Důchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný
|
|
- Bohumír Macháček
- před 8 lety
- Počet zobrazení:
Transkript
1 Důchody Současná hodnota anuity Důchody rozdělení a) Bezprostřední b) Odložený a) Dočasný b) Věčný a) Předlhůtní b) Polhůtní Existence jednoho univerzálního vzorečku! Ostatní vztahy jsou pouze odvozené Důchody univerzální vztah Univerzální vztah pro konstantní důchod (a) Zaokrouhlovat alespoň na 4 desetinná místa Existence dvou různých období ve vztahu, nutno pečlivě postupovat v rámci každého tohoto období zvlášť, Postup v případě věčného důchodu, který je pobírán (vyplácen) nekonečno úrokovacích období.
2 Důchody věčný důchod n = Důchody př. 1 1) Jaká je hodnota důchodu, která nám zajistní polhůtní důchod Kč ročně po dobu 20 let při úrokové sazbě 4 % p. a. s ročním připisováním úroků? 2) Kolik by to činilo v případě předlhůtního důchodu? 3) Zdůvodněte rozdíly v hodnotách vypočtených částek. Důchody př. 2 Kolik musíme nyní investovat, abychom si zajistili důchod Kč vyplácený na počátku každého čtvrtletí po dobu 10 let? Úroková sazba činí 5 % p. a. s ročním připisováním úroků.
3 Důchody př. 3 1) Uložili jste částku Kč, ze které jste poté dostávali čtvrtletní předlhůtní důchod po dobu 10 let a úrokové sazbě 5 % p. a. Úrokové období bylo roční. Jak velký důchod jste pobírali? 2) Kolik by tato částka činila v případě polhůtního důchodu? 3) Zdůvodněte rozdíly v hodnotách vypočtených částek. Důchody př. 4 Dítěti jste uložili v 9 letech Kč. Od 18 let mu má být vyplácen čtvrtletní polhůtní důchod po dobu 10 let při úrokové sazbě 12 % p. a. s pololetním připisováním úroků. Jak velký bude tento důchod? Důchody př. 5 Vyhráli jste v loterii. Výhra Vám bude vyplacena ve 20 splátkách ve výši 1,5 mil. Kč vždy na konci roku, a to poprvé za 2 roky. Určete současnou hodnotu výhry při úrokové míře 12 % p.a. s ročním připisováním úroků.
4 Důchody př. 6 Osoba si zajistila věčný důchod, vyplácený na konci každého pololetí ve výši Kč. Chce jej změnit na předlhůtníčtvrtletní důchod ve výši Kč, trvající 30 let. Úroková sazba je 4 % p. a. s pololetním připisováním úroků. Kolik musí doplatit? Důchody př. 7 Dlužník se zavázal splácet 800 Kč měsíčně, polhůtně po dobu 10 let. Počátkem 5. roku (ihned poté, co byla zaplacena 48. splátka) věřitel tuto pohledávku prodal. Kolik činila cena pohledávky, jestliže úroková sazba byla 8 % p. a. s měsíčním úrokovacím obdobím? Změna parametrů v průběhu pobírání nebo odkladu důchodu - není důležité, ke kolika změnám dojde, ale v kolika okamžicích nim dojde - základní možné změny: výše důchodu, úroková sazba, úrokovací období, daň z příjmů, frekvence pobírání důchodu, okamžik pobírání důchodu
5 Změna parametrů v průběhu pobírání nebo odkladu důchodu př. 1 Kolik musí pan Svoboda nyní uložit na účet, pokud chce začít za rok pobírat po dobu 5 let částku Kč na konci každého čtvrtletí? Účet je první 3 roky úročen úrokovou sazbou 4 % p. a. s pololetním připisováním úroků a v následujících letech úrokovou sazbou 4 % p. a. se čtvrtletním připisováním úroků. Změna parametrů v průběhu pobírání nebo odkladu důchodu př. 2 Kolik musí pan Svoboda nyní uložit na účet pokud chce začít ihned pobírat po dobu 3 let částku Kč na konci každého čtvrtletí a poté po dobu 4 let na začátku každého měsíce částku Kč? Účet je první 3 roky úročen úrokovou sazbou 3 % p. a. s pololetním připisováním úroků a v následujících letech úrokovou sazbou 4 % p. a. s čtvrtletním připisováním úroků. Zdanění úroků se neuvažuje. Kombinace důchodu a složeného úročení
6 Kombinace důchodu a složeného úročení př. 1 Kupujete nemovitost. Odhadujete, že bude vynášet nájemné Kč na konci každého měsíce. Předpokládáte její držbu po dobu 3 let, za 3 roky ji budete moci prodat za 2,5 mil. Kč. Jaká je maximální cena, za kterou jste ochotni nemovitost koupit, když požadujete výnos 24 % p. a. při ročním úrokovacím období? Kombinace důchodu a složeného úročení př. 2 Třicetiletá osoba uložila Kč při úrokové sazbě 3 % p.a. Počínaje 60. rokem věku vybírala ročně předlhůtně Kč. Zemřela po 15 letech. Kolik zanechala dědicům? Konstantní nárůst důchodu
7 Konstantní nárůst důchodu př. 1 Panu H. je teď 30 let. Očekává, že na konci roku bude mít roční plat USD, který poroste stálým tempem 6 % ročně po dobu 50 let. Jaká je současná hodnota platů pana H, jeli úroková sazba 7 % p. a.? Závěrečné otázky /1/ Za jinak stejných podmínek: Výše anuity (důchodu) versus úrokovací období Výše současné hodnoty důchodu versus úrokovací období Výše úrokové sazby versus úrokovací období Délka pobírání důchodu versus úrokovací období Závěrečné otázky /2/ Za jinak stejných podmínek: Výše důchodu versus okamžik pobírání důchodu (předl., polhůt.) Výše současné hodnoty důchodu versus okamžik pobírání důchodu (předl., polhůt.) Výše úrokové sazby versus okamžik pobírání důchodu (předl., polhůt.) Délka pobírání důchodu versus okamžik pobírání důchodu (předl., polhůt.)
Téma: Jednoduché úročení
Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad
Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9
K testu průběžný Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat 250 000 při úrokové sazbě 9 % p.a. platné v průběhu prvních 4 let
Finanční matematika. Téma: Důchody. Současná hodnota anuity
Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění
Přípravný kurz FA. Finanční matematika Martin Širůček 1
Přípravný kurz FA Finanční matematika 1 Úvod čas ve finanční matematice, daně, inflace Jednoduché a složené úročení, kombinace Spoření a pravidelné investice Důchody (současná hodnota anuity) Kombinace
19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích
Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity
4. cvičení. Splácení úvěru. Umořovatel.
4. cvičení Splácení úvěru. Umořovatel. UMOŘOVÁNÍ DLUHU Jakým způsobem lze úvěr splácet: jednorázově, postupně: - pravidelnými splátkami: - degresivní splátky, - progresivní splátky, - anuitní splátky (pravidelně
CVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové
CVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ DRUHÝ TUTORIÁL 30. 11. 2013 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 INFORMACE V ISu vypsány termíny: So 11. 1. 2014 13:00 učebna P11 So 1.
Složené úročení. Škoda, že to neudělal
Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel
PENÍZE, BANKY, FINANČNÍ TRHY
PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou
Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.
Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl
Krátkodobé cenné papíry a Skonto obsah přednášky
Krátkodobé cenné papíry a Skonto obsah přednášky 1) Vybrané krátkodobé cenné papíry 2) Skonto není cenný papír, ale použito obdobných principů jako u krátkodobých cenných papírů Vybrané krátkodobé cenné
Za případné drobné chybky a nepřesnosti v textu se omlouvám. Jednoduché úročení
Jednoduché úročení 1. Jednoduchý příklad na výpočet úrokové sazby ze základní rovnice jednoduchého úročení: FV=PV*(1+r*t). Aby úroková sazba vyšla v p.a., je nutno časovou proměnnou (t) uvažovat v letech
FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010
Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web
ČASOVÁ HODNOTA PENĚZ ÚROKOVÁNÍ
ČASOVÁ HODNOTA PENĚZ ÚROKOVÁNÍ ÚROK z pohledu věřitele odměna za to, že poskytl své volné peněžní prostředky dočasně někomu jinému (zahrnuje náhradu za dočasnou ztrátu kapitálu a za riziko spojené s nesplacením
Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek
Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice
Budoucí hodnota anuity Spoření
Finanční matematika Budoucí hodnota anuity Spoření Doposud vypočítáme konečné (budoucí) hodnoty či počáteční (současné) hodnoty, za předpokladu konstantní (jednorázové) současné hodnoty (jednorázového
1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
K n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení:
Finanční matematika Spojité úročení Doposud při výpočtu stavu kapitálu na konci doby uložení byl proveden za (tacitního) předpokladu, že četnost připisování úroku za 1 rok m je konečné číslo délka jednoho
Ukázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné
VY_42_INOVACE_M2_34 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.:
Operační program: Vzdělávání pro konkurenceschopnost Projekt: ŠKOLA PRO ŽIVOT Registrační číslo projektu: CZ.1.07/1.4.00/21.2362 Kód: 01.02 Pořadové číslo materiálu: 34 I/2 Inovace a zkvalitnění výuky
CVIČNÉ PŘÍKLADY z finanční matematiky
CVIČNÉ PŘÍKLADY z finanční matematiky ÚROKOVÝ A RENTNÍ POČET 1. pracovní verze OBSAH 1. PŘÍKLADY ÚROKOVÉHO POČTU... 2 1.1 Jednoduché úročení... 2 1.2 Složené úročení... 3 2. PŘÍKLADY RENTNÍHO POČTU...
Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů.
I. PŘÍKLADY Z FINANČNÍ MATEMATIKY Rozšíření spektra příkladů ze skript Bezvoda, Blahuš. Verze 11.3 2009 Metodické poznámky k zadaným příkladům. Všude jsou výsledky, zhusta naznačen postup. Výpočty je nutno
4. Přednáška Časová hodnota peněz.
FINANCE PODNIKU 4. Přednáška Časová hodnota peněz. ČASOVÁ HODNOTA PENĚZ Časová hodnota peněz představuje finanční metodu, která umožňuje porovnání různých částek v různých časech se zohledněním skutečnosti,
Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé
Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),
3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy
3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu,
Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice
Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)
FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová
FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření
Úročení vkladů. jednoduché složené anuitní
jednoduché složené anuitní Úročení vkladů Úrok = cena půjčených peněz, kterou platí ten, kdo peníze dočasně užívá, je vyjádřen v peněžních jednotkách (v Kč) (míra) = v %, vyjadřuje v procentech jakou část
SPOŘENÍ KRÁTKODOBÉ. Finanční matematika 5
SPOŘENÍ KRÁTKODOBÉ Finanční matematika 5 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm05
7.1. Jistina, úroková míra, úroková doba, úrok
7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina
1 Umořovatel, umořovací plán, diskont směnky
1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si
Časová hodnota peněz (2015-01-18)
Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky
Sbírka příkladů z finanční matematiky Michal Veselý 1
Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO154
Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky
Otázka: Úročení a příklady výpočtu Předmět: Ekonomie Přidal(a): Penny ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky ÚROKOVÁ SAZBA (MÍRA) = v % vyjadřuje, jakou část z
Ing. Barbora Chmelíková 1
Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ
BKF_CZAF PRVNÍ TUTORIÁL Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro)
BKF_CZAF CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 13. 11. 2015 1 Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro) 322829@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva
2. cvičení. Úrokování
BANKOVNICTVÍ 2. cvčení Úrokování ÚROK, ÚROKOVÁ MÍRA Úroková míra vyjadřuje poměr výnosu k vloženému (půjčenému) kaptálu, a to buď v relatvním (např. 0,1), nebo procentním (např. 10 %) vyjádření. Úrok je
CVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ První tutoriál 4. listopad 2012 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 Informace o předmětu 4 kredity Typ ukončení zápočet Dva tutoriály:
3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
Finanční matematika pro každého příklady + CD-ROM
Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady
ZÁKLADY FINANČNÍ MATEMATIKY
ZÁKLADY FINANČNÍ MATEMATIKY Na přípravě skript se podíleli: Ing. Petr Borkovec - kap. 3, 4, 6 Ing. Roman Ptáček - kap. 1, 2, 5, 9 Ing. Petr Toman - kap. 7, 8 Technická úprava: Ing. Petr Borkovec Ing. Petr
Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534
VY_32_INOVACE_BAN_113 Úvěrový proces Ing. Dagmar Novotná Obchodní akademie, Lysá nad Labem, Komenského 1534 Dostupné z www.oalysa.cz. Financováno z ESF a státního rozpočtu ČR. Období vytvoření: 12/2012
Pasivní bankovní operace, vkladové bankovní produkty.
5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV
CVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 3. 11. 2013 1 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva tutoriály: 3. 11.
Otázka: Obchodní banky a bankovní operace. Předmět: Ekonomie a bankovnictví. Přidal(a): Lenka OBCHODNÍ BANKY
Otázka: Obchodní banky a bankovní operace Předmět: Ekonomie a bankovnictví Přidal(a): Lenka OBCHODNÍ BANKY Podnikatelské subjekty, a. s. ZK min. 500 mil. Kč + další podmínky Hlavním cílem zisk Podle zákona
Pasivní bankovní operace, vkladové bankovní produkty.
5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV
Sdělení HYPO stavební spořitelny a. s. č. 2 ve smyslu Všeobecných obchodních podmínek stavebního spoření
A/ STAVEBNÍ SPOŘENÍ Dále uvedené podmínky se vztahují na všechny smlouvy o stavebním spoření uzavřené v HYPO stavební spořitelně a.s. bez rozdílu účinnosti : 1. Lhůta po změně smlouvy o stavebním spoření,
SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule
Klasický termínovaný vklad SLŽENÉ ÚRKVÁNÍ PŘÍKLAD: Podnikatel uložil na klasický termínovaný vklad částku 300 000 Kč. Jaká bude výše kapitálu za 3 roky, jestliže úroková sazba činí 2% p.a. a je a) roční
Finanční matematika pro každého
Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující
Specifikace úvěrových podmínek Akcenta, spořitelní. a úvěrní družstvo. Strana - 1 - (celkem 5) Žádost o poskytnutí úvěru ze dne: 30.10.
Specifikace úvěrových podmík Akcenta, spořitelní a úvěrní družstvo Žádost o poskytnutí úvěru ze d: 30.10.2010 Žadatel (dlužník 1) Jméno a příjmení: Markéta Testovací Rodné číslo: 765430/0000 Narozen: 30.4.1976
ROZHODNUTÍ o prominutí/neprominutí nedoplatku na poplatku
Příloha č. 7 vzor A... správce daně - soud č. j... tel:. Dlužník: ROZHODNUTÍ o prominutí/neprominutí nedoplatku na poplatku Podepsaný správce daně Vám z důvodů uvedených ve Vaší žádosti ze dne - z úřední
Produkty finanční matematiky. Podle standardů finanční. gramotnosti pro střední školy. Předmět matematika Praktické využití posloupností a řad
N{zev školy Číslo šablony/číslo sady Gymnázium J. V. Jirsíka, Fráni Šrámka, České Budějovice VI/2/ Poř. číslo v sadě 1 Jméno autora Období vytvoření materi{lu N{zev souboru Zařazení materi{lu podle ŠVP
STAVEBNÍ SPOŘENÍ. Finanční matematika 8
STAVEBNÍ SPOŘENÍ Finanční matematika 8 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm08
4 Zásobitel, reálná úroková míra, diskont směnky
4 Zásobitel, reálná úroková míra, diskont směnky Zásobitel, nebo-li také věčná renta, řeší, kolik dnes uložit peněžních prostředků, aby mi mohla být vyplácena pravidelná částka po určité období. Známe
Aritmetická a geometrická posloupnost, definice, vlastnosti, vzorce, užití.
Aritmetická a geometrická posloupnost, definice, vlastnosti, vzorce, užití. ARITMETICKÁ POSLOUPNOST 1. Posloupnost je dána n-týn členem. Určete druh posloupnosti, d, q: 2 5n a) a n = AP; d = -5/4 4 n 2
Finanční rozbor současného penzijního připojištění se státním příspěvkem, srovnání s bankovním účtem
Finanční rozbor současného penzijního připojištění se státním příspěvkem, srovnání s bankovním účtem Studie z předmětu KMA/MAB, LS 2009/2010, A09N0169P Finanční informatika a statistika tomi.rosi@seznam.cz
naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.
Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají
Finanční matematika pro každého
Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující
Spoříme a půjčujeme I
4.5.14 Spoříme a půjčujeme I Předpoklady: 040513 Př. 1: Odhadni. a) 5 % ze 120 b) 17 % z 5140 c) 4,7 % z 18 720 a) 5 % z 120 Odhad: 1 % 1,2 5 % 5 1,2 = 6 Přesný výpočet: 0, 05 120 = 6. Akceptovatelný rozsah:
Investování volných finančních prostředků
Investování volných finančních prostředků Rizika investování Lidský faktor Politická rizika Hospodářská rizika Měnová rizika Riziko likvidity Inflace Riziko poškození majetku Univerzální optimální investiční
Finanční řízení podniku 1. cvičení. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla.
Finanční řízení podniku 1. cvičení I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Některé vztahy mezi majetkem a kapitálem 1) Majetek je ve stejné výši jako kapitál, proto
Ekonomika Úvod do světa práce. Ing. Ježková Eva
Ekonomika Úvod do světa práce Ing. Ježková Eva Tento materiál vznikl v projektu Inovace ve vzdělávání na naší škole v rámci projektu EU peníze středním školám OP 1.5. Vzdělání pro konkurenceschopnost..
PLC 4. cvičení KRÁTKODOBÉ PLÁNOVÁNÍ (1)
PLC 4. cvičení KRÁTKODOBÉ PLÁNOVÁNÍ (1) 1) Sestavení podkladů pro operativní plán Podnik vyrábí brzdové destičky. V budoucnu mohou nastat různé změny, na které je nutné reagovat. Prodej brzdových destiček
Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Krátkodobé
Pracovní list. Workshop: Finanční trh, finanční produkty
Pracovní list Workshop: Finanční trh, finanční produkty Úkol č. 1 Osobní půjčka Doplňte v následující tabulce kolik zaplatíte za úvěr celkem (vč. úroků) při jednotlivých RPSN. Současně porovnejte, zda
Finanční matematika I.
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
Penzijní plán č. 1. http://www.generalipf.cz/cz/menu-pro-ucastniky/smluvni-podminky/penzijni-plan-c.-1/... platný do 30. 4. 2000
Stránka č. 1 z 10 Penzijní plán č. 1 platný do 30. 4. 2000 Penzijní plán č.1 ve formátu PDF si můžete stáhnout zde ČÁST I - ÚVODNÍ USTANOVENÍ článek 1 Penzijní připojištění se státním příspěvkem Penzijním
Akcie obsah přednášky
obsah přednášky 1) Úvod do akcií (definice, druhy, základní principy) 2) Akciové analýzy 3) Cena akcie 4) Výnosnost akcie 5) Štěpení akcií 6) definice je cenný papír dokládající podíl akcionáře na základním
BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4
BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 Sada: Ekonomie Téma: Banky Autor: Mgr. Pavel Peňáz Předmět: Základy společenských věd Ročník: 3. ročník Využití: Prezentace určená pro výklad a opakování Anotace:
Příloha č.3 Vzor notářského zápisu o uznání dluhu se svolením k vykonatelnosti
Příloha č.3 Vzor notářského zápisu o uznání dluhu se svolením k vykonatelnosti Strana první NZ.../ N / N o t á ř s k ý z á p i s Sepsaný dne [datum] ([datum slovy]), notářem, notářem se sídlem v kanceláři
FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz
FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem
Carmen Simerská. Ústav matematiky VŠCHT, Praha. Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.
Sbírka příkladů Finanční matematika Carmen Simerská Ústav matematiky VŠCHT, Praha Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter. Sbírka příkladů Finanční
Alena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz
FINANCOVÁNÍ OBCHODNÍCH SPOLEČNOSTÍ Alena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz Majetková struktura (aktiva) 1. Pohledávky za upsaný základní kapitál
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Pracovní list pro téma III.2.9 Podnikání Praktický příklad na založení firmy VY_32_INOVACE_329_20
VÝZVA K ZAPLACENÍ ÚROKU Z PRODLENÍ č...
Příloha č. 10 vzor A... č. j.... tel:.... Dlužník: RČ/IČ: VÝZVA K ZAPLACENÍ ÚROKU Z PRODLENÍ č.... na úrok za období od... do... Za dobu prodlení se splacením dluhu vzniklého na základě rozhodnutí..........
Jak si založit živnost?
Jak si založit živnost? Návštěva (centrální registrační místo) CRM a vyplnění JRF (jednotný registrační formulář Dále doložit: -výpis zrejstříku trestů ČR (nesmí být starší 3 měsíců, není-li přiložen kžádosti,
PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.
PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. Preambule Penzijní plán Allianz transformovaného fondu, Allianz penzijní společnost, a. s. (dále jen Allianz transformovaný
Finanční matematika pro každého
Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující
Stavební spoření. Datum uzavření /14 PRG 04/14 V20. Spoření ukončeno dne Splacení úvěru
Základní informace Meziúvěr Naspořená částka Výnos ve fázi spoření Finanční náklady Celkové náklady Celkové náklady meziúvěru / úvěru Efektivita Datum uzavření 20.06.2014 Cílová částka 150 000,00 Kč VOP
Metodika výpočtu RPSN stavebního spoření
Metodika výpočtu RPSN stavebního spoření 1. Východiska 1.1. Základním východiskem je zákon Způsob výpočtu RPSN vychází ze Zákona o úvěru pro spotřebitele (dále jen ZÚS). Tato metodika pouze sjednocuje
Penzijní plán Penzijního fondu České pojišťovny, a. s.
Penzijní plán Penzijního fondu České pojišťovny, a. s. 1 Základní údaje 1.1. Penzijní fond České pojišťovny, a. s. (dále jen "Penzijní fond"), je penzijním fondem podle zákona č. 42/1994 Sb. o penzijním
Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor. Složené úročení: roční úrokový faktor umocněný na počet let
Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor PV (1 + u) u (sazba) r (sazba p.a.) d (dní) (dní) Složené úročení: roční úrokový faktor umocněný na počet let Úroky lze vyplácet nebo
Závazné požadavky na parametry úvěrů
Závazné požadavky na parametry úvěrů Limity úvěrů: - délka splatnosti úvěru maximálně 30 let, - bude umožněn odklad splátek dle typu úvěru 0 až 2 roky s tím, že úrok se bude platit od počátku poskytnutí
Penzijní plán č. 1 Zemského penzijního fondu, a. s.
Penzijní plán č. 1 Zemského penzijního fondu, a. s. platný pro smlouvy uzavřené v době od 31. 10. 1994 do 24. 3. 1995 Čl. I Úvodní ustanovení 1. Tento penzijní plán stanoví podmínky penzijního připojištění,
Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku
Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v
PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.
PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. Preambule Penzijní plán Allianz transformovaného fondu, Allianz penzijní společnost, a. s. (dále jen Allianz transformovaný
1 Časová hodnota peněz
1 Časová hodnota peněz Př výpočtech vycházíme ze standardu 30E/360evropský standard) kdy používáme měsíce s 30dnyaujednohorokuuvažujeme360dní. 1.1 Inflace, reálná a nomnální úroková míra Přvýpočtureálnéúrokovémíryvycházímezevzorce
www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing. Jarmila Űberallová
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing.
Daň z příjmu fyzických osob
Daň z příjmu fyzických osob Legislativa Daň z příjmů fyzických osob upravuje zákon č. 586/1992 Sb., o daních z příjmů, v aktuálním znění Poplatníci daně - fyzické osoby Každý, kdo má na území ČR trvalé
Analýza cenných papírů 2 Analýza dluhopisů. Alikvótní úrokový výnos a cena dluhopisu mezi kupónovými platbami
Analýza cenných papírů 2 Analýza dluhopisů Alikvótní úrokový výnos a cena dluhopisu mezi kupónovými platbami Analýza dluhopisů Alikvótní úrokový výnos (naběhlý kupón) Cena kupónového dluhopisu mezi kupónovými
POSKYTOVÁNÍ ÚVĚRŮ OBCEMI SVÝM OBČANŮM
SVAZ MĚST A OBCÍ ČESKÉ REPUBLIKY POSKYTOVÁNÍ ÚVĚRŮ OBCEMI SVÝM OBČANŮM Dotazníkové šetření V Praze, březen 2017 Obsah ZÁKLADNÍ IDENTIFIKACE OBCÍ POČET ZÚČASTNĚNÝCH OBCÍ DLE KRAJŮ... 2 ZÁKLADNÍ IDENTIFIKACE
POLOLETNÍ ZPRÁVA za 1. pololetí 2003
. Jihomoravská plynárenská, a.s. Plynárenská 499/1 657 02 Brno. POLOLETNÍ ZPRÁVA za 1. pololetí 2003.......... emitenta registrovaného cenného papíru ISIN CZ0005078956 zpracovaná na základě 80b zákona
REKLAMNÍ NABÍDKA. 1. Údaje o věřiteli spotřebitelského úvěru. 2. Popis základních vlastností spotřebitelského úvěru. 1.1 Věřitel
REKLAMNÍ NABÍDKA 1. Údaje o věřiteli spotřebitelského úvěru 1.1 Věřitel Komerční banka, a.s., se sídlem Praha 1, Na Příkopě 33 čp. 969, PSČ 114 07, IČO: 45317054, zapsaná v obchodním rejstříku vedeném
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_19 ŠVP Podnikání RVP 64-41-L/51
PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.
PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. Preambule Penzijní plán Allianz transformovaného fondu, Allianz penzijní společnost, a. s. (dále jen Allianz transformovaný
Pololetní zpráva 2007 CAC LEASING, a.s.
Pololetní zpráva 2007 CAC LEASING, a.s. CAC LEASING, a.s. Radlická 14 / 3201 150 00 Praha 5 Člen skupiny UniCredit Group Společnost CAC LEASING, a.s., IČ 15886492, se sídlem Radlická 14/3201, Praha 5 předkládá,
FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
FINANČNÍ MATEMATIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu