ATOMOVÁ FYZIKA FYZIKA MIKROSVĚTA

Rozměr: px
Začít zobrazení ze stránky:

Download "ATOMOVÁ FYZIKA FYZIKA MIKROSVĚTA"

Transkript

1 Látka s skládá z atomů a molkul. ATOMOVÁ FYZIKA FYZIKA MIKROSVĚTA Pohld klasické mchaniky podobnost stavby atomu s plantárním modlm lktrony musí obíhat kolm jádra. Diskrétní strukturu má lktrický proud (nabité částic) i lktromagntické vlnění (fotony). Pohld lktrodynamiky pohybující s náboj s nrovnoměrným pohybm (lktrony v obalu) musí vyzařovat lktromagntické vlny či zářní obcně a ztráct nrgii. Atom (nní ndělitlný jak odpovídá jho názv) má svou strukturu xistují lmntární částic (částic s nznámou strukturou ktrá s chová jako clk).. Korpuskulárně vlnový dualismus Lui d Brogliova hypotéza (9) co platí pro fotony platí i pro lktrony (a další částic s nnulovou hmotností) Fyzika mikrosvěta = kvantová fyzika Enrgi E a hybnost p fotonů jsou určny vztahy E = hω p r r ω π = hk k r = = f λ. Frkvnc ω a vlnový vktor lktromagntickém poli. k r dfinují monochromatickou vlnu v volném Vlnová rovnic částic (vlnová funkc) r i rr ψ ( x t) = ψ xp ( Et px) h kd ψ j konstantní amplituda vlny (d Brogliovy) pohybu volné částic. Pro částic s nnulovou klidovou hmotností nrgi E = mv hybnost p r r = mv. Pro nrgii a hybnost fotonu platí rlativistický vztah E = mc ktrý zaručuj ž s částic bud pohybovat rychlostí světla. Pro částici s nnulovou hmotností platí vztah mzi hybností a nrgií p E =. m Pro fotony ωλ = πfλ = πc pro částic s nnulovou klidovou hmotností p ωλ = π. m

2 D Brogliova vlnová délka vlny pro částic s nnulovou klidovou hmotností h λ =. mv Od roku 9 Ruthrfordův xprimnt (α částic pronikající -6 m tnkou kovovou fólií s jn málo odchýlí od původního směru) prokázal vnitřní strukturu atomu. Těžká a kladně nabité jádro atomu j v atomu koncntrováno v malém prostoru o průměru přibližně -5 m. Elktrony tvoří obal atomu s průměrm - m a zajišťují lktrickou nutralitu atomu. Pohld klasické mchaniky podobnost stavby atomu s plantárním modlm lktrony musí obíhat kolm jádra po liptických drahách v počtu zajišťujícím nutralitu atomu navnk. Rozpor! lktron obíhající kolm jádra vzbuzuj priodicky proměnné lktromagntické pol jhož změny s šíří prostorm jako lktromagntické zářní. Nstabilita atomu snižování nrgi lktronu přibližování lktronu k jádru pád do jádra Přdstava Nils Bohra (93) Atom nvysílá zářní pokud s nalézá v něktrém z diskrétních stacionárních stavů o nrgii E n (n = 3 ) Atom vyzařuj jn při přchodu z jdnoho z těchto stavů do druhého. Bohrův modl atomu vodíku Složní atomu H: proton v jádru (m p ) lktron v obalu (m ). Přitažlivá Coulombovská síla ralizuj při oběhu lktronu kolm protonu dostřdivou sílu m v = r 4πε r odtud pro poloměr vychází r =. 4πε mv. Bohrův postulát Elktron obíhá kolm jádra jn v určitých kvantových drahách π m rv = n. h n = 3 Na kruhové dráz musí být clistvý počt vlnových délk d Brogliho vln lktronu πr = nλ. h Dosazním λ = dostanm přdchozí rovnici. mv Rovnicmi jsou určny kvantové dráhy lktronů (pro daná n můžm určit r a v) ε h v = r = n ε h n πm n hlavní kvantové číslo určuj pořadí dovolné kvantové dráhy i nrgii lktronu v dané dráz.. Bohrův postulát Pokud lktron obíhá po kvantové dráz nvydává atom nrgii (lktron nvyzařuj nrgii) nrgi atomu j stálá.

3 3. Bohrův postulát Při přchodu lktronu z kvantové dráhy na jinou kvantovou dráhu o nižší nrgii vyzáří atom foton o nrgii rovné úbytku nrgi lktronu. hf = E n E m. Opačný pochod (přchod lktronu z dráhy m na dráhu n) přdstavující zvýšní nrgi lktronu j možný pohlcním fotonu (absorpc fotonu) nbo nárazm hmotné částic (atomu molkuly lktronu iontu) na atom. Kintická nrgi lktronu E k =. 8πε r Potnciální nrgi lktronu E p = ϕ kd ϕ j potnciál v místě dráhy ϕ = 4πε r tdy pro potnciální nrgii platí E p =. 4πε r Clková nrgi lktronu E = Ek E p =. 8πε r Dosazním poloměru r z prvního postulátu dostanm nrgii lktronu na kvantové dráz určné hlavním kvantovým číslm n 4 m En =. 8ε n h Clková nrgi lktronu na kvantové dráz j určna hlavním kvantovým číslm a můž nabývat jn diskrétních hodnot. Poznámka: záporná hodnota clkové nrgi znamná ž kintická nrgi lktronu na kvantové dráz nstačí k tomu aby s lktron vyprostil z přitažlivosti jádra. Zavdním Rydbrgovy konstanty (kmitočtu) 4 m N = (N = s - ) 3 8ε h E n = Nh / n Njnižší nrgi přísluší stavu určnému hlavním kvantovým číslm n = a s rostoucím n rost. S využitím posldní rovnic dostanm pro vyzářné kvantum při přchodu z hladiny n do m (n > m) nrgii hf = Nh n m

4 a po úpravě Balmrův vzorc f = N m n určující frkvnci zářní ktré vysílá atom vodíku při přchodu lktronu z vyšší kvantové dráhy n do nižší kvantové dráhy m Schéma přchodů viz. obrázk. oo Lyman n= n= n=3 Balmr Paschn n=5 n=4 Brackt E[V] Brackt Paschn Balmr hrana séri n -353 Lyman Atom v základním (nvzbuzném) stavu obíhá-li lktron na njnižší kvantové dráz n = Vzbuzný (xcitovaný) stav dojd k němu po absorpci nrgi nárazm molkuly (při vyšší tplotě) atomu s musí dodat nrgi rovná rozdílu nrgií atomu v končném a počátčním stavu. Vzmm-li v úvahu pohyb jádra atomu vodíku kolm spolčného těžiště j třba vynásobit v posldním vzorci Rydbrgův kmitočt výrazm m m p kd m p j hmotnost jádra atomu vodíku (protonu). Po dosazní platí N f =. m m n m p Tnto vztah Bohrovy tori uspokojivě vyloží zákonitosti v spktrch atomu vodíku. Séri čar soubor spktrálních čar vzniklých přchodm lktronu do dané kvantové dráhy z ostatních drah s vyšším kvantovým číslm. Skládá s z nkončného počtu čar ktré s blíží limitnímu kmitočtu (kmitočt pro n ) tzv. hraně séri. Séri čar u atomu vodíku: Lymannova séri odpovídá n = lží v UV oblasti spktra

5 Balmrova séri n = lží zčásti v oblasti viditlné al jjí hrana j v UV Paschnova séri n = 3 Brackttova séri n = 4 Pfundova séri n = 5 lžící všchny v infračrvné oblasti spktra

6 KVANTOVÁNÍ ELEKTRONOVÝCH DRAH Jmná struktura spktr atomů (A. Sommrfld přdpoklad prostorového uspořádání drah lktronů) Čáry v skutčnosti njsou jdnoduché (singltní) dublty triplty Vličiny charaktrizující prostorovou orintaci oběžné dráhy: momnt hybnosti magntický momnt lktronu. Elktron obíhající rychlostí v kolm jádra na přibližně kruhové dráz o r přdstavuj proudovou smyčku kd v πr v I = πr udává kolikrát prošl lktron daným bodm za jdnotku času. Magntický momnt µ µ = πr I. Dosazním za I dostanm tzv. orbitální magntický momnt. rv µ = =. mrv =. M l m m kd M t absolutní hodnota vktoru momntu hybnosti. Vktorový zápis včtně uvažovaného záporného náboj lktronu r r µ =. M l m Při hlavním kvantovém čísl n můž momnt hybnosti lktronu nabývat jn určitých diskrétních hodnot určných orbitálním kvantovým číslm (vdljším kvantovým číslm) l n h a j clistvým násobkm h =. π M l = l.h. n určuj hlavní poloosu lipsy oběžné dráhy lktronu l určuj vdljší poloosu. l určuj vlikost momntu hybnosti lktronu na dané dráz (orbitě). Vysvětlní duplicity čar: orbitální kvantové číslo s můž měnit l = ±. Podl kvantové tori j hodnota momntu hybnosti M l = h l( l ) kd l =... n.

7 Orbitální magntický momnt lktronu µ na dané kvantové dráz j clistvým násobkm tzv. Bohrova magntonu h µ B = m číslně µ B = Am. Výklad Zmanova jvu (štěpní spktrálních čar na několik složk při zářní atomu v magntickém poli) vdl k dalšímu kvantování. Vysvětlní: v magntickém poli s dráhy lktronů natočí tak ž průmět jjich magntického momntu µ do směru pol j clistvým násobkm µ B. Průmět magntického momntu lktronu do směru pol µ Z µ Z = m. µ B kd m j magntické kvantové číslo pro něž platí podmínka l m l. Z rovnic plyn µ Z =. M Z m kd M Z průmět momntu hybnosti lktronu do směru pol (osa z). M Z = m.h Strn Grlachův pokus ukázal ž kromě orbitálního magntického momntu (pohyb lktronu po oběžné dráz) má lktron spinový magntický momnt. Spin (mají ho lktrony i jádra) j projvm kvantově mchanických vlastností částic. Názorná přdstava ktré s vysvětlní blíží: rotační osa lktronu j kolmá k rovině oběžné dráhy lktronu a lktron s kolm své osy otáčí v kladném nbo záporném smyslu (případně s rotační osa staví v vnějším magntickém poli souhlasně nbo nsouhlasně rovnoběžně s tímto polm). Spin lktronu: průmět do směru pol nabývá hodnot h h. Vlastní momnt hybnosti lktronu M S M S = s.h spinový magntický momnt lktronu µ S = M S = ±µ B m kd s =. Poznámka: xistují částic s hodnotami spinového čísla.

8 ZÁKLADNÍ STAVY ATOMŮ SOUSTAVA PRVKŮ Pohybový stav lktronu j určn plně 4 kvantovými čísly: n určuj jho nrgii l orbitální momnt hybnosti m orbitální magntický momnt s vlastní momnt hybnosti (vlastní magntický momnt). Njnižší nrgi atomu vodíku přísluší první kvantové dráz (n = ). Nní možné aby základní stav (s minimální nrgií) zaujímaly ostatní atomy tak ž všchny lktrony budou v první kvantové dráz. Pauliho vylučovací princip řídí s jím rozložní lktronů v atomu. V témž atomu můž mít určitý pohybový stav (daný 4 kvantovými čísly) pouz jdiný lktron (v též dráz mohou obíhat pouz dva lktrony s opačným spinm). V všch drahách příslušných k hlavnímu kvantovému číslu n můž současně obíhat s n = n lktronů. Obsazní jdnotlivých slupk (s n počt lktronů obíhajících na drahách příslušjících n) K n = s n = L n = s n = 8 M n = 3 s n = 8 N n= 4 s n = 3 O n = 5 s n = 5 P n = 6 s n = 7 Pokud jsou v atomu obsazny plně njnižší slupky říkám ž atom j v základním (nvzbuzném) stavu. Opačný stav = xcitac. Mnděljvova priodická tabulka prvků Má 7 priod 9 grup. Prvky též grupy mají podobné vlastnosti (valnci). Počt protonů v jádř (lktronů v obalu) Z protonové číslo (atomové číslo). Př. Grupa inrtních plynů H N Ar 8 Kr 36 X 54 Rn 86. H j obsazna sféra K N má obsaznou sféru K a L Ar má obsaznou K L a M jnom 8 lktrony (plné obsazní j 8 lktronů) stačí obsazní drah s hodnotami orbitálního kvantového čísla l =. Magntické kvantové číslo nabývá pro hodnotu l = hodnoty m = a pro l = hodnoty m =. Vzmm-li dvě možnosti spinového čísla s j to dohromady 8 lktronů. Kr má sféru N obsaznou 8 lktrony (KLM jsou plně obsazny) X má sféru N obsaznou 8 lktrony sféru O 8 lktrony (KLM jsou obsazny plně) Rn má sféru O obsaznou 8 lktrony a sféru P 8 lktrony (KLM jsou obsazny plně). Spktroskopické označní drah lktronových slupk Orbitální kvantová čísla s označují

9 s (l = ) p (l = ) d (l = ) f (l = 3) Př: stav n = 3 l = j označn 3d Vnitřní lktrony lktrony v úplných slupkách Valnční lktrony lktrony v núplné krajní obvodové slupky. Atomy s jdním obvodovým lktronm tvoří po odtržní valnčního lktronu kladné jdnomocné ionty (H Li Na K...) Atomy s dvěma obvodovými lktrony kladné dvojmocné ionty (B Mg Ca...). Atomy prvků kd do úplného obsazní vnější slupky chybí méně nž polovina plného počtu lktronů ktré by slupku obsadily tvoří záporné ionty připoutáním jdnoho nbo víc lktronů (F - Cl - O - S -...).

10 NÁSTIN KVANTOVÉ MECHANIKY Vyhovující výklad d Brogliových vln podal Max Born. Uvažujm difrakci lktronů a jjich rgistraci na fotografickou dsku: malý počt lktronů npravidlný obraz vlký počt lktronů analogický obraz jako v optic. Z toho byla vyvozn závěr statistického výkladu d Brogliových vln intnzita vln j v libovolném místě prostoru úměrná pravděpodobnosti výskytu částic v daném místě. V obcném případě bud stav částic (souboru částic) popsán tzv. vlnovou funkcí Vlnová rovnic částic (vlnová funkc) r i rr ψ ( x t) = ψ xp ( Et px) h Význam vlnové funkc: Intnzita vlny určuj pravděpodobnost výskytu částic v určitém místě. Intnzita vlny j úměrná druhé mocnině amplitudy Druhá mocnina modulu vlnové funkc * ψ = ψ.ψ * kd ψ j komplxně sdružná funkc k ψ má význam ž pravděpodobnost dw s ktrou s částic nalézá v nkončně malém objmu dv = dx.dy.dz kolm bodu (x y z) j * dw = ψ. ψ. dx. dy. dz. ψ j tak hustotou pravděpodobnosti. Musí platit V * * ψ. ψ dv = ψ. ψ dxdydz = nboť pravděpodobnost ž částic s vůbc někd vyskytuj s rovná jistotě (normovací podmínka). Princip suprpozic stavů Můž-li být nějaký systém (částic nbo soustava částic) v stavu popisovaném funkcí ψ a v jiném stavu ψ pak můž být také v stavu daném vlnovou funkcí ktrá j dána kombinací vlnových funkcí ψ = c ψ cψ kd c a c jsou konstanty. Střdní hodnotu libovolné fyzikální vličiny jž j funkcí souřadnic F(x y z) určím podl dfinic pro náhodné vličiny z vztahu F ( x y z) = F( x y z) ψ. dx. dy. dz kd s intgruj přs cly obor proměnných xyz.

11 Časový průběh vlnové funkc popisující soubor částic j určn Schrödingrovou rovnicí ψ ih = ψ t j Hamiltonův oprátor (Nabla).

12 PRINCIP NEURČITOSTI Hisnbrgovy rlac nurčitosti důlžitý závěr kvantové mchaniky. Vztah mzi souřadnicí a hybností částic Nxistuj soubor v němž by bylo možné aby s současně npřsnost urční hybnosti a npřsnost urční souřadnic nomzně blížily nul. p X x h p X npřsnost urční hybnosti na os x x npřsnost urční souřadnic x polohového vktoru (polohy). Čím mnší j npřsnost urční jdné vličiny (čím přsněji j vličina určna) tím větší j npřsnost urční vličiny druhé. Příklad: pozorování mikroskopm λ rozlišovací mz SM j přibližně d =. A Tzn. ž polohu pozorovaného dtailu můžm určit njvýš s přsností x λ (bud-li A = ). Foton "dopadající" na pozorovaný dtail s na něm rozptyluj a část své hybnosti přdává. hf h Přdaná hybnost s pak řádově rovná hybnosti fotonu = a tak částčka (dtail) o ktré c λ jsm zpočátku přdpokládali ž má nulovou hybnost má násldkm rozptylu fotonů hybnost h p X. λ Přdpokládám-li. ž x λ můžm psát výš uvdnou rlaci nurčitosti x h.. Vztah nurčitosti mzi nrgií E a časm t E. t h. p X Uvažujm-li změnu nrgi atomu při vyzářní fotonu pak znám nrgii fotonu pouz s přsností h E t kd t j doba po ktrou j atom v xcitovaném stavu. Vztah nurčitosti udává hranic použitlnosti pojmů klasické fyziky na lmntární částic s nmůžm dívat jako na částic v klasické mchanic rlac nurčitosti popisuj skutčnou vlastnost xistujících lmntárních částic a ukazuj ž jjich vlastnosti jsou odlišné od vlastností hmotných bodů klasické fyziky. Podobnost rozdílů mzi klasickou mchanikou a kvantovou mchanikou jako mzi gomtrickou optikou a vlnovou optikou hf c jí

13 RADIOAKTIVNÍ ZÁŘENÍ r.869 H. Bcqurl objvil ž něktré prvky vysílají zvláštní druh zářní radioaktivní zářní Rozpad atomu radioaktivní prvky mění svou chmickou podstatu (mění s na atom jiného prvky tdy původ zářní j v jádř atomu). Časová závislost radioaktivního rozpadu Pravděpodobnost rozpadu atomu radioaktivního prvku dp za dobu dt rost s časm dp = λdt kd λ j rozpadová konstanta (charaktristická pro různé radioaktivní prvky). Mějm n atomů určitého radioaktivního prvku. Za dobu dt s radioaktivním rozpadm přmění n.dp = n.λdt atomů a původní počt atomů látky s za čas dt změní (ubud ) dn = n.dp = n.λdt. Po intgraci λt n = n. kd n počt atomů radioaktivní látky v čas t =. Aktivita Aktivitou radioaktivního prvku rozumím počt atomů ktré s přmění za jdnu skundu dn = λn. dt Jdnotkou j bcqurl (Bq) = s -. Měrná aktivita = aktivita hmotnostní jdnotky radionuklidu (Bq.kg - ). Poločas rozpadu T (konstanta charaktrizující rychlost radioaktivních přměn) doba za níž s rozpadn polovina původního počtu atomů n λt Rozpadový zákon = n.. Po logaritmování λ T = ln nboli T = ln. λ Znázornění grafické Rozpadovým zákonm s řídí všchny druhy radioaktivního rozpadu α β γ

14 n n n / -λ t T t. Druhy radioaktivního zářní druhy rozpadu Úvod Z (počt protonů v jádř) atomové číslo prvku (protonové číslo) Hmotnostní jdnotka / hmotnosti izotopu C Fyzikální atomová hmotnost hmotnost atomu vyjádřná v hmotnostních jdnotkách A hmotnostní (nuklonové) číslo fyzikální atomová hmotnost zaokrouhlná na njbližší clé číslo. Udává počt nuklonů v jádř (protony a nutrony). Počt atomů nbo molkul v jdnom kilomolu j vždy stjný a j dán Avogadrovým číslm N (65. 6 ) Jádro prvku J o atomovém čísl Z a hmotnostním čísl A označujm J 4 Zářní α mis částic α ( H hlion) vyltují z jádra rychlostí / c Příklad α rozpadu: A Z Ra Rn H Zářní β tvořno lktrony nbo pozitrony dosahují 99% c Při β přměnách jádro uvolňuj jdn lktron (záporný lmntární náboj). Hmotnost lktronu j zandbatlná v srovnání s hmotností jádra (A s nmění) atomové číslo s však o jdnotku zvýší. Příklad: U Np 9 93 Th Pa Poznámka k vysvětlní mis lktronů z jádra: jádro obsahuj nadbytk nutronů a jjich uvolněním vznikn proton () a lktron(-) a lmntární částic zvaná nutrino ktrá odnáší část nrgi a zajišťuj vyrovnání nrgtické bilanc spojné s rozpadm.

15 Zářní γ Fotony o nrgii větší nž má tvrdé rntgnové zářní (λ = -4 až - nm). Zářní γ má značnou pronikavost. Vzniká rovněž při rozpadch α β samo al nmění ani pořadové číslo ani hmotnostní číslo prvku. Jdním z hlavních výsldků objvu radioaktivity bylo zjištění prvků ktrým říkám izotopy prvky ktré mají stjné atomové al různé nuklonové číslo (izotopy xistují prakticky u všch prvků většina j radioaktivních). Přirozná radioaktivita vyskytující s v přírodě. Umělá radioaktivita (indukovaná) vyvolaná uměl v raktorch urychlovačích apod. Bombardování jadr něktrých stabilních prvků intnzivním proudm částic α dutronů a zjména nutronů mohou vzniknout nové prvky radioizotopy. Tímto způsobm můžm získat radioaktivní izotopy těch prvků u nichž s v přírodě vyskytují jn izotopy stálé. Pro radioizotopy platí stjné zákony (rozpadový zákon) ktré platí pro přiroznou radioaktivitu. Příklad: ostřlování stabilního izotopu sodíku nutrony 3 Na n 4 * Na vzniká radioaktivní izotop Na (s hvězdičkou) ktrý s radioaktivním rozpadm β mění na hořčík 4 * 4 Na Mg γ. Využití radioizotopů v mdicíně a tchnické praxi. 3. Dozimtri ionizujícího zářní Podstatou dozimtri j kvantitativní vyjádřní clkové nrgi zářní pohlcné v objmu o určité hmotnosti nbo clkového náboj iontů jdnoho znaménka vytvořného v tomto objmu. Absorbovaná dávka podíl nrgi pohlcné objmovým lmntm E D =. m jdnotkou j gray (Gy) = J.kg -. Ozářní (xpozic) clkový náboj iontů určitého znaménka vzniklých účinkm zářní v objmovém lmntu Q X =. m Jdnotkou j C.kg -. Dávková rychlost (dávkový příkon) D j střdní přírůstk dávky D v časovém intrvalu γ

16 Jdnotkou j W.kg -. D D =. t Expoziční rychlost (xpoziční příkon) přírůstk xpozic v časovém intrvalu X X =. t Jdnotkou j A.kg - Dávkový kvivalnt má význam modifikované dávky ktrá lép korluj s vlikostí nbo pravděpodobností biologického účinku různých druhů ionizujícího zářní. H = D.Q.N kd Q j jakostní faktor charaktrizující kvalitu zářní z hldiska biologického účinku N další faktory. Jdnotkou j sivrt (Sv).

17 PŘEDSTAVY O SLOŽENÍ JADER HMOTNOSTNÍ ÚBYTEK První umělou transmutaci (přměnu) jadr při ktré byl objvn proton (prováděl Ruthrford 99) N H O p. 7 8 Manžlé Curiovy zjistili (93) ž bombardováním atomových jadr brylia hliony vzniká nutrální zářní proud nutronů * B H C C n. Radioaktivní izotop * 6C s rozpadá v stabilní izotop C rok 934 transmutac tzv. fotodzintgrac dutria H γ H n. 6 a uvolní s nutron. Clková hmotnost jádra nní přsně rovna součtu hmotností protonů a nutronů v jádř. Vysvětlní pomocí vazbní nrgi (nrgi dodaná jádru k tomu aby s rozdělilo na protony a nutrony). Jadrné částic jsou v jádř držny jadrnými silami ktrými s navzájm přitahují. Tyto síly mají krátký dosah (s rostoucí vzdálností prudc klsají). V prostoru jádra jsou však tak vlké ž přvyšují coulombovské síly mzi lktrickými náboji (odpudivé síly mzi protony). Příklad: jádro dutria H. Dodám-li jádru dutria jadrnou nrgii rovnou právě vazbné nrgii dojd k oddělní nutronu o hmotnosti m n a protonu o hmotnosti m p. Soustavě složné z volného nutronu a volného protonu přísluší nrgi ( m m ) c n p zatímco jádru dutria o hmotnosti m j m j c. Podl zákona zachování nrgi musí platit m c W m m c kd W j vazbná nrgi. Z rovnic plyn j n ( ) ( mn m p ) m j p W m j = = c kd j tzv. hmotnostní rozdíl rozdíl mzi hmotností částic tvořících jádro a hmotností jádra. m j Vazbná nrgi = nrgii uvolněné (ktrou získám) při vytvořní jádra z protonů a nutronů. Pro dutrium: m j = 36 hmotnostních jdnotk W D = 8 MV.

18 Obcně pro hmotnostní rozdíl jádra složného z Z protonů a (A Z) nutronů pak dostávám m = Z. m A Z m m j p ( ) n j Úpravou kdy přičtm k. člnu na pravé straně Z.m a současně od posldního člnu na pravé straně stjný výraz odčtm dostanm m = Z. m A Z m m kd H p j H ( ) n A m = m m (hmotnost atomu vodíku) a m A = mj Z. m (hmotnost atomu prvku J Z hmotnostního rozdílu vypočítám nrgii W = m.c. j A Z. Vazbná nrgi j mírou stability jádra kladná u stabilních prvků záporná jn u nstabilních (radioaktivních) prvků Rdioaktivní zářní γ částicím tvořícím jádro mohou rovněž jako lktronům v obalu příslušt různé nrgtické stavy. Tak můž při přmístění protonů nbo nutronů z vyšší nrgtické hladiny na nižší dojít k vyzářní fotonu.

19 TRANSMUTACE PRVKŮ K transmutaci prvků můž dojít pouz tdy j-li nrgi částic ktrá transmutaci vyvolává (hlion foton nutron) dostatčně vlká. Dostatčnou nrgii částic můžm získat pouz v urychlovačích částic (cyklotronch synchrotronch...) Základní zákony transmutací zákon zachování nrgi a hmotnosti zákon zachování lktrického náboj zákon zachování hybnosti zákon zachování spinu (vktorový součt spinů přd rakcí = vktorovému součtu spinů po rakci). Njdůlžitější typy nuklárních rakcí (transmutací prvků) Rakc vyvolané urychlnými hliony byly popsány v minulé kapitol. urychlnými protony lz z jádra uvolnit hliony 7 4 Li H H 3 4 H B H H H H nbo nutrony B H 5B n provázné zářním γ 3 * C H γ 6 7N dutrony uvolnění protonu a vznik radioaktivního izotopu 3 4 * Na H Na H uvolnění hlionu 6 4 * 4 Mg H Na H ostřlování dutronů dutrony vznikají nutrony 3 H H H n Vlmi účinnými činitli pro transmutac prvků s ukázaly nutrony ktré vdly k objvu štěpní uranu. 35 Štěpní jadr těžkých prvků (izotopů U U a plutonia) vd k uvolnění nrgi řádově MV. 35 A A U n Ba Kr n A A =

20 URYCHLOVAČE IONTŮ A ELEMENTÁRNÍCH ČÁSTIC Urychlovat můžm pouz částic ktré nsou lktrický náboj (lktrony protony kladné a záporné ionty) Vysokofrkvnční linární urychlovač Např. řada kovových souosých trubic v vakuu. liché válc jsou připojny k jdnomu pólu vf. zdroj sudé válc k druhému pólu vf. zdroj napětí délka trubic narůstá tak aby při dané frkvnci zdroj bylo lktrické pol v mzrách maximální právě v okamžiku kdy částic mzrou prochází a tak byla při každém průchodu další mzrou dál urychlna (lktrony GV protony 8 MV) Kruhové urychlovač Urychlní s dosahuj silným příčným magntickým polm. cyklotron btatron. Princip cyklotronu (podl Lawrnc 93): A N S Z B póly magntu T Z duanty v silném magntickém poli jsou duanty (duté poloválc) mzi nimi j mzra. Duanty jsou připojny k zdroji střídavého napětí v mzř j rlativně nvlké střídavé lktrické pol. Vložní nabité částic do střdu mzry.

21 Násldkm síly lktrického pol j částic vtažna do. duantu a pohybuj s určitou počátční rychlostí v uvnitř duantu kd lktrické pol npůsobí částic opíš půlkružnici o poloměru R v m = q. B. v R mv odtud R =. qb Frkvnc s níž částic projdou půlkružnicí v prvním duantu v qb f = = πr πm Frkvnc oběhu nzávisí na jjí rychlosti tdy ani na jjím poloměru. Můž být tdy v mzř při vhodné volbě frkvnc urychlovacího napětí mzi duanty opět urychlna lktrickým polm takž vltí do druhého duantu s větší rychlostí v. V druhém duantu s bud pohybovat opět po kružnici (nyní o poloměru j větší nž R při stjné frkvnci) Částic projd po spirál a získá dostatčnou rychlost. mv = ktrý qb R Správná funkc cyklotronu j podmíněna správnou volbou frkvnc urychlovacího napětí v mzř mzi duanty ktrá s musí rovnat frkvnci oběhu částic = podmínka rzonanc. Poznámka: popis platí pro částici s stjnou hmotností. Při rychlostch částic blížících s c závisí hmotnost částic na jjí rychlosti (rlativistické fkty) a s rostoucí hmotností klsá frkvnc oběhu částic. Z toho vyplývá podmínka modulac frkvnc urychlovacího napětí aby byla stál v rzonanci s frkvncí oběhu částic synchrocyklotrony. Synchrotrony Urychlovač s pvnou kruhovou drahou (dál urychlují již urychlné částic) Dosahované nrgi urychlných částic: u synchrocyklotronů až GV u protonů 8 MV u dutronů a GV u částic α. u synchrotronů s nrgi blíží až k GV. Btatron Slouží k urychlování lktronů. Časově proměnné magntické pol vytváří vířivé lktrické pol ktré s využívá k urychlování. V lktromagntu j umístěna vakuovaná prstncová trubic (toroid z porclánu nbo skla). Střídavý proud procházjící vinutím lktromagntu vyvolává v toroidu indukované lktrické pol ktré urychluj v toroidu lktrony získané trmomisí. V btartronu s dosahuj nrgi lktronů řádově MV. Pro větší rychlosti j třba synchronizac vzhldm k narůstající hmotnosti.

22 MÍROVÉ VYUŽITÍ JADERNÉ ENERGIE Enrgi získaná nuklární rakcí Exonrgická (xotrmická) nrgi kladná Endonrgická (ndotrmická) rakc vyžadují určitou minimální nrgii (fotodzintgrac) Při xonrgické jadrné rakci dochází k zisku nrgi (jadrné nuklární) v formě přírůstku kintické nrgi vzniklých jadr nbo částic. Njjdnodušší případm j samovolný rozpad (uvdno dřív). Uvolněná nrgi při jadrné rakci (transmutaci prvků) j tím větší čím j větší rozdíl mzi průměrnou klidovou hmotností nuklonů jadr do rakc vstupujících a vystupujících. Dvě možnosti: Jadrná syntéza njlhčích jadr (izotopů vodíku lithia) v jádra těžší. Přměna njtěžších jadr (např. uranu) na jádra lhčí. Trmonuklární nrgi J možné ji získat jadrnou syntézou jadr lhčích prvků. Příklady rakcí: 3 H H H H 43MV H H H H Li H 4 4 H H 99MV 4 H n 76MV 4 H 4MV Obtíž j v tom ž rakci j nutné provádět při vlmi vysoké tplotě (zvýšní pravděpodobnosti zásahu jádra ostřlujícími částicmi) trmonuklární rakc. Řízná trmonuklární rakc přs všchny snahy nbyla uskutčněna (Tokamak apod.) Nřízná trmonuklární rakc vodíková bomba (výbuch směsi D a T) Trmonuklární rakc v přírodě Slunc Spktrálním měřním bylo zjištěno složní hmoty Slunc: 75% Vodík 4% Hlium % ostatní prvky (C N O atd.) Jádra vodíku (protony) s spojují v dutron za vzniku pozitronu a nutrina vzniklé 3 dutrony vytváří jádra lhkého hélia H 3 H H H n nbo ragují s protony 3 H H H γ za vzniku jádra lhkého hélia ktrá spolu ragují podl rovnic H H H H H tzn. vznikají jádra hélia a protony ktré začaly řtěz jadrných přměn (proton-protonový cyklus)

