Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu
|
|
- Vladimíra Černá
- před 7 lety
- Počet zobrazení:
Transkript
1 Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Cech Republic Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Tets, and no Back-Cover Tets. A copy of the license is included in the section entitled "GNU Free Documentation License" found at 1
2 Napětí V každém bodě kontinua eistuje napětí. Jeho 9 složek v maticovém tvaru se naývá tensor napětí: σ = [ σ τ y τ τ y σ y τ y τ τ y σ ] Tensor napětí je tensor 2. řádu, každá jeho složka může nabývat libovolné hodnoty. Při rotaci tensoru napětí platí transformační vtah, v maticovém ápisu '=A A T. Matice A je ortogonální, neboť A T =A 1. Pro náornění napětí definujeme normálu k libovolné ploše. Na každé normále eistují 3 složky napětí, tv. vektor napětí: Vektor napětí pro normálu n, která je souhlasná s osou. σ = [ σ τ y τ τ y σ y τ y τ τ y σ ]{ 1 0 0} = { σ τ y τ } n y y 2
3 Složky napětí na elementárním kvádru y y y y y y Někdy se pracuje s polem napětí ve tvaru vektoru, složky napětí mohou být proháené Směr normály k ploše Směr osy, se kterou je napětí rovnoběžné σ ={σ σ y σ τ y τ τ y} 3
4 y Tensor napětí při vláštních případech napjatosti Prut tah/tlak Rovinná napjatost Rovinná deformace =[ ] =[ ] =[ 0 0 y 0 0 ] Obecný tvar σ = [ σ τ y τ τ y σ y τ y τ τ y σ ] 4
5 Rovnováha na elementárním kvádru směr y 0, y 2 0, 0 2,, 0 0,, 0 2 y y 0,, 0 2 y Podmínka rovnováhy : y y y y 0, 0 2 0, 0 2, y 0, 0 y σ ( 0+ Δ 2,, ) Δ y Δ σ ( 0 0 Δ 2,, ) 0 Δ y Δ + V těžišti působí dále objemová síla X 0,, 0 y τ y ( 0, + Δ y 2, 0) Δ Δ τ y( 0, Δ y 2, 0) Δ Δ + : y τ ( 0,, 0 + Δ 2 ) Δ Δ y τ ( 0,, 0 Δ 2 ) Δ Δ y+x ( 0,, 0 ) Δ Δ y Δ =0 5
6 Tři statické (Cauchyho) rovnice rovnováhy pro 3D σ ( 0+ Δ 2,, ) σ ( 0 0 Δ 2,, ) 0 + Δ τ ( y + Δ ) 0, 0, 0 2 τ ( y Δ ) 0, 0, X ( Δ 0,, 0 )=0 σ ( 0+ Δ 2,, ) σ 0 ( 0,, 0 )+ σ ( 0,, 0 ) τ y ( 0, + Δ y 2, 0) τ y( 0, Δ y Δ y 2, 0) + Δ σ ( 0,, 0 ) ( Δ ) 2 + 2! 2 2 σ + τ y y + τ +X =0 τ y + σ y y + τ y +Y =0 τ + τ y y + σ +Z=0 Rovnice odvoeny analogických součtových podmínek rovnováhy ve směrech y,. 6
7 Rovnováha na elementárním kvádru moment Momentová podmínka rovnováhy okolo osy y y 0 2,, 0 y y y y 0, 0 2, 0 [ 0, 0 ] y 0, y 2, 0 y y 0 2,, 0 y : τ ( + Δ 2, y, 0) 0 Δ y Δ Δ 2 + τ y( Δ 0 2, y, 0) 0 Δ y Δ Δ 2 τ (, + Δ y 2, 0) y Δ Δ Δ 2 τ y( 0, Δ y 2, 0) y Δ Δ Δ 2 =0 : y 2 7
8 Věty o vájemnosti smykových napětí τ y ( 0 + Δ 2,, 0) + τ y( 0 Δ 2,, 0) τ y ( 0, + Δ y 2, 0) τ y( 0, Δ y 2, 0) =0 τ y ( 0 + Δ 2, y 0) τ 0, y ( 0,, 0 )+ τ y ( 0,, 0 ) Δ τ y ( 0,, 0 ) ( Δ ) 2 + 2! 2 2 Věty o vájemnosti smykových napětí y = y y = y = Rovnice odvoeny analogických momentových podmínek rovnováhy okolo os,y. Ze vájemnosti smykových napětí plyne symetrie tensoru napětí. 8
9 Složky posunutí ve 3D V prostorové napjatosti definujeme tři složky posunutí u(,y,) posun ve směru osy v(,y,) posun ve směru osy y w(,y,) posun ve směru osy y [,y,] v(,y,) w(,y,) u(,y,) 9
10 Složky deformace v rovnině d d (1+ )d normálová deformace ve směru (měna objemu) d d = kosení v rovině, smyková deformace, (měna úhlu, stejný objem) V prostoru je deformace elementárního kvádru popsána Normálovými složkami Smykovými složkami, y, y,, y 10
11 Šest geometrických rovnic Vtah mei polem posunů a polem deformace Odvoení vi přednáška o rovinné napjatosti Normálové složky (protažení) = u y = v y = w Smykové složky (kosení) y = v w y = w u y = u y v 11
12 Zobecněný Hookeův ákon Jednoosé namáhání Ve směru osy Ve směru osy y Ve směru osy ε = 1 E σ ε y = νε = ν E σ ε = νε = ν E σ ε y = 1 E σ y ε = ν E σ y ε = ν E σ y ε = 1 E σ ε = ν E σ ε y = ν E σ ε = 1 E ( σ ν σ y νσ ) ε y = 1 E ( σ y νσ νσ ) ε = 1 E ( σ νσ νσ y ) Modul poddajnosti ve smyku [1/Pa] γ y = 2(1+ν) E γ = 2(1+ν) E γ y = 2(1+ν) E τ y τ τ y 12
13 Závislost deformace na napětí matice poddajnosti Lineárně { pružný iotropní materiál ve 3D ε ε y [ 1 ν ν ν 1 ν σ y ε 1 ν ν σ }= γ y E (1+ν) 0 0 τ y γ (1+ν) 0 τ (1+ν)]{σ γ y τ y} =C Matice poddajnosti elastického materiálu pro obecnou 3D napjatost Ukažte, jak se jednoduší matice poddajnosti elastického materiálu pro jednoosou napjatost. 13
14 Závislost napětí na deformaci matice tuhosti Lineárně pružný iotropní materiál ve 3D {σ σ y σ τ y τ τ y}= ν ν ε ν 1 ν ν ε y E ν ν 1 ν ε (1+ν)(1 2ν)(1 ν ν 0 0 γ ν ν){ } y γ γ y =D G= E 2(1+ν) modul pružnosti ve smyku [Pa] Matice tuhosti elastického materiálu pro obecnou 3D napjatost Pon. Eliminací příslušných složek napětí a deformací obdržíme Hookeův ákon pro jednoosou napjatost, rovinnou napjatost, či rovinnou deformaci. 14
15 Příklad odvoďte součinitel emního tlaku v klidu Vtah mei = y a y Předpokládáme, σ =σ y ε =ε y =0 τ y =τ = τ y =0 γ y =γ =γ y =0, σ y,ε y ε y =0= 1 E ( σ y νσ ν σ ) σ (1 ν)=νσ σ =σ y = ν 1 ν σ Součinitel emního tlaku v klidu Poissonovo číslo Součinitel emního tlaku v klidu
16 Základní rovnice pro trojosou napjatost Přemístění u,v,w 3 nenámé Laméovy rovnice (3 rovnice) Vnější síly X,Y, Z 6 Geometrických rovnic 3 Statické rovnice ε = u γ = u + w 15 neávislých rovnic pro 15 nenámých σ + τ y y + τ + X =0 τ y + σ y y + τ y +Y =0 τ + τ y y + σ +Z=0 Přetvoření ε, ε y,ε γ y, γ, γ y 6 Materiálových rovnic σ = E [(1 ν)ε +νε y +νε ] (1+ν)(1 2 ν) τ = E 2 (1+ν) γ Napětí, y, y,, y 6 nenámých 6 nenámých 16
17 Otáky 1. Definujte tensor napětí a nakreslete vektor napětí na normále, která je orientována souhlasně s osou y. 2. Odvoďte statickou podmínku rovnováhy ve směru. Jak se výsledná rovnice redukuje, pokud se použije na čistě tažený prut? 3. Uvažujte tažený prut jako 3D kontinuum. Které složky napětí a deformace jsou nulové? 4. Dokažte, že matice tuhosti lineárně elastického materiálu je inverí matice poddajnosti. Pro výpočet inverní matice využijte rodělení matice na 4 submatice. 5. V jakých rovnicích vystupuje modul pružnosti ve smyku a objemový modul pružnosti? Vytvořeno 04/2011 v OpenOffice 3.2, Ubuntu 10.04, Vít Šmilauer, ČVUT. Poděkování patří ejména M. Jiráskovi a inspiraci jeho přednáškami. 17
Přednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
Vícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
Vícerozměrné úlohy pružnosti
Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University
Integrální definice vnitřních sil na prutu
Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical
Platnost Bernoulli Navierovy hypotézy
Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer
Přednáška 09. Smyk za ohybu
Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011
Jednoosá tahová zkouška betonářské oceli
Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright
Kinematická metoda výpočtu reakcí staticky určitých soustav
Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení
Platnost Bernoulli Navierovy hypotézy
Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady
SMA2 Přednáška 09 Desky
SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer
Princip virtuálních prací (PVP)
Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu
Přednáška 10. Kroucení prutů
Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení
Jednoosá tahová zkouška betonářské oceli
Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)
Rovnoměrně ohýbaný prut
Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer
Redukční věta princip
SA Přednáška 4 Redukční věta Staticky neurčité příhradové konstrukce Spojité nosníky Uzavřené rámy Oecné vlastnosti staticky neurčitých konstrukcí Copyright (c) Vít Šmilauer Czech Technical University
Přednáška 01 PRPE + PPA Organizace výuky
Přednáška 01 PRPE + PPA Organizace výuky Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny Út 8.30 9.45 St 14.00 15.45, B286, PRPE (Stav. Inženýrství) + PPA (Arch. a stavitelství) přednáška
Přednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení Příklady Copyright
Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
Přednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení
Přednáška 01 Úvod + Jednoosá napjatost
Přednáška 01 Úvod + Jednoosá napjatost Pružnost a pevnost A (PRA) Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St 9.15-11.30 Webové stránky předmětu https://mech.fsv.cvut.cz/student/
Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.
: 4 2 R 1 1 R 2 0,8 R 3 : 8 0 R 1 1 R 2 0,8 R 3 : 2 1 R 1 2 R 2 0 R 3 [2 1 0,8 ] 0 1 0,8 1 2 0 A Vbrané metod řešení soustav rovnic Podmínk rovnováh či ekvivalence vedou často na soustavu rovnic, např.
Rekapitulace princip virtuálních sil pro tah/tlak
SMA Přednáška Doplňková virtuální práce momentů Metody integrace dvou spojitých funkcí Doplňková virtuální práce posouvajících sil Vliv rovnoměrné a nerovnoměrné teploty Formulace principu virtuálních
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady
Přednáška 05 Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Copyright (c) 011 Vít Šmilauer Czech Technical University in Prague,
Stupně volnosti a vazby hmotných objektů
Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
Složené soustavy v rovině, stupně volnosti
Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
Přibližné řešení úloh mechaniky
SMA Přednáška 1 Přibližné metody řešení úloh mechaniky Funkcionál energie Metoda konečných prvků Konečněprvkové programy EduBeam Časté problémy při řešení pomocí MKP Příklady Copyright (c) 1 Vít Šmilauer
Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice
Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4
ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mei napětím a přetvořením je lineární ávislost.. Látka hmotného tělesa
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
Název materiálu: Hydrostatická tlaková síla a hydrostatický tlak
Reg.č. CZ.1.07/1.4.00/21.1720 Příjemce: Základní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspěvková organizace Název projektu: Kvalitní podmínky- kvalitní výuka Název materiálu:
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Rozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Rovinná a prostorová napjatost
Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových
Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice
Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta
T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše
Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
Normálová napětí v prutech namáhaných na ohyb
Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené
Lokalizace QGIS, GRASS
13. ledna 2009 Copyright 2008 (c) Hořejší, Havĺıčková, Valenta Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation Licence, Version 1.2 or
1 Ohyb desek - mindlinovské řešení
1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové
Kap. 3 Makromechanika kompozitních materiálů
Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Stavební mechanika 1 - K132SM1 Structural mechanics
Stavební mechanika 1 - K132SM1 Structural mechanics Přednášející Vít Šmilauer, Ing., Ph.D. katedra Mechaniky vit.smilauer@fsv.cvut.cz místnost D2034, konzultační hodiny Út 10:00 11:30 Literatura Kufner,
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1
GIS 1 153GS01 / 153GIS1 Martin Landa Katedra geomatiky ČVUT v Praze, Fakulta stavební 14.11.2013 Copyright c 2013 Martin Landa Permission is granted to copy, distribute and/or modify this document under
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
FAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
Z hlediska pružnosti a pevnosti si lze stav napjatosti
S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které
Systém vztahů obecné pružnosti Zobecněný Hookeův zákon
Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
7. Základní formulace lineární PP
p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje
Mechanika kontinua - napětí
Mechanika kontinua - napětí pojité protředí kontinuum objemové íl půobí oučaně na všechn čátice kontinua (např. tíhová íla) plošné íl půobí na povrch tudované čáti kontinua a půobují jeho deformaci napětí
Přednáška 02. License" found at
Přenáška 02 Prostý ob Hpotéa o acování rovinnosti průřeu Křivost prutu, vta mei momentem a křivostí Roložení napětí při obu Pružný průřeový moul Příkla Coprigt (c) 2011 Vít Šmilauer Cec Tecnical Universit
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
PostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa
Přednáška 5 Topologická správa vektorových dat v geodatabázi PostGIS 155UZPD Úvod do zpracování prostorových dat, zimní semestr 2018-2019 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura
Kontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy
ČVUT UPM 6/2013. Eliška Bartůňková
ČUT UPM 6/2013 Eliška Bartůňková Úvod 1. Motivace PMPD 1.1 Jednoosá napjatost Obsah 1.2 Zobecnění jednoosé napjatosti pro ohýbaný prut 2. Důkaz základní věty mezní analýzy pro diskrétní modely 3. Formulace
10. Elasto-plastická lomová mechanika
(J-integrál) Únava a lomová mechanika J-integrál je zobecněním hnací síly trhliny a umožňuje použití i v případech plastické deformace většího rozsahu: d J = A U da ( ) A práce vnějších sil působících
y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy
36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem
PRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
ANALÝZA KONSTRUKCÍ. 5. přednáška
ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:
Kritéria porušení laminy
Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém
12. Prostý krut Definice
p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí
GIS 1 155GIS1. Martin Landa Lena Halounová. Katedra geomatiky ČVUT v Praze, Fakulta stavební
GIS 1 155GIS1 Martin Landa Lena Halounová Katedra geomatiky ČVUT v Praze, Fakulta stavební #2 1/21 Copyright c 2013-2018 Martin Landa and Lena Halounová Permission is granted to copy, distribute and/or
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
ZÁKLADNÍ POJMY A VZTAHY V TECHNICKÉ PRUŽNOSTI
ZÁKLDNÍ POJY VZTHY V TECHNICKÉ PRUŽNOSTI Napětí velikost vnitřní síl na jednotku ploch konečné podíl elementů vnitřních sil a ploch Podle směru vnitřních sil avádíme: ds napětí celkové σ r = v obecném
OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)