbuční funkce F( Δ). P f() -k.σ 0 k.σ μ+ Δ, f( ) f( Δ+ μ) P ( kσ Δ kσ) Fk ( σ) F( kσ) F( kσ) Pro řadu rozdělení platí, že pro P 0.9 je k.64!!! Odhady chyb měření II Kvantlové: Interkvantlová odchylka V tomto ntervalu leží P (-q). 00% chyb. f() q/ -q q/ ~ / q ~ q/ K ( ~ ~ )/ q q/ q/ P... statstcká jstota Mezní chyba měření Střední chyba Pro normální rozdělení (vhodné pro přesná měření). Pravděpodobná chyba: Pro normální rozdělení σ Δ Chyba pro neznámé rozdělení: P 0.9 Pro řadu rozdělení σ σ σ ΔP K q σ Δ05 ( ~ ~ )/... σδ σ σ Δ0 683 ( ~ ~ )/... σ Δ 09 ( ~ ~ )/ Δ σ

36 Odhady chyb měření III Sčítání dílčích chyb σδ 09. σδ09. () Obecně platí σδ P H σ H fce( P, g ) Šíření chyb měření σ V () σ + cov(, j) m j> H Z 3 [ g ] ( 6. ) / log log P σ... chyba způsobená -tým zdrojem a) nezávslé chyby σv σ geometrcký průměr () b) lneárně závslé (cov σ σ j) σv σ artmetcký průměr () Z Měřcí přístroje τ... rozptyl měřcího přístroje σ... rozptyl měřeného materálu * f ( y) f (, y) f ( ) d f( y) ( μσ, + τ ) Ctlvost měřcích přístrojů y Δy α y S b f( ) ( μ, σ ) f * (, y) (, τ ) f() f*(,y) f(y) M y Δ y dy lm Δ 0 Δ d m m y tg α Δ [jednotky] * [délka]

37 Sérová Paralelní Kompenzační vazba Kombnace prvků f f [ n,... [ ( )]] y f f f f S n... dy dy dy dyn,... d d dy dy f y n f y Σ y... f n y n y Σ f f f n () S y S [ ] n y n y f f ( y), y S d dy S S. S [ S S ] dy d / Kompenzační vazba je případ vážení! Moduly Přepočet délkových jednotek na fyzkální ma m * ma ma ( m ) + m mn mn * mn * * mn [J] Obyčejně * * ma mn * ma 0 m, m mn mn * mn * ma [d] Modul m [J / d]... násobení

38 Porovnání dvou měřcích přístrojů Mějme dva měřcí přístroje a a b pro měření téže velčny. O měřené velčně předpokládáme, že má normální rozdělení (μ, σ ) Přístroj a měří se systematckou chybou (vychýlením ) B a a chyby měření ε a mají normální rozdělení (μ, σ a ) Přístroj b měří se systematckou chybou (vychýlením ) B b a chyby měření ε b mají normální rozdělení (μ, σ b ) a b Modely měření: Přístroj a y Ba + + εa Přístroj b y z z Bb + +ε b Pak platí ekorelované chyby měření cov( ε, ε ) cov( ε, ) cov( ε, ) 0 a b a b Ey ( ) B a +μ D(y) σ + σ a Ez ( ) B b +μ D(z) σ + σ b cov( z, y) E( z* y) E( z) * E( y) B * B + μ * ( B + B ) + E( ) ( B μ)*( B μ) E( ) E ( ) σ a b a b a b Kovarance mez výsledky dvou přístrojů je tedy rovna rozptylu měřené velčny

39 Zpracování dat Měření na stejných vzorcích (y,z )... Standardním způsobem lze určt yzs,, z, sy a kovaranc czy (, ) ( y y)*( z z) Odhad varablty měřeného materálu σ je σ czy (, ) Rozdíl systematckých odchylek Odhad chyby měření pro přístroj a Odhad chyby měření pro přístroj b B B y z a b s y c ( z, y) s c ( z, y) Pro odhad střední hodnoty musíme znát alespoň jedno vychýlení nebo předpokládat, že jedno vychýlení je zanedbatelné. apř. B a 0. μ y B z y σ a σ b z b Testy I Porovnání přesnost přístrojů: H0:σa σb tj. oba přístroje jsou stejně přesné Pomocné velčny u y + z Ba + Bb + * + εa + ε b u y z B B + ε ε a b a b Snadno se určí, že D u) 4 * σ + σ + σ D(v) σ + σ cov(, ) σ σ ( a b a b Pro korelační koefcent platí, že ρ(, ) uv a b σa σb uv a b a b 4 *( σ + σ + σ )*( σ + σ )

40 Testy II Test hypotézy H0: ρ ( u, v) 0 je shodný s testem hypotézy H0:σa σb Za předpokladu normalty lze pak použít testovací statstku ρ ( uv, )* T ρ ( uv, ) Velčna T má za předpokladu platnost hypotézy H o Studentovo rozdělení s - stupn volnost. Pomocí proměnné v lze testovat hypotézu H0: v 0, což odpovídá hypotéze o stejném vychýlení obou přístrojů H0 : Ba Bb S využtím standardního t testu lze dospět ke statstce v * ( Ba Bb Tv )* σ v σ + σ * σ a b Velčna T v má za předpokladu platnost hypotézy H 0 Studentovo rozdělení s - stupn volnost. Testy III Test hypotézy, že je jeden z přístrojů přesný. Pro případ hypotézy a b (σ resp. σ 0) Pro případ hypotézy tvar H 0 a :σ 0 σσ a b ( σ ) C0 *ln[ σ *( σ + σ * σ a a b má testovací statstka Velčna C 0 má za předpokladu platnost hypotézy H 0 rozdělení χ s jedním stupněm volnost (platí, že 384 ) χ ]

41 KALIBRACE Typcký problém př nemožnost přímého měření y... nesnadno měřtelná (hledaná) velčna (T - target) Koncentrace, teplota, omak, vlhkost.... snadno měřtelný sgnál (M - measurement ) Elektrcké napětí, proud, vzdálenost,.... Postup př kalbrac a) Sestavení kalbračního modelu Kalbrační vzorky... esnadná měření y y... y n f(y) Snadná měření... n b) Použtí kalbračního modelu (výpočet predkce ) neznámý vzorek y známé měření y f - ()

42 Typy kalbrace C - kalbrace ( y... determnstcké ) f ( y, a) +... (nutná nverze př predkc ) ε σ y ce I- kalbrace (... determnstcké) y f (, b) + ε... σ y y y n (přímá predkce ) 0 - kalbrace ( obě proměnné jsou náhodné) y y y f ( + ε, b) + ε... P σ / σ P... mnmalzace kolmých vzdáleností (je třeba znát poměr rozptylů P) Modely působení poruch y G( f (, b), ε ) y adtvní.... y f (, b) + ε multplkatvní.... ln y ln f (, b) +ε λ ( ) ( λ obecné (mocnnné).... y f ) (, b) +ε

43 Kalbrační přímka I Výchozí data ( y, ),..., n Standardní výpočty parametrů n, y, sy, s, C(, y) ( y y)( ) n C - kalbrace a + a y+ ε, ε ( 0, σ ) 0 C(, y) MČ odhad + ( y y ) s y a y C(,)/ y sy, a 0 a y Predkce y /, a a a y y sy 0 ce + C(, y) ( ) Kalbrační přímka II I - kalbrace ε ε 0 σ y y y y b + b +, (, ) 0 MČ odhad (přímo predkce ) y n Cy (, ) Cy (, ) y y ( ), n + b s s Pro známé P C y /σ O - kalbrace σ c RSC n [ ( (, )) ] sy Ps y0 y Θ+ sy C y Θ + P ( ), Θ Cy (, )

44 Porovnání C a I kalbrace Platí, že ( y y) abs( y y) < abs( y y) n n ce σ e b sy n ( ) + b n sy ( y y) K < a) y n je blíže k centru než y ce, b) pro σ c 0 je K a, y n y ce c) I - kalbrace lépe vysthuje chování dat v oblast centra (, y) a C - kalbrace na krajích, d) pro je I - kalbrace lepší v oblast MSE E ( y y ) y e y e ( y s + σ / b ; y+ s + σ / b ) ce y Příklad C - kalbrace y, ce I - kalbrace y n číslo měření výsledek y měření 5 4 6,5 3 4,5 6, , ,5 7 6, , ,75 0, ,5 9,5 0,5 3 0,5

45 Kalbrační přímky Ym Xm S y S 6.07 C(,y) dm.377 dh I kalbrace C kalbrace Výběr typu kalbrace Proměnná (M) : obyčejně dost přesně stanovená (elektrcká velčna), ε zahrnuje především neuvažované proměnné (teplota,...) σ... může být nekonstantní Proměnná y (T): určená z eterních nformací (jné přístroje, etalony,... ), ε y zahrnuje chyby měření, σ y.... je obyčejně rostoucí funkcí y. Poměr rozptylů P σ y / σ se může měnt v mezích (0, ). I- nebo C- na základě rozptylů nebo použtí kalbrace.

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček Aplkace L-Ma metody na scntgrafcké vyšetření příštítných tělísek P. Karhan, P. Fala, J. Ptáček Vyšetření příštítných tělísek dagnostka hyperparatyreózy: lokalzace tkáně příštítných tělísek neexstence radofarmaka

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...)

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...) . NÁHODNÁ VELIČINA Průvodce studem V předchozích kaptolách jste se seznáml s kombnatorkou a pravděpodobností jevů. Tyto znalost použjeme v této kaptole, zavedeme pojem náhodná velčna, funkce, které náhodnou

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 8 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 7 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ

PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ JIŘÍ MILITKÝ, Katedra textlních materálů, Techncká unversta v Lberc, MILAN MELOUN, Katedra analytcké cheme, Unversta Pardubce, Pardubce. Úvod Je známo, že měření

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová 2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 9 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 8 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího

Více

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran Elena Melcová, Radmla Stoklasová a Jaroslav Ramík; Statstcké programy TESTOVÁNÍ HYPOTÉZ RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevl jsem pravdu! ale raděj: Objevl jsem jednu z pravd! Chall Gbran Testování hypotéz

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Porovnání GUM a metody Monte Carlo

Porovnání GUM a metody Monte Carlo Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum Zpracování fyzkálních měření Studjní text pro fyzkální praktkum Mlan Červenka, katedra fyzky FEL-ČVUT mlan.cervenka@fel.cvut.cz 3. ledna 03 ObrázeknattulnístraněpocházízknhyogeometraměřeníodJacobaKöbela(460

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ 1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ Účele ěření je stanovení velkost ěřené velčny, charakterzující určtou specfckou vlastnost. Specfkace ěřené velčny ůže vyžadovat údaje o dalších

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%. Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více