23 JADERNÁ ENERGETIKA Torticky byla zvládnuta jak štěpná lavinovitá jadrná rakc (uvolnění obrovského množství nrgi v zlomku času) tak řízná štěpná řtězová rakc při níž dochází k uvolnění využitlného množství nrgi. První raktor spustil.. 94 V Chicagu Enrico Frmi Podstata využití štěpné rakc v jadrném raktoru j "zkrocní" rakc do podoby kdy každé další štěpní j vyvoláno vždy nutronm (zpomalným v modrátoru). Rakc s násobícím koficintm připomíná nkončný řtěz řtězová rakc. Podstata jadrných lktrárn V lktrárně potřbujm tplo k výrobě páry ktrá roztáčí turbognrátor. "Jadrné" tplo j zkrocno v jadrných raktorch.. tstovací raktor v USA 95 dodal lktřinu do sítě. jadrná lktrárna v SSSR v Obminsku u Moskvy. V lktrárně tplné nám k ohřvu vody slouží přímo kotl pod ktrým s topí. V lktrárně jadrné k přměně vody na páru slouží primární okruh

24 Primární okruh uzavřná soustava v níž tplo vznikající v jadrném raktoru ohřívá vodu ktrá v výměníku přdává své tplo do dalšího skundárního okruhu jhož součástí j turbína Jadrný raktor Aktivní zóna tlakovodního raktoru j tvořna (u VVER 44) 3 palivovými kaztami 37 rgulačními kaztami každá kazta obsahuj 6 palivových proutků v palivových proutcích jsou hrmticky uzavřny tablty jadrného paliva.

25 Paramtry jadrných lktrárn Dukovany a Tmlín Dukovany Tmlín počt bloků 4 raktor tlakovodní VVER 44 tlakovodní VVER lktrický výkon 44 MW 98 MW počt palivových kazt počt palivových proutků v kaztě 6 3

26 Jadrná nrgtika v světě a v ČR V většině zmí přkročil podíl výroby lktřiny z jádra 3% clkové produkc v Francii dokonc 75 % (víc jak 3% dál Blgi Švédsko Japonsko Jižní Kora). V ČR dodávají Dukovany % čské lktřiny. kwh za 6 haléřů (včtně rzrvy na likvidaci lktrárny uložní jadrných odpadů likvidaci použitého jadrného paliva). Vliv jadrných lktrárn na životní prostřdí porovnání rizik. Absnc sklníkového fktu druh rizika-příčina úmrtí počt na 6 obyvatl/rok rakovina 3 dopravní nhody těžba hornin plynu a uhlí úrazy lktrickým proudm násilné činy 5 pracovní úrazy 7 přírodní katastrofy mis škodlivin z uhlných lktrárn 3 jadrná nrgtika (výstavba rgnrac paliva) při spální kg CO kg SO kg NO x kg CO kg popla 5 t paliva UHLÍ PLYNU URANU ROČNÍ PŘÍSPĚVKY K OZÁŘENÍ PRŮMĚRNÉHO JEDINCE Z PŘÍRODNÍCH A UMĚLÝCH ZDROJŮ přírodní zdroj kosmické zářní (gama) trstriální zářní (z zmské kůry) K U... vnitřní radiac ( 4 K 4 C ) dýchání ( Rn ) přijímání tkutin (draslík uhlík) umělé zdroj lékařská diagnostika stavbní matriály (Rn) globální spad z zkoušk přd 4-5 lty sldování tlviz cstování ltadlm jadrná nrgtika Jadrná lktrárna musí odolat: změtřsní pádu ltadla troristickému útoku (?) dávkový kvivalnt 3 msv 35 msv 3 msv 6 msv -3 msv msv msv msv

27 Bariéry:. hrmtické uzavřní paliva v palivových proutcích a kaztách. Raktor a primární okruh j mimořádně těsný (odolává tlaku 5 atm. tplotě 3 C) 3. Při porušní potrubí primáru j bariérou hrmticky obstavba (kontjnmnt). 4. Systémy jsou zdvojné a ztrojné.

28 ELEMENTÁRNÍ ČÁSTICE KOSMICKÉ ZÁŘENÍ Znám: lktron () proton (p) nutron (n) foton (γ) v roc 934 byl objvn pozitron antičástic k lktronu (stjný al opačný náboj a stjná hmotnost) anihilac po srážc lktronu a pozitronu vznikají fotony = γ matrializac j děj opačný. Další antičástic antiproton antinutron Částic a antičástic s liší nábojm a opačným magntickým momntm. 3 * Emis pozitronů po β rozpadu P. 5 r 3 P * 3 Si ν 5 4. Existnc nutrina při β rozpadu u slabě vázaných nutronů dochází k rozpadu na proton lktron a nutrino n p ν. Díky nutrinu mohly být splněny přdpoklady zákona zachování nrgi hybnosti hmotnosti a spinu. Nutrino částic s klidovou hmotností téměř nulovou a polovičním spinm. Antinutrino s účastní pozitronového rozpadu β. Fotony jjich vznik provází změny stavů atomů. Při výkladu jadrných sil poutajících nuklony v jádř s vyskytuj pojm lmntární částic mzon. (Mzony byly poprvé objvny v kosmickém zářní) Kosmické zářní primární složka KZ přichází z mzihvězdného prostoru pohlcuj s v atmosféř Změ a raguj s atomovými jádry atmosféry dává tak vzniknout skundární složc KZ (zd j možné pozorovat mzony µ). Mzony π (piony) silně nstabilní a rozpadávají s na mzony µ nutrální mzony π (hmotnost 64 m doba života -6 s) kladný mzon π (doba života -8 s) záporný mzon π - (doba života -8 s) Mzony µ a µ -- (miony) doba života -6 s hmotnost 67 m nutrální mzon µ nxistuj. Njdůlžitější schémata rozpadů mzonů µ a π jsou:

29 π π µ ν π γ µ µ ν π p p µ ν ν ν ν Existnc různých nábojů jadrných mzonů j odůvodněna různým nábojm nuklonů jjichž soudržnost j podmíněna xistncí mzonů π. Byly rovněž objvny těžké mzony K (kaony) s hmotností 965 m. Jsou to dvě nutrální částic K K (k oběma xistují antičástic) a mzony K a K -. Mzony K jsou nstabilní a jjich produkty jsou mzony µ a π. Další těžkou nstabilní částicí j hypron Λ s antičásticí Λ a hyprony Σ ( Σ Σ Σ ) s odpovídajícím tripltm hypronů. Hmotnost hypronů Σ j 33 m. Hmotnost hypronu Λ j 83 m. Základní schémata rozpadu hypronů: Λ p π Σ Λ n π Σ Λ ν Σ n π Σ Souhrn: Elmntární částic: foton klidová hmotnost j nulová spin j = (boson) lptony (frmiony s / spinm) lhké částic lktron nutrino mzony µ hadrony (ragují silně) střdně těžké mzony π a K těžké částic (baryony) nuklony hyprony p π n π Exprimnty v nichž byl studován rozptyl lptonů na protonch popř. nutronch ukázaly ž tyto hadrony jsou složny z partonů. Nabité partony jsou totožné s částicmi ktré nazývám kvarky. Kvarkový modl přdpokládá ž baryony jsou složny z 3 kvarků mzony jsou složny z páru kvark antikvark Jdnotlivé druhy kvarků j zvykm označovat jako "vůně". Vlastnosti kvarků "barva" (črvná žlutá modrá) "půvab" "pravda" "krása".

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ

Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ Jihočská univrzita v Čských Budějovicích Katdra fyziky Modly atomu Vypracovala: Brounová Zuzana M-F/SŠ Datum: 3. 5. 3 Modly atomu První kvalitativně správnou přdstavu o struktuř hmoty si vytvořili již

Více

7. Jaderná a ásticová fyzika

7. Jaderná a ásticová fyzika 7. Jadrná a ásticová fyzika 7.1 Základní vlastnosti atomových jadr 7.1.1 Složní atomových jadr V roc 1903 navrhl anglický fyzik J. J. Thomson první modl atomu, podl ktrého j v clém objmu atomu spojit rozložný

Více

28. Základy kvantové fyziky

28. Základy kvantové fyziky 8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

Aktivita. Curie (Ci) = rozp.s Ci aktivita 1g 226 Ra (a, T 1/2 = 1600 let) počet rozpadů za jednotku času

Aktivita. Curie (Ci) = rozp.s Ci aktivita 1g 226 Ra (a, T 1/2 = 1600 let) počet rozpadů za jednotku času Aktivita počt rozpadů za jdnotku času Curi (Ci) = 3.7 10 10 rozp.s -1 1 Ci aktivita 1g 6 Ra (a, T 1/ = 1600 lt) 1 Bcqurl (Bq) = 1 rozp. s -1 =.7 10-11 Ci = 7 pci 1 MBq = 7 mci Dávka množství radiac absorbované

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Dfinic plazmatu (typická) Úvod do fyziky plazmatu Plazma j kvazinutrální systém nabitých (a případně i nutrálních) částic, ktrý vykazuj kolktivní chování. Pozn. Kolktivní chování j tdy podstatné, nicméně

Více

28. Základy kvantové fyziky

28. Základy kvantové fyziky 8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Příklady z kvantové mechaniky k domácímu počítání

Příklady z kvantové mechaniky k domácímu počítání Příklady z kvantové mchaniky k domácímu počítání (http://www.physics.muni.cz/~tomtyc/kvant-priklady.pdf (nbo.ps). Počt kvant: Ionizační nrgi atomu vodíku v základním stavu j E = 3, 6 V. Najdět frkvnci,

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu 1 Dfinic plazmatu (S. Ichimaru, Statistical Plasma Physics, Vol I) Plazma j jakýkoliv statistický systém, ktrý obsahuj pohyblivé nabité částic. Pozn. Statistický znamná makroskopický,

Více

Anihilace pozitronů v pevných látkách

Anihilace pozitronů v pevných látkách Anihilac pozitronů v pvných látkách Jakub Čížk katdra fyziky nízkých tplot Tl: 1 912 788 jakub.cizk@mff.cuni.cz http://www.kfnt.mff.cuni.cz výuka Anihilac pozitronů v pvných látkách Doporučná litratura:

Více

Měrný náboj elektronu

Měrný náboj elektronu Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

Jednokapalinové přiblížení (MHD-magnetohydrodynamika)

Jednokapalinové přiblížení (MHD-magnetohydrodynamika) Jdnokapalinové přiblížní (MHD-magntohydrodynamika) Zákon zachování hmoty zákony zachování počtu lktronů a iontů násobny hmotnostmi a sčtny n t div nu ni divnu i i t div u M M (1) t i m n M n u u M i i

Více

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na

Více

Trivium z optiky 37. 6. Fotometrie

Trivium z optiky 37. 6. Fotometrie Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit

Více

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Příběh atomového jádra

Příběh atomového jádra Příběh atomového jádra Pavl Cjnar ÚČJF MFF UK Praha cjnar @ ipnp.troja.mff.cuni.cz Stručná histori jádra Tři objvy 1896: Bcqurl objv radioaktivity paprsky z nitra atomu 191: Ruthrford modl atomu atom má

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Fyzikální podstata fotovoltaické přeměny solární energie

Fyzikální podstata fotovoltaické přeměny solární energie účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty:

, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty: Radiomtri a fotomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá fotomtri. V odstavci Přnos nrgi

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

6 Elektronový spin. 6.1 Pojem spinu

6 Elektronový spin. 6.1 Pojem spinu 6 Elktronový spin Elktronový spin j vličina poněkud záhadná, vličina, ktrá nmá obdoby v klasickém svět. Do kvantové mchaniky s spin dostal jako xprimntální fakt: z řady xprimntů totiž vyplývalo, ž kromě

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ATOMOVÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Kvantování nrgi lktroagntického zářní opakování téa Elktroagntické zářní Planck (1900): Enrgi lktroagntického zářní ůž být vyzářna

Více

INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE

INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE Studnt Skupina/Osob. číslo INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE 5. Měřní ěrného náboj lktronu Číslo prác 5 Datu Spolupracoval Podpis studnta: Cíl ěřní: Pozorování stopy lktronů v baňc s zřděný plyn

Více

347/2012 Sb. VYHLÁŠKA

347/2012 Sb. VYHLÁŠKA 347/2012 Sb. VYHLÁŠKA z dn 12. října 2012, ktrou s stanoví tchnicko-konomické paramtry obnovitlných zdrojů pro výrobu lktřiny a doba životnosti výrobn lktřiny z podporovaných zdrojů Změna: 350/2013 Sb.

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

8.STAVBA ATOMU ELEKTRONOVÝ OBAL

8.STAVBA ATOMU ELEKTRONOVÝ OBAL 8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

41 Absorpce světla ÚKOL TEORIE

41 Absorpce světla ÚKOL TEORIE 41 Absorpc světla ÚKOL Stanovt závislost absorpčního koficintu dvou průhldných látk různé barvy na vlnové délc dopadajícího světla. Proměřt pro zadané vlnové délky absorpci světla při jho průchodu dvěma

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého v čas i prostoru pomalu proměnného stavu Linární rozvoj vličin a = a + a ( r, t) b= b + b ( r, t) a, b mohou obcně být funkcmi r, t

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole

Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol Otázka č.3 Vličiny používané pro kvantifikaci lktromagntického pol odrobnější výklad základu lktromagntismu j možno nalézt v učbním txtu:

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

pravou absorpcí - pohlcené záření zvýší vnitřní energii molekul systému a přemění se v teplo Lambertův-Beerův zákon: I = I

pravou absorpcí - pohlcené záření zvýší vnitřní energii molekul systému a přemění se v teplo Lambertův-Beerův zákon: I = I Zmnšní intnzita světla při prostupu hmotou: pravou absorpcí - pohlcné zářní zvýší vnitřní nrgii molkul systému a přmění s v tplo Lambrtův-Brův zákon: I = I c x o ( - xtinční koficint) rozptylm na částicích

Více

Mezony π, mezony K, mezony η, η, bosony 1

Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron

ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron MODELY ATOMU ELEKTRONOVÝ OBAL ATOMU Na základě experimentálních výsledků byly vytvořeny různé teorie o struktuře atomu, tzv. modely atomu. Thomsonův model: Roku 1897 se jako první pokusil o popis stavby

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praz Úloha 3: Měrný náboj lktronu Datum měřní: 18. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátk 7:30 Vypracoval: Tadáš Kmnta Klasifikac: 1 Zadání 1. DÚ: Odvoďt

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého stacionárního konstantního nbo v čas a/nbo v prostoru pomalu proměnného stavu Linární rozvoj vličin a a+ a(,) rt b b+ b(,) rt a, b

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ

RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom

Více

Metody ešení. Metody ešení

Metody ešení. Metody ešení Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

( ) 2 2 MODUL 5. STAVBA ATOMU SHRNUTÍ

( ) 2 2 MODUL 5. STAVBA ATOMU SHRNUTÍ MODUL 5. STAVBA ATOMU SHRNUTÍ Kvantování fyzikálních veličin - vázaným částicím v mikrosvětě náleží diskrétní hodnoty hybnosti, energie i dalších veličin, které nazýváme kvantované fyzikální veličiny -

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

Elementární částice, Fyzika vysokých energií

Elementární částice, Fyzika vysokých energií Elmntární částic, Fyzika vysokých nrgií Standardní modl částicové fyziky www-ucjf.troja.mff.cuni.cz/doljsi/txtbook/standard_modl_cz.ppt Standardní modl Jiří Doljší, Olga Kotrbová, Univrzita Karlova v

Více

Balmerova série vodíku

Balmerova série vodíku Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa.

Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa. 26 Zářní těls Ověřní Stfanova-Boltzmannova zákona ÚKOL Ověřt platnost Stfanova-Boltzmannova zákona a určt pohltivost α zářícího tělsa. TEORIE Tplo j druh nrgi. Vyjadřuj, jak s změní vnitřní nrgi systému

Více

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC) 3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

- 1 - Čtvrtá přednáška na téma axiom jednoty VÝVOJ ATOMOVÝCH TEORIÍ. Ph. M. Kanarev. 1. Úvod

- 1 - Čtvrtá přednáška na téma axiom jednoty VÝVOJ ATOMOVÝCH TEORIÍ. Ph. M. Kanarev. 1. Úvod - 1 - Čtvrtá přdnáška na téma axiom jdnoty 15.11.04 VÝVOJ ATOMOVÝCH TORIÍ Ph. M. Kanarv -mail: kanil@mail.ru http://kanarv.innoplaza.nt 1. Úvod Milí hldači vědcké pravdy, již znát podmínky pro zavdní axiomu

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Prvek, nuklid, izotop, izobar

Prvek, nuklid, izotop, izobar Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

, je vhodná veličina i pro studium vyzařování energie z libovolného zdroje a také i pro popis dopadu energie na hmotné objekty:

, je vhodná veličina i pro studium vyzařování energie z libovolného zdroje a také i pro popis dopadu energie na hmotné objekty: Radiomtri a otomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá otomtri. V odstavci Přnos nrgi

Více

Jaderná fyzika. Zápisy do sešitu

Jaderná fyzika. Zápisy do sešitu Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity Dfúz Fckův zákon dfúz v plynu Přdpokládjm dální plyn s konstantní tplotou T a konstantním tlakm p v kldu, v ktrém j nízká nhomognní hmotnostní koncntrac příměs Pak v staconárním stavu musí být clková síla

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

FYZIKA ATOMOVÉHO JÁDRA

FYZIKA ATOMOVÉHO JÁDRA FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat

Více

Stavba atomů a molekul

Stavba atomů a molekul Stavba atomů a molekul Michal Otyepka V prezentaci jsou použity obrázky z řady zdrojů, které nejsou důsledně citovány, tímto se všem dotčeným omlouvám. Vidět znamená věřit Úvod l cíle seznámit studenty

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova)

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova) Punčochář, J: AEO; 5. kapitola 1 5. kapitola: Vysokofrkvnční zsilovač (rozšířná osnova) Čas k studiu: 6 hodin íl: Po prostudování této kapitoly budt umět dfinovat pracovní bod BJT a FET určit funkci VF

Více