Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9

Rozměr: px
Začít zobrazení ze stránky:

Download "Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9"

Transkript

1 K testu průběžný

2 Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9 % p.a. platné v průběhu prvních 4 let spoření a úrokové sazbě 6 % platné v průběhu dalších 5 let spoření. Uvažujeme pololetní připisování úroku a srážkovou daň 5 %.

3 Úročení s poplatky Klient si uložil Kč na termínový účet na 10 let při úrokové sazbě 5 % p.a. a ročním připisováním úroků. Kolik bude mít za 10 let na účtu, jestliže banka strhává na konci každého roku poplatek ve výši 350 Kč? Úroky jsou zdaněny srážkovou daní ve výši 15 %.

4 Úročení Developerská společnost nabízí 2 možnosti financování koupě bytu. Buď ihned zaplatit základní cenu Kč anebo zaplatit teď zálohu Kč, na konci 1. roku 50 % ze základní ceny, na konci 2. roku dalších 50 % ze základní ceny. Která varianta je výhodnější pro kupujícího, uvažujete-li refinanční úrokovou míru 5,9 % p.a. a čtvrtletní úročení?

5 Klient spoří na dům počátkem každého čtvrtletí částku Kč při úrokové sazbě 3,5% p.a. a pololetním připisování úroků. Úrokové výnosy podléhají zdanění ve výši 15%. Jaká bude ekvivalentní částka (zaručující stejnou budoucí hodnotu), pokud se rozhodne, že bude ukládat peníze na účet koncem každého měsíce?

6 Klient naspořil za poslední 4 roky částku Kč. Jakou částku naspoří za celkem 12 let, když víte, že úroková míra je neměnná po celou dobu ve výši 4,50 % p.a. a úroky jsou připisovány v půlročním intervalu?

7 Klient bude spořit po dobu 5-ti let koncem každého měsíce částku Kč při úrokové sazbě ve výši 5 % p.a. a čtvrtletním připisováním úroků. Banka strhává na konci každého úrokového období poplatek ve výši 100 Kč. Určete, o kolik by se mohla snížit výše pravidelné úložky v případě, že by banka neúčtovala poplatky (a naspořená částka zůstala stejná)?

8 Klient spořil koncem každého čtvrtletí částku Kč podobu 10-ti let při úrokové sazbě 6 % p.a. a pololetním připisování úroků, které byly zdaněny sazbou 15%. Na konci 7. roku však vybral z účtu částku Kč. Jaká částka mu ještě zůstala na účtu na konci 10. roku?

9 Klient spořil koncem každého čtvrtletí částku Kč po dobu 15-ti let při úrokové sazbě 3 % p.a.. Na konci 10. roku však došlo ke zvýšení úrokové sazby z původních 3 % na 5 % p.a.. O jakou částku na konci každého čtvrtletí mohl klient ukládat méně po této změně, aby naspořil stejnou částku jako v případě, že se úroková míra nezměnila? Úroky po celou dobu byly zdaněny sazbou 15% a připisovány pololetně.

10 Klient spořil počátkem každého měsíce částku Kč po dobu 20 let při úrokové sazbě 4% p.a.. Na konci 14. roku byl po dohodě s bankou proveden částečný výběr z účtu. Jaká částka byla vybrána, když na konci 20. roku na účtu zůstalo ještě Kč. Úroky jsou daněny sazbou 15% připisovány ročně.

11 Spořili jsme Kč měsíčně polhůtně při úrokové sazbě 8 % p.a. se čtvrtletním připisováním úroků. Po 9 letech máme na účtu Kč. Jaký byl počáteční vklad?

12 Jakou částku jsme před 7 lety vybrali z účtu, jestliže na něm máme po 11 letech spoření částku Kč a přitom jsme na konci každého čtvrtletí ukládali Kč? Účet je úročen úrokovou sazbou 5,4 % p.a. s pololetním připisováním úroků, které byly daněny srážkovou daní ve výši 15 %.

13 Spoříme pravidelně vždy počátkem měsíce na účet se čtvrtletním připisováním úroků. Po 10 letech máme naspořeno Kč, na konci 10. roku z této částky vybereme Kč a po 20 letech máme naspořeno Kč. Jakou roční úrokovou sazbou je úročen daný účet?

14 Při jaké roční úrokové míře s pololetním připisováním úroků spořil klient pravidelně na počátku každého čtvrtletí po dobu 6 let, víme-li, že po 4 letech má naspořeno Kč, současně na konci 4. roku vybere z této naspořené částky Kč a po 6 letech bude stav jeho účtu Kč?

15 Nové aerodynamické řešení produktu přineslo za 7 let úsporu 24 mil. Kč. Kolik činila průměrná roční úspora zjištěná ke konci roku, je-li výnosová míra podniku 11,5 % p.a.?

16 Spoříme koncem pololetí Kč po 30 let při 5,8 % p.a. a ročním úročení. Na konci 18. roku banka sníží úrokovou sazbu na 3,8 % p.a.. O kolik se musí zvýšit pravidelná úložka, aby se naspořená částka nezměnila?

17 Při jaké roční úrokové sazbě spořil klient, který koncem každého měsíce ukládal stejnou částku po dobu 9-ti let, víte-li, že po 6 letech má naspořeno Kč a současně na konci 6. roku vybere z této naspořené částky Kč. Dále rovněž víte, že po 9-ti letech je stav jeho spořícího účtu Kč a úroky byly pravidelně připisovány v měsíčním intervalu.

18 Na počátku roku uložíme na účet Kč. Určete, kolik budeme mít na účtu za 10 let, pokud a každá další úložka (ukládáme vždy počátkem dalšího roku) je dvojnásobkem úložky předchozí. Úrokovací období je pololetní a úroková sazba je 8 % p.a.

19 Kolik budeme mít naspořeno na konci roku, spoříme-li koncem každého měsíce a je-li první úložka je rovna Kč a každá následující je o 50 Kč nižší než předchozí. Úrokové období je roční a úroková sazba je 10% p.a.

20 Padesátiletá investice do nemovitosti ve výši bude dle vašeho očekávání přinášet roční příjmy o výši , které každý rok porostou o 2 %. Náklady na údržbu jsou každé pololetí. Zároveň za 20 let očekáváte velkou rekonstrukci o nákladech Jaká je NPV investice, pokud je požadovaná výnosnost 5 %?

21 Kolik musíte začít za 2 roky měsíčně polhůtně spořit, abyste si mohli za 40 let nechat po dobu 30ti let vyplácet měsíční předlhůtní důchod ve výši 9 000, pokud víte, že si penzijní fond účtuje roční poplatek (pouze důchody), úroková sazba je 4 % p.a. a úrokovací období roční?

22 Jaká je hodnota nekonečného předlhůtního měsíčního důchodu, pokud je první měsíc a každý následující měsíc roste o 0,2 %. Poplatek fondu za výplatu důchodu je 100 měsíčně polhůtně a úroková míra při spojitém úročení je 3 % p.a.

23 Který z investorů zhodnotil svoje peníze reálně více, pokud na počátku investoval v domácí měně na pět let? A)Investor zhodnocující peníze s 3 % roční úrokovou mírou při nulové dani, 2% inflaci a pololetním připisování úroků B)Investor zhodnocující peníze při 9 % sazbě p.a. a spojitém úročení při 4% inflaci a 20% daňové sazbě

24 Na jakou maximální cenu by měl investor přistoupit u investice s životností 5 let, která by v 1. roce přinesla příjem ve výši 2 mil. Kč a v dalších letech by tržba rostla konstantním tempem 3%. Počáteční výdaje na tuto investici by činily 6 mil. Kč a na konci životnosti by bylo zapotřebí 1,5 mil. Kč k demolici investice. Investor požaduje roční míru výnosu ve výši 10%.

25 Klient spořil Kč koncem každého měsíce. Po 10 letech klient zvýšil ukládanou částku na Kč a takto spořil dalších 20 let. Kolik měl klient na spořícím účtu za 30 let, když mu banka za vedení účtu strhávala čtvrtletně poplatek 120 Kč? Úroky jsou připisovány pololetně a úroková sazba činí 5 % p.a.

26 Koncem každého měsíce klient spoří 900 Kč po dobu 30 let. V 18. roce vybere ze spořícího účtu Kč. Jak velký důchod si tím zabezpečí, když chce, aby mu byl vyplácen začátkem měsíce po dobu 15 let. Úroková míra je po celou dobu neměnná ve výši 3,6% p. a. Úroky jsou připisovány každé 4 měsíce.

Téma: Jednoduché úročení

Téma: Jednoduché úročení Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad

Více

Budoucí hodnota anuity Spoření

Budoucí hodnota anuity Spoření Finanční matematika Budoucí hodnota anuity Spoření Doposud vypočítáme konečné (budoucí) hodnoty či počáteční (současné) hodnoty, za předpokladu konstantní (jednorázové) současné hodnoty (jednorázového

Více

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity

Více

Důchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný

Důchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný Důchody Současná hodnota anuity Důchody rozdělení a) Bezprostřední b) Odložený a) Dočasný b) Věčný a) Předlhůtní b) Polhůtní Existence jednoho univerzálního vzorečku! Ostatní vztahy jsou pouze odvozené

Více

Složené úročení. Škoda, že to neudělal

Složené úročení. Škoda, že to neudělal Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel

Více

K n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení:

K n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení: Finanční matematika Spojité úročení Doposud při výpočtu stavu kapitálu na konci doby uložení byl proveden za (tacitního) předpokladu, že četnost připisování úroku za 1 rok m je konečné číslo délka jednoho

Více

CVIČENÍ ZE ZÁKLADŮ FINANCÍ

CVIČENÍ ZE ZÁKLADŮ FINANCÍ CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové

Více

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),

Více

CVIČENÍ ZE ZÁKLADŮ FINANCÍ

CVIČENÍ ZE ZÁKLADŮ FINANCÍ CVIČENÍ ZE ZÁKLADŮ FINANCÍ DRUHÝ TUTORIÁL 30. 11. 2013 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 INFORMACE V ISu vypsány termíny: So 11. 1. 2014 13:00 učebna P11 So 1.

Více

SPOŘENÍ KRÁTKODOBÉ. Finanční matematika 5

SPOŘENÍ KRÁTKODOBÉ. Finanční matematika 5 SPOŘENÍ KRÁTKODOBÉ Finanční matematika 5 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm05

Více

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl

Více

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010 Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web

Více

3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy

3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy 3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu,

Více

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice

Více

8.2.11 Příklady z finanční matematiky II

8.2.11 Příklady z finanční matematiky II 8.2. Příklady z finanční matematiky II Předpoklady: 82 Inflace Peníze nemají v dnešní době žádnou hodnotu samy o sobě, jejich používání reguluje stát, v případě zhroucení ekonomiky se může stát, že svou

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo

Více

Úročení vkladů. jednoduché složené anuitní

Úročení vkladů. jednoduché složené anuitní jednoduché složené anuitní Úročení vkladů Úrok = cena půjčených peněz, kterou platí ten, kdo peníze dočasně užívá, je vyjádřen v peněžních jednotkách (v Kč) (míra) = v %, vyjadřuje v procentech jakou část

Více

Pasivní bankovní operace, vkladové bankovní produkty.

Pasivní bankovní operace, vkladové bankovní produkty. 5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV

Více

Pasivní bankovní operace, vkladové bankovní produkty.

Pasivní bankovní operace, vkladové bankovní produkty. 5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV

Více

Penzijní připojištění - změny od 1.1.2013

Penzijní připojištění - změny od 1.1.2013 Penzijní připojištění - změny od 1.1.2013 Víte, co se stane v rámci důchodové reformy od roku 2013 s penzijním připojištěním? Mimo jiného se změní výše státního příspěvku, posune se hranice pro možnost

Více

PENÍZE, BANKY, FINANČNÍ TRHY

PENÍZE, BANKY, FINANČNÍ TRHY PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou

Více

Jakou formou je penzijní připojištění podporováno státem? (dle současné právní úpravy k 1. 1. 2006)

Jakou formou je penzijní připojištění podporováno státem? (dle současné právní úpravy k 1. 1. 2006) Doktorand: Jiří Vopátek VŠE Praha, Fakulta managementu v J. Hradci Anotace: Příspěvek je zaměřen na problematiku II. pilíře v rámci důchodového zabezpečení ve stáří. Příspěvek přibližuje uvedený pilíř

Více

Ing. Barbora Chmelíková 1

Ing. Barbora Chmelíková 1 Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ

Více

ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky

ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky Otázka: Úročení a příklady výpočtu Předmět: Ekonomie Přidal(a): Penny ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky ÚROKOVÁ SAZBA (MÍRA) = v % vyjadřuje, jakou část z

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné

Více

Finanční matematika. Téma: Důchody. Současná hodnota anuity

Finanční matematika. Téma: Důchody. Současná hodnota anuity Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění

Více

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota 1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.

Více

3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota

3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota 3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.

Více

Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah

Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah Vítáme Vás na semináři organizovaném v rámci projektu Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah Reg. číslo projektu: CZ.1.07/3.1.00/50.0015 Tento projekt je spolufinancován Evropským

Více

Výpočet dopadů do státního rozpočtu při změně státního příspěvku v DPS

Výpočet dopadů do státního rozpočtu při změně státního příspěvku v DPS Výpočet dopadů do státního rozpočtu při změně státního příspěvku v DPS Vzhledem k neexistujícímu průzkumu veřejného mínění jsou výpočty pravděpodobné a přibližné. Tyto výpočty byly provedeny na základě

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo

Více

Finanční gramotnost pro SŠ -10. modul Investování a pasivní příjem

Finanční gramotnost pro SŠ -10. modul Investování a pasivní příjem Modul č. 10 Ing. Miroslav Škvára O investicích O investování likvidita výnosnost rizikovost Kam mám investovat? Mnoho začínajících investorů se ptá, kam je nejlepší investovat? Všichni investiční poradci

Více

Sbírka příkladů z finanční matematiky Michal Veselý 1

Sbírka příkladů z finanční matematiky Michal Veselý 1 Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.

Více

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v

Více

Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů.

Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů. I. PŘÍKLADY Z FINANČNÍ MATEMATIKY Rozšíření spektra příkladů ze skript Bezvoda, Blahuš. Verze 11.3 2009 Metodické poznámky k zadaným příkladům. Všude jsou výsledky, zhusta naznačen postup. Výpočty je nutno

Více

BKF_CZAF PRVNÍ TUTORIÁL Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro)

BKF_CZAF PRVNÍ TUTORIÁL Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro) BKF_CZAF CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 13. 11. 2015 1 Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro) 322829@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva

Více

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)

Více

Časová hodnota peněz (2015-01-18)

Časová hodnota peněz (2015-01-18) Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky

Více

Výhody poradce Money Plus +

Výhody poradce Money Plus + PRESENTÁTOR Popis práce finančního trenéra Sociální dávky při pracovní neschopnosti, Půjčky vs. Investice, Financování bydlení a Finanční svoboda Výhody poradce Money Plus + penzijní fond hypotéka leasing

Více

Stavební spoření v ČR co by měl vědět bankéř

Stavební spoření v ČR co by měl vědět bankéř Stavební spoření v ČR co by měl vědět bankéř Petr Kielar petr@kielar.cz http://petr.kielar.cz 1 Obsah 1. Historický úvod 2. Konstrukce tarifu (postavte si vlastní stavební spořitelnu) 3. Rovnováha mezi

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 2 Číslo

Více

7.1. Jistina, úroková míra, úroková doba, úrok

7.1. Jistina, úroková míra, úroková doba, úrok 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO154

Více

ZÁKLADY FINANČNÍ MATEMATIKY

ZÁKLADY FINANČNÍ MATEMATIKY ZÁKLADY FINANČNÍ MATEMATIKY Na přípravě skript se podíleli: Ing. Petr Borkovec - kap. 3, 4, 6 Ing. Roman Ptáček - kap. 1, 2, 5, 9 Ing. Petr Toman - kap. 7, 8 Technická úprava: Ing. Petr Borkovec Ing. Petr

Více

Věra Keselicová. Prosinec 2011

Věra Keselicová. Prosinec 2011 VY_62_INOVACE_VK11 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová Prosinec 2011 8.

Více

VY_42_INOVACE_M2_34 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.:

VY_42_INOVACE_M2_34 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.: Operační program: Vzdělávání pro konkurenceschopnost Projekt: ŠKOLA PRO ŽIVOT Registrační číslo projektu: CZ.1.07/1.4.00/21.2362 Kód: 01.02 Pořadové číslo materiálu: 34 I/2 Inovace a zkvalitnění výuky

Více

Osobní údaje Klient Martina Plánovací. Váš financní trenér. Financní bilance. Deti. Príjmy - celkové

Osobní údaje Klient Martina Plánovací. Váš financní trenér. Financní bilance. Deti. Príjmy - celkové Dobrý den, v rukou držíte financní plán, který Vám má ukázat cestu ke splnení Vašich životních cílu. Vycházeli jsme z dukladné analýzy Vašich príjmu, výdaju a plánu, které chcete v budoucnu uskutecnit.

Více

Excel COUNTIF COUNTBLANK POČET

Excel COUNTIF COUNTBLANK POČET Excel Výpočty a vazby v tabulkách COUNTIF Sečte počet buněk v oblasti, které odpovídají zadaným kritériím. Funkce je zapisována ve tvaru: COUNTIF(Oblast;Kritérium) Oblast je oblast buněk, ve které mají

Více

Pracovní list. Workshop: Finanční trh, finanční produkty

Pracovní list. Workshop: Finanční trh, finanční produkty Pracovní list Workshop: Finanční trh, finanční produkty Úkol č. 1 Osobní půjčka Doplňte v následující tabulce kolik zaplatíte za úvěr celkem (vč. úroků) při jednotlivých RPSN. Současně porovnejte, zda

Více

Stavební spoření. HOR_62_INOVACE_8.ZSV.25.notebook. September 04, 2013

Stavební spoření. HOR_62_INOVACE_8.ZSV.25.notebook. September 04, 2013 Stavební spoření HOR_62_INOVACE_8.ZSV.25 Mgr. Jana Horná 8. ročník ( VI/2 EU OPVK) 3. 4. 2013 Základy společenský věd 8. ročník; Stavební spoření 1 Výukový materiál je připraven pro 8. ročník s využitím

Více

FINANČNÍ MATEMATIKA Finanční produkty. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Finanční produkty. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Finanční produkty www.zlinskedumy.cz Finanční produkty jsou půjčky, hypotéky, spoření, nejrozšířenější jsou produkty, jejichž hlavní zaměřením je: správa financí: běžné účty zhodnocení

Více

Finanční matematika pro každého příklady + CD-ROM

Finanční matematika pro každého příklady + CD-ROM Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady

Více

Finanční řízení podniku cvičení 1. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla.

Finanční řízení podniku cvičení 1. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Finanční řízení podniku cvičení 1 I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Některé vztahy mezi majetkem a kapitálem 1) Majetek je ve stejné výši jako kapitál, proto

Více

Finanční rozbor současného penzijního připojištění se státním příspěvkem, srovnání s bankovním účtem

Finanční rozbor současného penzijního připojištění se státním příspěvkem, srovnání s bankovním účtem Finanční rozbor současného penzijního připojištění se státním příspěvkem, srovnání s bankovním účtem Studie z předmětu KMA/MAB, LS 2009/2010, A09N0169P Finanční informatika a statistika tomi.rosi@seznam.cz

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.07 Integrovaná střední

Více

Bankovnictví a pojišťovnictví 5

Bankovnictví a pojišťovnictví 5 Bankovnictví a pojišťovnictví 5 JUDr. Ing. Otakar Schlossberger, Ph.D., vedoucí katedry financí VŠFS a externí odborný asistent katedry bankovnictví a pojišťovnictví VŠE Vkladové bankovní produkty Obsah:

Více

KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT

KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT Mgr. Ing. Šárka Dytková Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním

Více

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření

Více

4 Zásobitel, reálná úroková míra, diskont směnky

4 Zásobitel, reálná úroková míra, diskont směnky 4 Zásobitel, reálná úroková míra, diskont směnky Zásobitel, nebo-li také věčná renta, řeší, kolik dnes uložit peněžních prostředků, aby mi mohla být vyplácena pravidelná částka po určité období. Známe

Více

Dotazník Osobní finanční plán. Diskrétní

Dotazník Osobní finanční plán. Diskrétní Dotazník Osobní finanční plán Diskrétní Osobní informace Celá jména Klient Partner/ka Pohlaví muž žena muž žena Rodné číslo Datum narození / / / / Rodinný stav svobodn(ý/á) rozvoden(ý/á) ženat(ý/á) vdov(ec/a)

Více

PENZIJNÍ PŘIPOJIŠTĚNÍ

PENZIJNÍ PŘIPOJIŠTĚNÍ PENZIJNÍ PŘIPOJIŠTĚNÍ Mgr. Erika Chmelířová, CHM_62_INOVACE_8.M.36 8. ročník (VI/2 EU OPVK) 12.6.2013 Matematické praktikum 8. roč. PENZIJNÍ PŘIPOJIŠTĚNÍ Výukový materiál je připraven pro 8. ročník s využitím

Více

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014 Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

SPOŘÍCÍ ÚČET. Finanční matematika 7

SPOŘÍCÍ ÚČET. Finanční matematika 7 SPOŘÍCÍ ÚČET Finanční matematika 7 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm07

Více

chtěl bych Vám ukázat úplně jinou možnost spoření, než jakou jste nejspíš znali doposud.

chtěl bych Vám ukázat úplně jinou možnost spoření, než jakou jste nejspíš znali doposud. VS Dobrý den, chtěl bych Vám ukázat úplně jinou možnost spoření, než jakou jste nejspíš znali doposud. Můj názor je, že když si spořím, tak ať to stojí za to. Nyní Vám ukážu na porovnání, jak a kde lze

Více

Prezentace k finanční gramotnosti.jak spořit, jaké jsou druhy spoření. Stavební spořitelny v ČR.

Prezentace k finanční gramotnosti.jak spořit, jaké jsou druhy spoření. Stavební spořitelny v ČR. Anotace Autor Jazyk Očekávaný výstup Speciální vzdělávací potřeby Klíčová slova Druh učebního materiálu Druh interaktivity Cílová skupina Prezentace k finanční gramotnosti.jak spořit, jaké jsou druhy spoření.

Více

Produkty finanční matematiky. Podle standardů finanční. gramotnosti pro střední školy. Předmět matematika Praktické využití posloupností a řad

Produkty finanční matematiky. Podle standardů finanční. gramotnosti pro střední školy. Předmět matematika Praktické využití posloupností a řad N{zev školy Číslo šablony/číslo sady Gymnázium J. V. Jirsíka, Fráni Šrámka, České Budějovice VI/2/ Poř. číslo v sadě 1 Jméno autora Období vytvoření materi{lu N{zev souboru Zařazení materi{lu podle ŠVP

Více

Váš průvodce důchodovou reformou ...---. JIŘí PĚNKAVA. ČESKÉ POJIŠŤOVNY a.s, REFORMA PENZí ) PENZIJNí FOND ČESKÉ POJlŠŤOVNY

Váš průvodce důchodovou reformou ...---. JIŘí PĚNKAVA. ČESKÉ POJIŠŤOVNY a.s, REFORMA PENZí ) PENZIJNí FOND ČESKÉ POJlŠŤOVNY JIŘí PĚNKAVA pojišťovací a investiční poradce ČESKÉ POJIŠŤOVNY a.s, Agentura 336 Plzeň II, jednatelství Rokycany Bydliště: Iěškovská 557, Mýto, 33805 Tel.: 723 599657, TeIJFax: 371 750126 REFORMA PENZí

Více

STAVEBNÍ SPOŘENÍ. Finanční matematika 8

STAVEBNÍ SPOŘENÍ. Finanční matematika 8 STAVEBNÍ SPOŘENÍ Finanční matematika 8 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm08

Více

Investování volných finančních prostředků

Investování volných finančních prostředků Investování volných finančních prostředků Rizika investování Lidský faktor Politická rizika Hospodářská rizika Měnová rizika Riziko likvidity Inflace Riziko poškození majetku Univerzální optimální investiční

Více

Metodika výpočtu RPSN stavebního spoření

Metodika výpočtu RPSN stavebního spoření Metodika výpočtu RPSN stavebního spoření 1. Východiska 1.1. Základním východiskem je zákon Způsob výpočtu RPSN vychází ze Zákona o úvěru pro spotřebitele (dále jen ZÚS). Tato metodika pouze sjednocuje

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Krátkodobé

Více

Penzijní připojištění se státním příspěvkem. Stručná metodická příručka prodeje

Penzijní připojištění se státním příspěvkem. Stručná metodická příručka prodeje Penzijní připojištění se státním příspěvkem Stručná metodická příručka prodeje březen 2008 Otázky a odpovědi prodejce Penzijního fondu České pojišťovny Proč právě Penzijní fond České pojišťovny Penzijní

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Nové trendy v investování

Nové trendy v investování AC Innovation s.r.o. Projekt: Praktický průvodce ekonomikou aneb My se trhu nebojíme! Registrační číslo: CZ.1.07/1.1.34/02.0039 Vzdělávací oblast: Nové trendy v investování Ing. Yveta Tomášková, Ph. D.

Více

PŮJČKY - pokračování

PŮJČKY - pokračování PŮJČKY - pokračování Výukový materiál je připraven pro 8. ročník s využitím Power pointové prezentace a sešitu. Žáci se seznámí s různými možnostmi půjček, s jejich výhodami a nevýhodami, pracují s tabulkou,

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

1 Běžný účet, kontokorent

1 Běžný účet, kontokorent 1 Běžný účet, kontokorent Běžný účet je základním bankovním nástrojem pro správu klientových financí. Jeho primárním účelem je umožnit klientovi hospodařit s peněžní prostředky prostřednictvím některého

Více

Krátkodobé cenné papíry a Skonto obsah přednášky

Krátkodobé cenné papíry a Skonto obsah přednášky Krátkodobé cenné papíry a Skonto obsah přednášky 1) Vybrané krátkodobé cenné papíry 2) Skonto není cenný papír, ale použito obdobných principů jako u krátkodobých cenných papírů Vybrané krátkodobé cenné

Více

Za případné drobné chybky a nepřesnosti v textu se omlouvám. Jednoduché úročení

Za případné drobné chybky a nepřesnosti v textu se omlouvám. Jednoduché úročení Jednoduché úročení 1. Jednoduchý příklad na výpočet úrokové sazby ze základní rovnice jednoduchého úročení: FV=PV*(1+r*t). Aby úroková sazba vyšla v p.a., je nutno časovou proměnnou (t) uvažovat v letech

Více

Obchodní a ekonomické ukazatele fondů penzijních společností za 1. pololetí 2016

Obchodní a ekonomické ukazatele fondů penzijních společností za 1. pololetí 2016 Obchodní a ekonomické ukazatele fondů penzijních společností za 1. pololetí 2016 Prezentace pro PT1 Praha 25.8.2016 ÚČASTNÍCI POČET ÚČASTNÍKŮ 6 000 000 5 000 000 4 000 000 3 000 000 2 000 000 1 000 000

Více

Jak dál v rozvoji doplňkového penzijního spoření?

Jak dál v rozvoji doplňkového penzijního spoření? Jak dál v rozvoji doplňkového penzijního spoření? JUDr. Vít Samek PT 1 Praha, MPSV, 21. května 2015 Odborná komise pro důchodovou reformu Mandát 2015 PT1 Odborné komise pro DR Analyzovat efektivitu státní

Více

Také Vám rodiče spořili na byt a koupili jste si tak akorát mikrovlnku?

Také Vám rodiče spořili na byt a koupili jste si tak akorát mikrovlnku? Také Vám rodiče spořili na byt a koupili jste si tak akorát mikrovlnku? Asi všichni máme zkušenost s tím, že nám rodiče spořili, a když jsme se k penězům v osmnácti letech dostali, nebylo z nich skoro

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

Česká spořitelna radí klientům, jak rozložit peníze

Česká spořitelna radí klientům, jak rozložit peníze Česká spořitelna radí klientům, jak rozložit peníze Martin Techman, ředitel úseku rozvoj obchodu České spořitelny Tomáš Reytt, ředitel odboru klientské segmenty České spořitelny Obsah Co říkají výzkumy

Více

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu.

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu. 1. Cena kapitálu Náklady kapitálu představují pro podnik výdaj, který musí zaplatit za získání různých forem kapitálu (tj. za získání např. různých forem dluhů, akciového kapitálu, nerozděleného zisku

Více

ING Bank Svět spoření

ING Bank Svět spoření ING Bank Svět spoření Libor Vaníček Ředitel retailového bankovnictví Praha 16. ledna 2013 www.ingbanksvetsporeni.cz Co je ING Bank Svět spoření Aktivita, při které shromažďujeme dostupné informace o úsporách

Více

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule Klasický termínovaný vklad SLŽENÉ ÚRKVÁNÍ PŘÍKLAD: Podnikatel uložil na klasický termínovaný vklad částku 300 000 Kč. Jaká bude výše kapitálu za 3 roky, jestliže úroková sazba činí 2% p.a. a je a) roční

Více

ČASOVÁ HODNOTA PENĚZ VE FINANČNÍM ROZHODOVÁNÍ

ČASOVÁ HODNOTA PENĚZ VE FINANČNÍM ROZHODOVÁNÍ ČASOVÁ HODNOTA PENĚZ VE FINANČNÍM ROZHODOVÁNÍ 1. Faktor času ve finančním rozhodování Uplatňuje se zejména při: a) rozhodování o investicích (výběr investičních variant) hodnotíme efektivnost investičních

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více

DIPLOMOVÁ PRÁCE. Analýza hodnotící funkce ve stavebním spoření

DIPLOMOVÁ PRÁCE. Analýza hodnotící funkce ve stavebním spoření UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Analýza hodnotící funkce ve stavebním spoření Vedoucí diplomové práce: Mgr. Eva

Více

Konferencia QUO VADIS 3. PILIER? Česká republika: III. pilíř po reformě a co zaměstnanecké penze?

Konferencia QUO VADIS 3. PILIER? Česká republika: III. pilíř po reformě a co zaměstnanecké penze? Konferencia QUO VADIS 3. PILIER? Česká republika: III. pilíř po reformě a co zaměstnanecké penze? Hotel SOREA REGIA Bratislava 18. októbra 2016, JUDr. Vít Samek Změny ve III. pilíři 2012 až 2015: Transformace

Více

FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky FINANČNÍ MATEMATIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Investiční principy, kterým věříme a které využíváme při individuálním hodnotovém investičním poradenství

Investiční principy, kterým věříme a které využíváme při individuálním hodnotovém investičním poradenství Investiční principy, kterým věříme a které využíváme při individuálním hodnotovém investičním poradenství J a ro s l av H l av i c a, č e r ve n e c 2 0 1 4 V následující prezentaci se seznámíte s našimi

Více

Materiál je určen pro dataprojektor, popř. interaktivní tabuli

Materiál je určen pro dataprojektor, popř. interaktivní tabuli Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO163 Obchodní akademie, Střední pedagogická škola a Jazyková

Více

1 Umořovatel, umořovací plán, diskont směnky

1 Umořovatel, umořovací plán, diskont směnky 1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si

Více

6. Přednáška Vkladové (depozitní) bankovní produkty

6. Přednáška Vkladové (depozitní) bankovní produkty 6. Přednáška Vkladové (depozitní) bankovní produkty VKLADOVÉ BANKOVNÍ PRODUKTY bankovní obchody, při kterých banka získává cizí peněžní prostředky formou vkladů nebo emisí dluhových cenných papírů. Mezi

Více

CVIČNÉ PŘÍKLADY z finanční matematiky

CVIČNÉ PŘÍKLADY z finanční matematiky CVIČNÉ PŘÍKLADY z finanční matematiky ÚROKOVÝ A RENTNÍ POČET 1. pracovní verze OBSAH 1. PŘÍKLADY ÚROKOVÉHO POČTU... 2 1.1 Jednoduché úročení... 2 1.2 Složené úročení... 3 2. PŘÍKLADY RENTNÍHO POČTU...

Více