MODELOVÁNÍ A SIMULACE

Rozměr: px
Začít zobrazení ze stránky:

Download "MODELOVÁNÍ A SIMULACE"

Transkript

1 MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký model procesu je způsob vyjádření chování procesu (systému) formou matematckých vztahů dynamcké chování je chování procesu (systému) v čase matematcké modely: získané zpracováním expermentů (nduktvní, stochastcké) matematcký pops je formální, systém je považován za černou skříňku získané fyzkální analýzou procesu (deduktvní, determnstcké) matematcký pops vyjadřuje podstatu procesu, vychází z fyzkálních, fyzkálně-chemckých a chemckých zákonů Obecný postup vytváření nduktvních modelů vzruch reálný proces odezva experment odhad chování procesu naměřené časové řady vzruch - odezva formální matematcký vztah s neznámým parametry zpracování exper. dat za účelem určení hodnot parametrů vstupní funkce u(t) vstupní nformace výstupní funkce matematcký model y(t) algortmus řešení výstupní nformace smulační program využtí smulačního programu (pouze v oblast pokryté expermentem) Modelování a smulace 1 / 8

2 vzruch vzruch reálný proces analýza procesu teoretcký model matematcký pops odezva odezva vstupní funkce u(t) vstupní nformace výstupní funkce matematcký model y(t) algortmus řešení výstupní nformace smulační program model nevyhovuje VERIFIKACE model vyhovuje využtí smulačního programu Analýza procesu specfkace dějů probíhajících v procesu a určení jejch podstaty vymezení vlvů působících na proces určení velčn (fyzkálních,...) popsujících proces výběr dílčích dějů a vlvů podstatných pro pops procesu výběr možných zjednodušení a jejch realzace rozhodující pro kvaltu modelu Zásady: -- v úvahách vycházet z účelu vytvářeného modelu -- začínat od co nejjednoduššího modelu teoretcký model Obvyklé zjednodušující předpoklady rozdělení systému na subsystémy zavádění dealzovaných (neexstujících) forem hmoty nezávslost látkových vlastností na stavových velčnách homogenta a sotropnost materálu př současném průběhu pomalého a rychlého děje rychlý děj dosahuje okamžtě rovnovážného stavu zanedbávání ztrát lnearzace nelneárních závslostí používání emprckých vztahů a závslostí zavádění korekčních koefcentů zjednodušování geometrckých proporcí, volba vhodné souřadncové soustavy užtí představy systému se soustředěným parametry Modelování a smulace 2 / 8

3 Matematcký pops výběr matematckého vyjádření vztahů použtých v teoretckém modelu a) defnční rovnce: defnce velčn fyzky, cheme, fyzkální cheme,... b) matematcké vyjádření zákonů: pohybové rovnce rychlostní rovnce rovnovážné rovnce věty (zákony) o zachování vytvoření modelových rovnc a jejch základní kontrola určení podmínek řešení (počátečních, okrajových) rozměrová kontrola všech rovnc matematcký model Řešení modelových rovnc volba metody řešení rovnc matematckého modelu analýza přesnost řešení vytvoření algortmu řešení sestavení a odladění programu pro počítač (ve vhodném smulačním jazyce) defnce souboru vstupních dat a parametrů (velčny, jednotky) smulační program Verfkace modelu kontrola zachovávání ustálených stavů kontrola adekvátnost odezvy na defnovaný vzruch (logckou úvahou na základě fyzkálních představ) kontrola ustálených stavů po odeznění přechodových jevů kontrola reálnost výsledků smulace pro mezní stavy kontrola porovnáním smulovaných časových průběhů se známým daty (získaným expermentálně nebo z lteratury) další možné kontroly (podle povahy modelovaného procesu) použtelný matematcký model (ve formě smulačního programu) Modelování a smulace 3 / 8

4 Vytváření matematckých modelů na základě blancí Základní pojmy okolí systému blancovaná velčna blancovaný systém blanční časový nterval rozhraní základní blanční rovnce: AKUMULACE = VSTUP - VÝSTUP + ZDROJ Vytváření matematckých modelů na základě blancí AKUMULACE = VSTUP - VÝSTUP + ZDROJ AKUMULACE změna množství (zádrže) blancované velčny uvntř blancovaného systému za blanční časový nterval VSTUP (přítok) množství blancované velčny, které za blanční časový nterval vstoupí z okolí přes rozhraní do blancovaného systému VÝSTUP (odtok) množství blancované velčny, které za blanční časový nterval vystoupí z blancovaného systému přes rozhraní do okolí ZDROJ množství blancované velčny, které za blanční časový nterval přeměnou uvntř blancovaného systému vznkne (znaménko +) nebo zankne (znaménko -) Vytváření matematckých modelů na základě blancí Hrance a velkost blancovaného systému systémy se soustředěným parametry blancovaný systém obvykle totožný s modelovaným systémem hrance a geometrcké rozměry se volí podle tvaru a uspořádání modelovaného systému souřadncová soustava se nemusí zavádět systémy s rozloženým parametry pro blancovaný systém se volí jednoduché geometrcké tvary rozměr blancovaného systému ve směru souřadnce, která v popsu vystupuje jako nezávsle proměnná (x) je nfntesmálně malý (dx) souřadncová soustava se zavádí tak, aby pops byl co nejjednodušší Modelování a smulace 4 / 8

5 Vytváření matematckých modelů na základě blancí Blanční časový nterval blance ustáleného stavu systému (pro statcké modely) blanční časový nterval lbovolný (obvykle jednotkový) blance neustáleného stavu systému (pro dynamcké modely) blanční časový nterval nfntesmálně malý ( dt ) Vytváření matematckých modelů na základě blancí Znaménka členů blanční rovnce systémy se soustředěným parametry členy VSTUP a VÝSTUP formulovat jako kladné znaménko členu ZDROJ určt úvahou podle charakteru procesu znaménko členu AKUMULACE pak vychází automatcky systémy s rozloženým parametry ve vybrané souřadncové soustavě zvolt pro každou nezávsle proměnnou kladný směr a důsledně jej dodržovat znaménka členů VSTUP a VÝSTUP, které jsou funkcem souřadnc, pak vycházejí automatcky členy VSTUP a VÝSTUP, které nejsou funkcem souřadnc, formulovat jako kladné znaménko členu ZDROJ určt úvahou podle charakteru procesu znaménko členu AKUMULACE pak vychází automatcky Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním podmínkam Modelování a smulace 5 / 8

6 Eulerova metoda řešení lneární dferencální rovnce 1. řádu s počáteční podmínkou předpokládá dferencální rovnc zapsanou ve tvaru: dy dt g ( t, y ), y ( t ) y ( t... nezávsle proměnná (čas), y... závsle proměnná ) Eulerova metoda prncp spojtý nterval nezávsle proměnné t se rozdělí na n dílů (ekvdstatntně) t 1 t h, 1, 2,... n hodnoty závsle proměnné Y v bodech t se vypočtou podle vztahu kde t, Y, 1, 2, n Y 1 Y h. g... Y y t ) ( lmy h t, h y( t) konvergence numerckého řešení Eulerova metoda prncp grafcky dy g( t, y), dt y y(t ) y t 1 Y 1 t h Y h. g t, Y Y 2 Y 1 y anal t Y t Y y 1 2 t 1 t 2 Y1 Y 2 y t h t 1 h t 2 t Modelování a smulace 6 / 8

7 Přesnost krokových metod chyby chyba celková dskretzační zaokrouhlovací h opt krok řád metody n řádová přesnost výsledku h n Přesnost krokových metod praktcký postup pro dosažení požadované přesnost 1. Nalezneme řešení s krokem h 1, jehož velkost jsme odhadl podle řádu použté metody a požadované přesnost výsledků 2. Nalezneme řešení s krokem h 2 = h 1 / 2 3. Porovnáme výsledky obou řešení ve stejných bodech nezávsle proměnné: dekadcká místa (od nejvyšších), která jsou v obou výsledcích stejná, jsou správně POZOR, porovnání je třeba provést v několka bodech ntervalu řešení, protože chyba prncpálně není všude stejná! Eulerova metoda řešení lneární dferencální rovnce 1. řádu s počáteční podmínkou předpokládá dferencální rovnc zapsanou ve tvaru: dy dt g ( t, y ), y ( t ) y ( t... nezávsle proměnná (čas), y... závsle proměnná ) Modelování a smulace 7 / 8

8 t y y anal chyba, 1, 1,,,2 1,,968,392,4,92,8521,679,6,7728,6977,751,8,5873,5273,6 1,,3994,3679,315 1,2,2396,2369,27 1,4,1246,149 -,163 1,6,548,773 -,225 1,8,197,392 -,194 2,,55,183 -,128 2,2,11,79 -,68 2,4,1,32 -,3 2,6,,12 -,12 2,8,,4 -,4 3,,,1 -,1 t y y anal chyba, 1, 1,,,8 1,,5273,4727 1,6 -,28,773 -,3573 2,4,4368,32,4336 3,2-1,245, -1,245 4, 5,119, 5,119 4,8-27,5989, -27,5989 5,6 184,367, 184,367 6,4-1467,5114, -1467,5114 7, ,851, 13559,851 řešení s krokem h=,2 řešení s krokem h=,8 MODELOVÁNÍ BIOPROCESŮ VYUČUJÍCÍ: Ústav kvasné technologe a bonženýrství Ing. Martn Halecký, Ph.D. doc. Ing. Tomáš Brányk, Ph.D. Ústav počítačové a řídcí technky Ing. Jana Fnkeová, CSc. RNDr. Marta Palatová, CSc. doc. Ing. Mloš Kmínek, CSc. UČEBNÍ TEXTY: Modelování a smulace 8 / 8

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

Porovnání GUM a metody Monte Carlo

Porovnání GUM a metody Monte Carlo Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná

Více

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE USE OF FUGITY FOR HEDSPE METHODS VYUŽITÍ FUGITNÍ TEORIE PRO METODY HEDSPE Veronka Rppelová, Elška Pevná, Josef Janků Ústav cheme ochrany prostředí, Vysoká škola chemcko-technologcká v Praze, Techncká 5,

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Modelování rizikových stavů v rodinných domech

Modelování rizikových stavů v rodinných domech 26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Statistická energetická analýza (SEA)

Statistická energetická analýza (SEA) Hladna akustckého tlaku buzení harmonckou slou [db] Statstcká energetcká analýza (SA) V současné době exstue řada způsobů, ak řešt vbroakustcké problémy. odobně ako v ných odvětvích nženýrství, také ve

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1 VÝVOJ SOFWARU NA PLÁNOVÁNÍ PŘESNOSI PROSOROVÝCH SÍÍ PRECISPLANNER 3D DEVELOPMEN OF HE MEASUREMEN ACCURACY PLANNING OF HE 3D GEODEIC NES PRECISPLANNER 3D Martn Štroner 1 Abstract A software for modellng

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

Aplikace simulačních metod ve spolehlivosti

Aplikace simulačních metod ve spolehlivosti XXVI. ASR '2001 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 2001 Paper 40 Aplkace smulačních metod ve spolehlvost MARTINEK, Vlastml Ing., Ústav automatzace a nformatky, FSI VUT v Brně, Techncká

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

Obrázek 2. Rozdělení motoru na jednotlivé funkční části

Obrázek 2. Rozdělení motoru na jednotlivé funkční části ODELOVÁNÍ HNACÍHO ÚSTROJÍ OSOBNÍCH AUTOOBILŮ V ATLAB / SIULINK Ing. chal Jurák VŠB TU Ostrava, Fakulta Strojní, Katedra Automatzační technky a řízení 35 ODEL OTORU odel motoru je vytvořen v smulačním programu

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Entalpie je extenzívní veličina a označuje se symbolem H. Vyjadřuje se intenzívními veličinami, tj. molární entalpií h či měrnou entalpií h jako

Entalpie je extenzívní veličina a označuje se symbolem H. Vyjadřuje se intenzívními veličinami, tj. molární entalpií h či měrnou entalpií h jako 0 Blance entalpe Vladmír Míka, Jří Vlček, Prokop Nekovář Kaptola obsahuje metody výpočtu hodnoty entalpe čstých látek a směsí, postupy řešení blance entalpe včetně reagujících systémů a odkazy na údaje

Více

CFD MODEL SNCR TECHNOLOGIE

CFD MODEL SNCR TECHNOLOGIE CFD MODEL SNCR TECHNOLOGIE Ing., Ph.D, Tomáš, BLEJCHAŘ, VŠB-TU OSTRAVA, tomas.blechar@vsb.cz Bc., Jří, PECHÁČEK, ORGREZ a.s., r.pechacek@orgrez.cz Ing., Rostslav, MALÝ, ORGREZ a.s., rostslav.maly@orgrez.cz

Více

MOŽNOSTI STUDIA POVRCHOVÉHO NAPĚTÍ OXIDICKÝCH TAVENIN. Rostislav Dudek Ľudovít Dobrovský Jana Dobrovská

MOŽNOSTI STUDIA POVRCHOVÉHO NAPĚTÍ OXIDICKÝCH TAVENIN. Rostislav Dudek Ľudovít Dobrovský Jana Dobrovská MOŽNOSTI STUDIA POVRCHOVÉHO NAPĚTÍ OXIDICKÝCH TAVENIN Rostslav Dudek Ľudovít Dobrovský Jana Dobrovská VŠB TU, FMMI, Katedra fyzkální cheme a teore technologckých pochodů, 17.lstopadu 15, 708 33 Ostrava

Více

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum Zpracování fyzkálních měření Studjní text pro fyzkální praktkum Mlan Červenka, katedra fyzky FEL-ČVUT mlan.cervenka@fel.cvut.cz 3. ledna 03 ObrázeknattulnístraněpocházízknhyogeometraměřeníodJacobaKöbela(460

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...)

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...) . NÁHODNÁ VELIČINA Průvodce studem V předchozích kaptolách jste se seznáml s kombnatorkou a pravděpodobností jevů. Tyto znalost použjeme v této kaptole, zavedeme pojem náhodná velčna, funkce, které náhodnou

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

Dynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů

Dynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů Dynamcké sysémy spojé-dskréní, lneární-nelneární a jejch modely df. rovnce, přenos, savový pops. Tvorba a převody modelů. Lnearzace a dskrezace. Smulace. Analoge mez sysémy různé fyzkální podsay. Idenfkace

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt ALGORITMUS DIFERENCIÁLNÍ EVOLUCE A JEHO UŽITÍ PRO IDENTIFIKACI NUL A PÓLŮ PŘE- NOSOVÉ FUNKCE FILTRU Přemysl Žška, Pravoslav Martnek Katedra teore obvodů, ČVUT Praha, Česká republka Abstrakt V příspěvku

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod

Více

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits Techncká 4, 66 07 Praha 6 MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electrc Parameter Measurement n PWM Powered Crcuts Martn Novák, Marek Čambál, Jaroslav Novák Abstrakt: V

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Úloha 2: Měření modulu pružnost v tahu a modulu pružnost ve smyku FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.10.2009 Jméno: Frantšek Batysta Pracovní skupna: 11 Ročník a kroužek: 2. ročník,

Více

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody Měření základních materálových charakterstk propustnost řetězového fltru Mgr Radek Melch Př pozorování Slunce pomocí dvojlomných fltrů se většnou používá fltrů pevně naladěných na určtou zajímavou spektrální

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ Gunnar Kűnzel, Mlosla Lnda Abstract V příspěku jsou uedeny analoge elčn a parametrů př transportu lhkost zorkem materálu e formě desky a elektrckém obodu.

Více

DOBA DOZVUKU V MÍSTNOSTI

DOBA DOZVUKU V MÍSTNOSTI DOBA DOZVUKU V MÍSTNOSTI 1. Úvod Po zapnutí zdroje zvuku v místnost trvá jstou krátkou dobu (řádově vteřny až zlomky vteřn), než dojde k ustálení zvukového pole. Často je v takových případech možné skutečné

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ HUDEBÍ EFEKT DISTORTIO VYUŽÍVAJÍCÍ ZPRACOVÁÍ PŘÍRŮSTKŮ SIGÁLŮ ČASOVĚ VARIATÍM SYSTÉMEM Ing. Jaromír Mačák Ústav telekomunkací, FEKT VUT, Purkyňova 118, Brno Emal: xmacak04@stud.feec.vutbr.cz Hudební efekt

Více

Numerické výpočty ve světovém geodetickém referenčním systému 1984 (WGS84)

Numerické výpočty ve světovém geodetickém referenčním systému 1984 (WGS84) Numercké výpočty ve světovém geodetckém referenčním systému 984 (WGS84) prof. Mara Ivanovna Jurkna, DrSc. CNIIGAK, Moskva prof. Ing. Mloš Pck, DrSc. Geofyzkální ústav ČAV, Praha Vojenský geografcký obzor,

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ

SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ SIMULATION OF STABILITY LOSS OF SLENDER BEAM UNDER TORSION Petr Frantík Abstract Paper deals wth the stablty loss of straght shape of slender deal

Více

10 Bioreaktor. I Základní vztahy a definice. Petr Kočí, Lenka Schreiberová, Milan Jahoda (revize )

10 Bioreaktor. I Základní vztahy a definice. Petr Kočí, Lenka Schreiberová, Milan Jahoda (revize ) 10 Boreaktor Petr Kočí, Lenka Schreberová, Mlan Jahoda (revze 16-08-23) I Základní vztahy a defnce Chemcké reaktory jsou zařízení, v nchž probíhá chemcká přeměna surovn na produkty. Vsádkové reaktory jsou

Více

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc.

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc. Unverzta Pardubce Fakulta ekonomcko-správní Modelování predkce časových řad návštěvnost web domény pomocí SVM Bc. Vlastml Flegl Dplomová práce 2011 Prohlašuj: Tuto prác jsem vypracoval samostatně. Veškeré

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Analýza chování servopohonů u systému CNC firmy Siemens

Analýza chování servopohonů u systému CNC firmy Siemens Analýza chování servopohonů u systému CNC frmy Semens Analyss and behavour of servo-drve system n CNC Semens Bc. Tomáš áčalík Dplomová práce 00 UTB ve Zlíně, Fakulta aplkované nformatky, 00 4 ABSTRAKT

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model ROČNÍK LXXII, 2003, č. 1 VOJENSKÉ ZDRAVOTNICKÉ LISTY 5 MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN 1 Karel ANTOŠ, 2 Hana SKALSKÁ, 1 Bruno JEŽEK, 1 Mroslav PROCHÁZKA, 1 Roman PRYMULA 1 Vojenská lékařská akademe

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav vodních staveb

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav vodních staveb VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav vodních staveb Ing. Jan Jandora, Ph.D. Katastrofcké poruchy sypaných hrází Falures of embankment dam ZKRÁCENÁ VERZE HABILITAČNÍ PRÁCE BRNO 2008 KLÍČOVÁ

Více

Matematika IV, Numerické metody

Matematika IV, Numerické metody Interaktvní sbírka příkladů pro předmět Matematka IV, Numercké metody Josef Dalík, Veronka Chrastnová, Oto Přbyl, Hana Šafářová, Pavel Špaček Vysoké učení techncké v Brně, Fakulta stavební Ústav matematky

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE OBVODŮ I. Studijní opora. Jaromír Kijonka a kolektiv

Vysoká škola báňská Technická univerzita Ostrava TEORIE OBVODŮ I. Studijní opora. Jaromír Kijonka a kolektiv Vysoká škola báňská Techncká unverzta Ostrava TEOE OBVODŮ Studjní opora Jaromír Kjonka a kolektv Ostrava 7 ecenze: rof. ng. Josef aleček, Sc. Název: Teore obvodů Autor: Jaromír Kjonka a kolektv Vydání:

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU ŘÍZENÍ OTÁČEK AYNCHONNÍHO MOTOU BEZ POUŽITÍ MECHANICKÉHO ČIDLA YCHLOTI Petr Kadaník ČVUT FEL Praha, Techncká 2, Praha 6 Katedra elektrckých pohonů a trakce e-mal: kadank@feld.cvut.cz ANOTACE V tomto příspěvku

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 8 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 7 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

5. MĚŘENÍ STEJNOSMĚRNÝCH MOTORŮ. 5.1 Stejnosměrný motor s cizím buzením 5.1.1 Štítkové údaje

5. MĚŘENÍ STEJNOSMĚRNÝCH MOTORŮ. 5.1 Stejnosměrný motor s cizím buzením 5.1.1 Štítkové údaje nastavíme synchronzac se sítí (označení LINE), což značí, že př kmtočtu 50 Hz bude počet záblesků, kterým osvětlíme hřídel, 3000 mn -1. Řízením dynamometru docílíme stav, kdy se na hřídel objeví tř nepohyblvé

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT

INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT METAL 4. 6. 5., Hradec nad Moravcí INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT Jaromír Drápala a, Monka Losertová a, Jtka Malcharczková a, Karla Barabaszová a, Petr Kubíček b a VŠB - TU Ostrava,7.lstopadu,

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 9 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 8 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta stavební. Obor geodézie a kartografie DIPLOMOVÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta stavební. Obor geodézie a kartografie DIPLOMOVÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Fakulta stavební Obor geodéze a kartografe DIPLOMOVÁ PRÁCE Zajšťovací mkrosíť geodetcko-geotechnckého vrtu V1 prosnec 5 Jan Vavroch Zajšťovací mkrosíť geodetcko-geotechnckého

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nverzta Tomáše Bat ve líně LABOATOÍ CČEÍ ELETOTECHY A PŮMYSLOÉ ELETOY ázev úlohy: ávrh dělče napětí pracoval: Petr Luzar, Josef Moravčík Skupna: T / Datum měření:.února 8 Obor: nformační technologe Hodnocení:

Více

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2.

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2. . Spektrální rozklad samoadjungovaných operátorů.. Motvace Vlastní čísla a vlastní vektory symetrcké matce A = A λe = λ λ = λ 3λ + = λ 3+ λ 3 Vlastní čísla jsou λ = 3+, λ = 3. Pro tato vlastní čísla nalezneme

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

Hodnocení využití parku vozidel

Hodnocení využití parku vozidel Hodnocení využtí parku vozdel Všechna kolejová vozdla přdělená jednotlvým DKV (provozním jednotkám) tvoří bez ohledu na jejch okamžté použtí jejch nventární stav. Evdenční stav se skládá z vozdel vlastního

Více

Sylabus 18. Stabilita svahu

Sylabus 18. Stabilita svahu Sylabus 18 Stablta svahu Stablta svahu Smykové plochy rovnná v hrubozrnných zemnách ev. u vrstevnatého ukloněného podloží válcová v jemnozrnných homogenních zemnách obecná nehomogenní podloží vč. stavebních

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ VYSOKÉ UČEÍ TECHICKÉ V BRĚ BRO UIVERSITY OF TECHOLOGY FKULT STROJÍHO IŽEÝRSTVÍ ÚSTV MTERIÁLOVÝCH VĚD IŽEÝRSTVÍ FCULTY OF MECHICL EGIEERIG ISTITUTE OF MTERILS SCIECE D EGIEERIG TERMODYMIK ROZTOKŮ THERMODYMICS

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK OSTRAVA 004 - Recenzent: Doc RNDr Ladslav Sklenák, CSc Prof RNDr Vlém Mádr, CSc Název: Termodynamka a statstcká fyzka Autor:

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE Jana Valečková 1 1 Vysoká škola báňská-techncká unverzta Ostrava, Ekonomcká fakulta, Sokolská

Více

ÚVOD DO KVANTOVÉ CHEMIE

ÚVOD DO KVANTOVÉ CHEMIE ÚVOD DO KVANTOVÉ CHEME. Navození kvantové mechanky Postuláty kvantové mechanky, základy operátorové algebry, navození kvantové mechanky, jednoduché modely.. Vodíkový atom 3. Základní aproxmace používané

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

ARITMETICKOLOGICKÁ JEDNOTKA

ARITMETICKOLOGICKÁ JEDNOTKA Vyšší odborná škola a Střední průmyslová škola elektrotechncká Božetěchova 3, Olomouc Třída : M4 Školní rok : 2000 / 2001 ARITMETICKOLOGICKÁ JEDNOTKA III. Praktcká úloha z předmětu elektroncké počítače

Více

L8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007

L8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007 L8 Asmlace dat II Oddělení numercké předpověd počasí ČHMÚ 007 Plán přednášky Úvod do analýzy Optmální odhad v meteorolog D případ: demonstrace metod; mult-dmensonální případ; Zavedení předběžného pole;

Více

Stanislav Olivík POROVNÁNÍ DVOU METOD HLEDÁNÍ ODRAZNÉHO BODU NA POVRCHU ELIPSOIDU

Stanislav Olivík POROVNÁNÍ DVOU METOD HLEDÁNÍ ODRAZNÉHO BODU NA POVRCHU ELIPSOIDU 5. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Stanslav Olvík POROVNÁNÍ DVOU METOD HLEDÁNÍ ODRAZNÉHO BODU NA POVRCHU ELIPSOIDU Abstrakt Úlohou GPS altmetre je nalezení odrazného bodu sgnálu vyslaného z

Více

Evaluation of Interferograms Using a Fourier-Transform Method

Evaluation of Interferograms Using a Fourier-Transform Method ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra fzk Vhodnocování nterferogramů metodou Fourerov transformace Evaluaton of Interferograms Usng a Fourer-Transform Method dplomová práce Studní

Více

Validace analytické metody

Validace analytické metody Nejoty v analytcké chem přednáška z cyklu Analytcká cheme II Patrk Kana 4. 9. 0 Proč valdace metod a nejoty výsledků? Výsledky analýz se v dnešní době čím dál tím víc podílejí na rozhodnutích s významným

Více