4. PRŮBĚH FUNKCE. = f(x) načrtnout.

Rozměr: px
Začít zobrazení ze stránky:

Download "4. PRŮBĚH FUNKCE. = f(x) načrtnout."

Transkript

1 Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar. Můž s však stát, ž při zadání funkčního přdpisu udělám chbu, ž zvolím nvhodný intrval pro zobrazní grafu, nbo ž si zvolný softwar s vkrslním grafu dokonal nporadí. pro tto případ j nutné naučit s hldat význačné vlastnosti funkc. V této kapitol budou tto význačné vlastnosti uvdn a v závěru kapitol j shrnm a naučím s graf funkc = f(). = f() načrtnout. 4.. Etrém funkc Přdpokládané znalosti V této a dalších částch budm hovořit o monotónnosti funkcí, viz dfinic.4. a budm používat větu..6. Výklad Dfinic 4... