PENÍZE, BANKY, FINANČNÍ TRHY

Rozměr: px
Začít zobrazení ze stránky:

Download "PENÍZE, BANKY, FINANČNÍ TRHY"

Transkript

1 PENÍZE, BANKY, FINANČNÍ TRHY

2 Úročení 2

3 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou je peněžní částka uložena nebo zapůjčena Úroková sazba (míra) úrok vyjádřený v % z hodnoty kapitálu za časové období, (podíl z vypůjčené částky) 3

4 Úročení - Základní pojmy Druhy úrokových sazeb 1. Nominální je uvedená v úvěrové smlouvě vytištěna na plášti dluhopisu 2. Efektivní uměle vypočtená úroková míra. Umožňuje porovnat různé nominální úrokové míry, poměřované sice za stejné období, ale s různou četností připisování úroků. 3. Požadovaná použití pro diskontování, resp.akumulování peněžních toků. V podstatě představuje ztrátu našich potenciálních výnosů (realizací určité investice se vzdávám možnosti investovat jinde) 4. Vnitřní výnos. procento je to úroková míra, při níž se cena investice rovná současné (diskontované) hodnotě budoucích výnosů. 4

5 Úročení - Základní pojmy Úroková období jak často, s jakou frekvencí jsou úroky k jistině pravidelně připisovány. Z hlediska času rozlišujeme pět základních úrokovacích období: p.a. (per annum). roční p.s. (per semestre)...pololetní p.q. (per quartale) čtvrtletní p.m. (per mensem)...měsíční p.sept. (per septimanam) týdenní p.d. (per diem).denní 5

6 Úročení - Základní pojmy Délka období / doba, po kterou byla úročená jistina Anglická metoda ACT/365 je založená na skutečném počtu dnů úrokovacího období a délce roku, tj. 365 Francouzská metoda ACT/360 (mezinárodní metoda) také skutečný počet dnů, ale délka roku je 360 dnů Německá metoda 30E/360 (obchodní metoda) celé měsíce počítány jako 30 dnů a rok jako 360 dnů 6

7 Typy úročení Jednoduché vyplácené úroky se nepřičítají k jistině, tj. úroky se počítají z původního kapitálu Složené úročení úroky se přičítají k jistině a spolu s ní se úročí Kapitál (Kč) vklad úroky K0 * i úročitel Čas (t) 7

8 Úrokový trend u jednoduchého úročení (vklad) Kapitál (Kč) Počáteční kapitál Čas (t) 8

9 Úrokový trend u jednoduchého úročení (půjčka) Kapitál (Kč) Půjčka jistina úroky K0 * i Splátka jistiny Čas (t) 9

10 Podle placení úroků Polhůtní úročení k placení úroků dochází až na konci úrokového období, tj. tzv. dekurzivní úročení období zúčtování úroku bankou Předlhůtní úročení k placení dochází na začátku úrokového období tj. tzv. anticipativní úročení zúčtování úroku bankou období 10

11 Jednoduché úročení polhůtní u = K * i * n u - je výše úroku v peněžním vyjádření K - je kapitál v peněžním vyjádření i - index úrokové míry = p/100 n - je poměrná část úrokového období v letech u = K * p * t 100 * 360 u - je výše úroku v peněžním vyjádření K - je kapitál v peněžním vyjádření p - roční úroková sazba v % t - doba splatnosti kapitálu ve dnech 11

12 Jednoduché úročení polhůtní Příklad č.1 Jaké jsou úrokové náklady úvěru ve výši ,- Kč, jednorázově splatného za 8 měsíců (240 dnů) je-li úroková sazba 9 % p.a. Řešení: 12

13 Jednoduché úročení polhůtní Příklad č.2 Úvěr byl poskytnut ve výši Kč. Úvěr je jednorázově splatný, a to dne Úroková sazba byla stanovena na 12% p.a. Kolik budeme muset zaplatit na úrokách? a) anglickou metodou, b) francouzskou metodou, c) německou metodou Řešení: u úrokový náklad K výše úvěru i 0,12 u -? u = K * i * t 13

14 Jednoduché úročení polhůtní ŘEŠENÍ: 14

15 Základní rovnice pro jednoduché polhůtní úročení Pro zjištění celkové výše zúročeného kapitálu včetně úroků platí vztah: K 1 = K 0 + u Využijeme tedy vztah pro výpočet úroku u = K * i * n (resp.u = K * i * t ). K 1 = K 0 * (1 + i * n) resp. K 1 = K 0 * (1 + i * t) K 1. celková výše kapitálu (budoucí hodnota kapitálu) K 0. počáteční výše kapitálu i index úrokové míry n doba splatnosti kapitálu v letech t. doba splatnost ve dnech 15

16 Příklad č. 3 Jaký je stav vkladu Kč za sedm měsíců (210 dnů) při úrokové sazbě 1,5 % 16

17 Výpočet počáteční výše kapitálu při JÚ Využijeme vztah K 1 = K 0 * (1 + i * n) K 0 = K i*n Příklad č. 4 Jakou sumu se splatností čtyři měsíce si můžeme půjčit, máme-li možnost po této době použít na splacení úvěru a úroků ,- Kč? Úroková sazba činí 7 %p.a. 17

18 Výpočet současné a budoucí hodnoty při jednoduchém úročení rozhodování o investičních variantách pomocí metody časové hodnoty peněz Příklad č. 4 Co je pro nás výhodnější při koupi daru: dát za něj nyní hotově ,- Kč nebo zaplatit za rok ,- Kč? Uvedenou hotovost máme možnost investovat při úrokové míře 4,2 % p.a. 18

19 Jednoduché úročení předlhůtní Dochází k placení úroků již na začátku období. V praxi se s ním můžeme setkat jako s diskontem u eskontu směnek. K ob = K n ( 1- d * n ) K ob =částka k vyplacení K n = nominální hodnota pohledávky splatná za dobu n d = roční diskontní sazba vyjádřená jako desetinné číslo n = délka období v letech 19

20 Jednoduché úročení předlhůtní Příklad č. 5 Banka eskontuje směnku v hodnotě Kč, 35 dní před dobou splatnosti při diskontní sazbě 4% p.a. Neuvažujeme další provize a poplatky. 20

21 Vztah mezi polhůtním a předlhůtním úročením V praxi jde o možnost srovnání výhodnosti úvěru a diskontu směnky jako možných forem financování chodu podniku. Jde o převádění polhůtní úrokové sazby na předlhůtní a naopak pomocí vzorců: i = d d = i 1 - d * n 1+ i * n i = úroková sazba d = diskontní sazba 21

22 Příklad č. 6 Podnik se rozhoduje mezi klasickým úvěrem a eskontem směnky. Banka nabízí: - Úrokovou sazbu úvěru ve výši 6,3 % p.a. (polhůtní platba) - Diskont (předlhůtní sazbu) při eskontu směnky ve výši 6 % p.a. Která varianta je pro podnik výhodnější? Existují dvě možností řešení, stačí vždy jedna z nich. 22

23 2. Složené úročení úrok za další období se počítá z kapitálu zvýšeného o úrok za předcházející období vyplácené úroky se připočítávají k původnímu kapitálu a v následujícím období se jako základ pro výpočet bere hodnota kapitálu zvýšená o úrok 23

24 Složené úročení Kapitál (Kč) Čas (t) 24

25 Úrok v případě jednoduchého úročení roste lineárně a u složeného úročení exponenciálně kapitál exp K1 K0 *(1+i) lin K0 1 čas 25

26 Základní vzorec složeného úročení a) Úrokové období roční úroky jsou připisovány na konci roku k k i) n..(1 0 (1 + i) n.. úročitel složeného úročení (exponenciální závislost) (1 + i * t) úročitel jednoduchého úročení (lineární závislost) n b) Období kratší než jeden rok úroky jsou připisovány častěji než jednou za rok K n = budoucí hodnota kapitálu za dobu n K 0 =počáteční peněžní částka i = roční úroková sazba vyjádřená jako desetinné číslo n = doba splatnosti kapitálu v letech m = počet kolikrát do roka dochází k placení úroků k n k i.( 1 ) 0 m n* m 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 Příklad Na kolik Kč vzroste vklad ,- Kč, uložený tři roky a pět měsíců při 1,5 % p.a. úrokové sazbě a ) s ročním připisováním úroků b ) s pololetním připisováním úroku a ) K n = K 0 * ( 1 + i ) no * ( 1 + l * i ) K n = * ( 1 + 0,015 ) 3 * ( 1 + 5/12 * 0,015 ) K n = ,- Kč b ) K n = K 0 * ( 1 + i ) nm * ( 1 + l * i ) m K n = * ( 1 + 0,015/ 2 ) 6 * ( 1 + 5/12 * 0,015 ) K n = ,30 Kč 34

35 Faktor času Diskont Akumulace K K K K0 = K1 * (1 + i ) K2 = K1 * (1 + i) Diskontní faktor (odúročitel) Akumulační faktor (úročitel) -n n K0 = Kn * (1 + i ) Kn = K0 * (1 + i) 1 Dnešní (diskontovaná ) hodnota kapitálu je částka, která se při dané úrokové míře zvětší za danou dobu na danou konečnou hodnotu. 35

36 Současná hodnota při složeném úročení Využití: při hodnocení výhodnosti investice k dnešnímu dni znám-li její výnos v budoucnosti. Jedná se v podstatě o využití již známých výpočtů: Současná hodnota SH = K 0 36

37 Příklad Máme možnost koupit za Kč investici ( obligaci ), která nám umožní získat za dva roky částku Kč. Je to výhodná investice, uvažujeme-li úrokovou sazbu 3 % p.a. a roční připisování úroků? Musíme vypočíst současnou hodnotu Kč a porovnat ji s požadovanými Kč K o = K n / ( 1 + i ) n K o = / ( 1 + 0,03 ) 2 = 4 712, 98 Abychom za dva roky měli Kč museli bychom investovat nyní 4 712,98 Kč. Za obligaci zaplatíme dnes jenom Kč - investice je výhodná. 37

38 Příklad: Porovnejte mezi sebou dva možné způsoby plateb: a) Platba v hotovosti ve výši Kč b) Záloha Kč v hotovosti s doplatkem Kč za 3 roky Kn = K0 + u = K0 * (1+i/m) n*m K0 = Kn / (1 + i/m) n*m Kn i 8% n 3 roky m 2 K0 = / (1+0,08/2) 6 = ,32 Kč Kč investuji s výnosem 8%, kde se bude složeně úročit a úroky se budou připisovat dvakrát ročně = ,32 Kč Výhodnější je varianta A, protože investujeme jen Kč. U varianty B by jsme investovali až Kč. 38

39 Efektivní úroková sazba - uměle vypočtená roční úroková sazba - umožňuje porovnat různé nominální úrokové míry, poměřované sice za stejné období,ale s různou četností připisování úroků. - označujeme ji i e Odvození vzorce: efektivní úroková sazba i e = úrokové sazbě s častější kapitalizací úroků K 0 * ( 1 + i e ) = K 0 * ( 1 + i/m ) m 1 + i e = ( 1 + i/m) m i e = (1 + i/m ) m

40 Příklad Spočítejte efektivní úrokovou sazbu odpovídající 4 % p.a. jestliže a) jsou úroky kapitalizovány pololetně b) jsou úroky kapitalizovány čtvrtletně c) jsou úroky kapitalizovány měsíčně i e = ( 1 + i/m ) m - 1 a) i e = ( 1 + 0,04/2) 2 1 = 0,0404 = 4,04 % b) i e = ( 1 + 0,04/4) 4 1 = 0,0406 = 4,06 % c) i e = ( 1 + 0,04/12) 12 1 = 0,0407 = 4,07 % Z uvedeného příkladu je vidět, že čím častěji se během roku připisují úroky, tím je to pro vkladatele výhodnější. 40

41 Nominální a reálná úroková míra V předcházejících kapitolách jsme se nezabývali vlivem inflace na zhodnocení investic, a proto jsme se bavili o nominální úrokové míře. Jestliže budeme do této míry zahrnovat inflační vlivy budeme se bavit o reálné úrokové míře. i r = i i i i r = reálná úroková míra; i = nominální úroková míra; i i = míra inflace Postup: Počáteční kapitál nejprve úročíme nominální úrokovou mírou a potom diskontujeme inflační mírou. K r = K 0 * (1+i r ) / (1+ i i ) i r = K r /K 0 1 Kr reálná výše kapitálu na konci úrokovacího období K0 kapitál na počátku úrokovacího období i nominální úroková míra v setinách ir reálná úroková míra v setinách ii míra inflace 41

42 Příklad Zjistěte míru inflace jestliže nominální úroková míra je 5 % a reálná úroková míra je 3 %. i r = i i i 3% = 5% i i = 2 % 42

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)

Více

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl

Více

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),

Více

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010 Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web

Více

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření

Více

CVIČENÍ ZE ZÁKLADŮ FINANCÍ

CVIČENÍ ZE ZÁKLADŮ FINANCÍ CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové

Více

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice

Více

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity

Více

Téma: Jednoduché úročení

Téma: Jednoduché úročení Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad

Více

Časová hodnota peněz (2015-01-18)

Časová hodnota peněz (2015-01-18) Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky

Více

Krátkodobé cenné papíry a Skonto obsah přednášky

Krátkodobé cenné papíry a Skonto obsah přednášky Krátkodobé cenné papíry a Skonto obsah přednášky 1) Vybrané krátkodobé cenné papíry 2) Skonto není cenný papír, ale použito obdobných principů jako u krátkodobých cenných papírů Vybrané krátkodobé cenné

Více

Bankovnictví a pojišťovnictví 5

Bankovnictví a pojišťovnictví 5 Bankovnictví a pojišťovnictví 5 JUDr. Ing. Otakar Schlossberger, Ph.D., vedoucí katedry financí VŠFS a externí odborný asistent katedry bankovnictví a pojišťovnictví VŠE Vkladové bankovní produkty Obsah:

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné

Více

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014 Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY. Finanční matematika 1

ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY. Finanční matematika 1 ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY Finanční matematika 1 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

Pasivní bankovní operace, vkladové bankovní produkty.

Pasivní bankovní operace, vkladové bankovní produkty. 5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV

Více

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D.

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D. ČASOVÁ HODNOTA PENĚZ Manažerská ekonomika obor Marketingová komunikace 8. přednáška Ing. Jarmila Ircingová, Ph.D. Časová hodnota peněz Každou peněžní operaci prováděnou v současnosti a zaměřenou do budoucnosti

Více

Ing. Barbora Chmelíková 1

Ing. Barbora Chmelíková 1 Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ

Více

Investičníčinnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investičníčinnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Investičníčinnost Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie Podnikové pojetí investic Klasifikace investic v podniku 1) Hmotné (věcné, fyzické, kapitálové) investice 2) Nehmotné

Více

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota 1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.

Více

Finanční matematika pro každého příklady + CD-ROM

Finanční matematika pro každého příklady + CD-ROM Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady

Více

Složené úročení. Škoda, že to neudělal

Složené úročení. Škoda, že to neudělal Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel

Více

1 Umořovatel, umořovací plán, diskont směnky

1 Umořovatel, umořovací plán, diskont směnky 1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si

Více

Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů.

Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů. I. PŘÍKLADY Z FINANČNÍ MATEMATIKY Rozšíření spektra příkladů ze skript Bezvoda, Blahuš. Verze 11.3 2009 Metodické poznámky k zadaným příkladům. Všude jsou výsledky, zhusta naznačen postup. Výpočty je nutno

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18)

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) Zkratkou RPSN se označuje takzvaná roční procentní sazba nákladů. Udává, kolik procent z původní dlužné částky musí spotřebitel za jeden rok zaplatit v

Více

Úrok a diskont. Úroková míra závisí především na úrokové míře, kterou vyhlašuje ČNB. ČNB vyhlašuje 3 sazby

Úrok a diskont. Úroková míra závisí především na úrokové míře, kterou vyhlašuje ČNB. ČNB vyhlašuje 3 sazby Úrok a diskont Obsah: Jednoduché a složené úrokování. Úroková a diskontní míra, jednoduchá a složená. Vícenásobné úročení během období, nominální úroková míra, roční efektivní úroková míra, reálná úroková

Více

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534 VY_32_INOVACE_BAN_113 Úvěrový proces Ing. Dagmar Novotná Obchodní akademie, Lysá nad Labem, Komenského 1534 Dostupné z www.oalysa.cz. Financováno z ESF a státního rozpočtu ČR. Období vytvoření: 12/2012

Více

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem

Více

Carmen Simerská. Ústav matematiky VŠCHT, Praha. Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.

Carmen Simerská. Ústav matematiky VŠCHT, Praha. Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter. Sbírka příkladů Finanční matematika Carmen Simerská Ústav matematiky VŠCHT, Praha Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter. Sbírka příkladů Finanční

Více

Finanční trh. Bc. Alena Kozubová

Finanční trh. Bc. Alena Kozubová Finanční trh Bc. Alena Kozubová Finanční trh Finanční trh je místo, kde se obchoduje se všemi formami peněz. Je to největší trh v měřítku národní i světové ekonomiky. Je to trh velice citlivý na jakékoliv

Více

3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota

3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota 3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.

Více

7.1. Jistina, úroková míra, úroková doba, úrok

7.1. Jistina, úroková míra, úroková doba, úrok 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina

Více

Finanční matematika pro každého

Finanční matematika pro každého Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující

Více

Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor. Složené úročení: roční úrokový faktor umocněný na počet let

Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor. Složené úročení: roční úrokový faktor umocněný na počet let Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor PV (1 + u) u (sazba) r (sazba p.a.) d (dní) (dní) Složené úročení: roční úrokový faktor umocněný na počet let Úroky lze vyplácet nebo

Více

ZÁKLADY FINANČNÍ MATEMATIKY

ZÁKLADY FINANČNÍ MATEMATIKY ZÁKLADY FINANČNÍ MATEMATIKY Na přípravě skript se podíleli: Ing. Petr Borkovec - kap. 3, 4, 6 Ing. Roman Ptáček - kap. 1, 2, 5, 9 Ing. Petr Toman - kap. 7, 8 Technická úprava: Ing. Petr Borkovec Ing. Petr

Více

FINANČNÍ MATEMATIKA I

FINANČNÍ MATEMATIKA I UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Eva Bohanesová FINANČNÍ MATEMATIKA I Olomouc 2006 Oponenti: Ing. Jaroslava Kubátová, Ph.D. Mgr. RNDr. Ivo Müller, Ph.D. Studijní text vznikl jako

Více

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule Klasický termínovaný vklad SLŽENÉ ÚRKVÁNÍ PŘÍKLAD: Podnikatel uložil na klasický termínovaný vklad částku 300 000 Kč. Jaká bude výše kapitálu za 3 roky, jestliže úroková sazba činí 2% p.a. a je a) roční

Více

FINANČNÍ MATEMATIKA Základní pojmy od A do O. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od A do O. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od A do O www.zlinskedumy.cz Finanční matematika = soubor obecných matematických metod uplatněných v oblasti financí např. poskytování krátkodobých a dlouhodobých úvěrů,

Více

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku Téma 2: Časová hodnota peněz a riziko ve finančním rozhodování 1. Časová hodnota peněz ve finančním rozhodování podniku 2. Riziko ve finančním rozhodování - rizika systematická a nesystematická - podnikatelské

Více

Pracovní list. Workshop: Finanční trh, finanční produkty

Pracovní list. Workshop: Finanční trh, finanční produkty Pracovní list Workshop: Finanční trh, finanční produkty Úkol č. 1 Osobní půjčka Doplňte v následující tabulce kolik zaplatíte za úvěr celkem (vč. úroků) při jednotlivých RPSN. Současně porovnejte, zda

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Krátkodobé

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo

Více

HODNOCENÍ INVESTIC. Manažerská ekonomika obor Marketingová komunikace. 9. přednáška Ing. Jarmila Ircingová, Ph.D.

HODNOCENÍ INVESTIC. Manažerská ekonomika obor Marketingová komunikace. 9. přednáška Ing. Jarmila Ircingová, Ph.D. HODNOCENÍ INVESTIC Manažerská ekonomika obor Marketingová komunikace 9. přednáška Ing. Jarmila Ircingová, Ph.D. Metody hodnocení efektivnosti investic Při posuzování investice se vychází ze strategických

Více

Pojem investování a druhy investic

Pojem investování a druhy investic Investiční činnost Pojem investování a druhy investic Rozhodování o investicích Zdroje financování investic Hodnocení efektivnosti investic Metody hodnocení investic Ukazatele hodnocení efektivnosti investic

Více

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.06 Integrovaná střední

Více

KAPITOLA 9: ZÁKLADNÍ DRUHY OPERACÍ - KOMERČNÍ BANKOVNICTVÍ

KAPITOLA 9: ZÁKLADNÍ DRUHY OPERACÍ - KOMERČNÍ BANKOVNICTVÍ KAPITOLA 9: ZÁKLADNÍ DRUHY OPERACÍ - KOMERČNÍ BANKOVNICTVÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl

Více

Typy úvěrů. Bc. Alena Kozubová

Typy úvěrů. Bc. Alena Kozubová Typy úvěrů Bc. Alena Kozubová Typy úvěrů Kontokorentní úvěr s bankou uzavřeme smlouvu o čerpání úvěru z našeho běžného účtu. Ten může vykazovat i záporný zůstatek až do sjednané výše. Čerpání a splácení

Více

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů Finanční matematika pro každého 8. rozšířené vydání J. Radová, P. Dvořák, J. Málek věcné a matematické vysvětlení základních finančních pojmů metody pro praktické rozhodování soukromých osob i podnikatelů

Více

Sbírka příkladů z finanční matematiky Michal Veselý 1

Sbírka příkladů z finanční matematiky Michal Veselý 1 Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.

Více

BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4

BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 Sada: Ekonomie Téma: Banky Autor: Mgr. Pavel Peňáz Předmět: Základy společenských věd Ročník: 3. ročník Využití: Prezentace určená pro výklad a opakování Anotace:

Více

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2 Dobrý den. Kladno, 22. 3. 2007 21:35 Chtěl bych se všem omluvit za ten závěr přednášky. Bohužel mě chyba v jednom z příkladů vykolejila natolik, že jsem se již velice těžko soustředil na svůj výkon. Chtěl

Více

CZ.1.07/1.5.00/34.0499

CZ.1.07/1.5.00/34.0499 Číslo projektu Název školy Název materiálu Autor Tematický okruh Ročník CZ.1.07/1.5.00/34.0499 Soukromá střední odborná škola Frýdek-Místek,s.r.o. VY_32_INOVACE_251_ESP_06 Marcela Kovářová Datum tvorby

Více

Jak si založit živnost?

Jak si založit živnost? Jak si založit živnost? Návštěva (centrální registrační místo) CRM a vyplnění JRF (jednotný registrační formulář Dále doložit: -výpis zrejstříku trestů ČR (nesmí být starší 3 měsíců, není-li přiložen kžádosti,

Více

Investování volných finančních prostředků

Investování volných finančních prostředků Investování volných finančních prostředků Rizika investování Lidský faktor Politická rizika Hospodářská rizika Měnová rizika Riziko likvidity Inflace Riziko poškození majetku Univerzální optimální investiční

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 2 Číslo

Více

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Lesnická ekonomika Připravil: Ing. Tomáš Badal Lesnická ekonomika Financování podniku Finanční

Více

Majetek. MAJETEK členění v rozvaze. Dlouhodobý majetek

Majetek. MAJETEK členění v rozvaze. Dlouhodobý majetek Majetek Podnikání se bez majetku neobejde, různé druhy podnikání ovlivňují i skladbu a velikost majetku. Základem majetku jsou peníze, za které se nakupují potřebné majetkové části. Rozvaha (bilance) písemný

Více

Analýza návratnosti investic/akvizic

Analýza návratnosti investic/akvizic Analýza návratnosti investic/akvizic Klady a zápory Hana Rýcová Charakteristika investice: Investice jsou ekonomickou činností, kterou se subjekt (stát, podnik, jednotlivec) vzdává své současné spotřeby

Více

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 =a n 4 a 1 =50. Pro jaké nejmenší přirozené číslo n bude součet prvních n členů záporný? max. 4b, kde Úloha

Více

8 Leasing. 1 Co je to leasing? [online]. [cit. 09/2008] Dostupné z:

8 Leasing. <http://www.sfinance.cz/firmy-a-podnikani/informace/pruvodce/rozdeleni/> 1 Co je to leasing? [online]. [cit. 09/2008] Dostupné z: 8 Leasing Slovo "leasing" bylo převzato do české terminologie z anglického slova, které v překladu znamená "pronájem". Jedná se o obchodní operaci leasingového pronajímatele (leasingová společnost) a leasingového

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO154

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo

Více

6. Přednáška Vkladové (depozitní) bankovní produkty

6. Přednáška Vkladové (depozitní) bankovní produkty 6. Přednáška Vkladové (depozitní) bankovní produkty VKLADOVÉ BANKOVNÍ PRODUKTY bankovní obchody, při kterých banka získává cizí peněžní prostředky formou vkladů nebo emisí dluhových cenných papírů. Mezi

Více

Alena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz

Alena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz FINANCOVÁNÍ OBCHODNÍCH SPOLEČNOSTÍ Alena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz Majetková struktura (aktiva) 1. Pohledávky za upsaný základní kapitál

Více

Excel COUNTIF COUNTBLANK POČET

Excel COUNTIF COUNTBLANK POČET Excel Výpočty a vazby v tabulkách COUNTIF Sečte počet buněk v oblasti, které odpovídají zadaným kritériím. Funkce je zapisována ve tvaru: COUNTIF(Oblast;Kritérium) Oblast je oblast buněk, ve které mají

Více

Energetický audit Doc.Ing.Roman Povýšil,CSc. Tebodin Czech Republic s.r.o.

Energetický audit Doc.Ing.Roman Povýšil,CSc. Tebodin Czech Republic s.r.o. Seminář ENVI A Energetický audit Doc.Ing.Roman Povýšil,CSc. Tebodin Czech Republic s.r.o. CÍL: vysvětlit principy systémového přístupu při zpracování energetického auditu Východiska (legislativní) Zákon

Více

Předinvestiční fáze 21.2.2015. Typické výnosnosti investic u technologických staveb. Obsah studie proveditelnosti

Předinvestiční fáze 21.2.2015. Typické výnosnosti investic u technologických staveb. Obsah studie proveditelnosti Předinvestiční fáze Investor se rozhoduje, zda se zvolený projekt zahájí, nebo nikoli očekává zhodnocení vložených prostředků do projektu zhodnocení musí být vyšší, než např. úroky z vkladů Pro rozhodnutí

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO142

Více

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita VI.2 Vytváření podmínek pro rozvoj znalostí, schopností a dovedností v oblasti finanční gramotnosti Výukový materiál pro téma VI.2.1 Řemeslná

Více

Kapitálová struktura podniku. cv. 5

Kapitálová struktura podniku. cv. 5 Kapitálová struktura podniku cv. 5 Kapitálová struktura Struktura zdrojů, z nichž vznikl majetek podniku. Vlastní kapitál vložil majitel a je nositelem rizika. Cizí kapitál vložili věřitelé. Vlastní zdroje

Více

http://www.zlinskedumy.cz

http://www.zlinskedumy.cz Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 3., 4. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Peníze, mzdy daně, pojistné

Více

ÚcFi typové příklady. 1. Hotovostní a bezhotovostní operace

ÚcFi typové příklady. 1. Hotovostní a bezhotovostní operace ÚcFi typové příklady 1. Hotovostní a bezhotovostní operace 1. Přijat vklad na běžný účet klienta 10 000,- 2. Klient vybral z běžného účtu 25 000,- 3. Banka přijala v hot. vklad na termínovaný účet 50 000,-

Více

M58 Když je peněz nadbytek (pracovní list - student)

M58 Když je peněz nadbytek (pracovní list - student) M58 Když je peněz nadbytek (pracovní list - student) Autor: Mgr. Jiří Kadlec Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika, základy společenských

Více

CVIČNÉ PŘÍKLADY z finanční matematiky

CVIČNÉ PŘÍKLADY z finanční matematiky CVIČNÉ PŘÍKLADY z finanční matematiky ÚROKOVÝ A RENTNÍ POČET 1. pracovní verze OBSAH 1. PŘÍKLADY ÚROKOVÉHO POČTU... 2 1.1 Jednoduché úročení... 2 1.2 Složené úročení... 3 2. PŘÍKLADY RENTNÍHO POČTU...

Více

Investiční činnost v podniku

Investiční činnost v podniku Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Investiční činnost v podniku Eva Štichhauerová Technická univerzita v Liberci Nauka

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

1 Běžný účet, kontokorent

1 Běžný účet, kontokorent 1 Běžný účet, kontokorent Běžný účet je základním bankovním nástrojem pro správu klientových financí. Jeho primárním účelem je umožnit klientovi hospodařit s peněžní prostředky prostřednictvím některého

Více

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků 1 Cash Flow Rozvaha a výkaz zisku a ztráty jsou postaveny na aktuálním principu, tj. zakládají se na vztahu nákladů a výnosů k časovému období a poskytují informace o finanční situaci a ziskovosti podniku.

Více

Finanční matematika. v praxi. Oldřich Šoba Martin Širůček Roman Ptáček

Finanční matematika. v praxi. Oldřich Šoba Martin Širůček Roman Ptáček Oldřich Šoba Martin Širůček Roman Ptáček Finanční matematika v praxi Spoření a pravidelné investice Investiční rozhodování Úvěry a půjčky Důchody a renty Cenné papíry a měnové kurzy Reálné příklady z praxe

Více

Obsah Předmluva Finanční kritéria efektivnosti investičních projektů Investiční a finanční rozhodování Grafická analýza investičních projektů

Obsah Předmluva Finanční kritéria efektivnosti investičních projektů Investiční a finanční rozhodování Grafická analýza investičních projektů Obsah Předmluva............................................. 7 1. Finanční kritéria efektivnosti investičních projektů...... 9 1.1 Doba návratnosti.................................. 12 1.2 Čistá současná

Více

Finanční matematika v českých učebnicích

Finanční matematika v českých učebnicích Finanční matematika v českých učebnicích 1 Teoretické minimum finanční matematiky In: Martin Melcer (author): Finanční matematika v českých učebnicích (Od Marchetovy reformy) (Czech) Praha: Matfyzpress

Více

Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP

Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP Investice je charakterizována jako odložená spotřeba. Podnikové investice jsou ty statky, které nejsou

Více

regulace výše úvěrů a půjček mezi spojenými osobami pohledem daňových (nedaňových) nákladů vliv podkapitalizace nejen na úroky z úvěrů a půjček jaké

regulace výše úvěrů a půjček mezi spojenými osobami pohledem daňových (nedaňových) nákladů vliv podkapitalizace nejen na úroky z úvěrů a půjček jaké Podkapitalizace ve vztahu k úrokům z úvěrů a půjček RNDr. Ivan BRYCHTA regulace výše úvěrů a půjček mezi spojenými osobami pohledem daňových (nedaňových) nákladů vliv podkapitalizace nejen na úroky z úvěrů

Více

M58 Když je peněz nadbytek (pracovní list - učitel)

M58 Když je peněz nadbytek (pracovní list - učitel) M58 Když je peněz nadbytek (pracovní list - učitel) Autor: Mgr. Jiří Kadlec Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika, základy společenských věd,

Více

Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba

Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Investiční činnost Pojem investování vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Druhy investic 1. Hmotné investice vytvářejí

Více

Vyplatí se vám investovat do nemovitosti na pronájem?

Vyplatí se vám investovat do nemovitosti na pronájem? Vyplatí se vám investovat do nemovitosti na pronájem? Ceny nemovitostí šly v poslední době dolů a v současnosti jsou na zajímavých úrovních. Přitom investice do nemovitostí a příjem z jejich pronájmů jsou

Více

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy:

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy: HODNOCENÍ INVESTIC Podstatou hodnocení investic je porovnání vynaloženého kapitálu (nákladů na investici) s výnosy, které investice přinese. Jde o rozpočtování jednorázových (investičních) nákladů a ročních

Více

Finanční matematika. Téma: Důchody. Současná hodnota anuity

Finanční matematika. Téma: Důchody. Současná hodnota anuity Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění

Více

FINANČNÍ MATEMATIKY NEBOJÍME

FINANČNÍ MATEMATIKY NEBOJÍME úrok úvěr pojištění spoření půjčka daň bankrot finance valuty devizy bankovní účet termínovaný vklad splátka akontace ATM kurzovní lístek RPSN revolving kapitál jistina inflace dlužník věřitel dluhopis

Více

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu.

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu. 1. Cena kapitálu Náklady kapitálu představují pro podnik výdaj, který musí zaplatit za získání různých forem kapitálu (tj. za získání např. různých forem dluhů, akciového kapitálu, nerozděleného zisku

Více

PŮJČKY - pokračování

PŮJČKY - pokračování PŮJČKY - pokračování Výukový materiál je připraven pro 8. ročník s využitím Power pointové prezentace a sešitu. Žáci se seznámí s různými možnostmi půjček, s jejich výhodami a nevýhodami, pracují s tabulkou,

Více

Způsob, jak dochází k tvorbě hodnoty v podniku, je patrný z následujícího obrázku:

Způsob, jak dochází k tvorbě hodnoty v podniku, je patrný z následujícího obrázku: Způsob, jak dochází k tvorbě hodnoty v podniku, je patrný z následujícího obrázku: t 0 Výdaje Vklad vlastního a cizího kapitálu Vázání fi nančních prostředků ve formě investic Lidský kapitál Proměna kapitálu

Více

Cvičení ze základů financí

Cvičení ze základů financí MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA Cvičení ze základů financí Distanční studijní podpora Kolektiv autorů Brno 2012 Autorský kolektiv: Ing. Miroslav Sponer, Ph.D. kap. 1, 5, 6 vedoucí autorského

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

Investiční rozhodování, přehled metod a jejich využití v praxi

Investiční rozhodování, přehled metod a jejich využití v praxi PE 301 Eva Kislingerová Investiční rozhodování, přehled metod a jejich využití v praxi Eva Kislingerová 4-2 Struktura přednášky Základní pojmy NPV a její konkurenti Metoda doby splacení (The Payback Period)

Více

Financování podniku. Finanční řízení podniku

Financování podniku. Finanční řízení podniku Financování podniku Finanční řízení podniku Peněžní toky v podniku NÁKUP výrobní faktory - práce - materiál - stroje VÝROBA výrobky a služby peněžní příjmy PRODEJ peněžní výdaje PENÍZE (CASH FLOW) Úkoly

Více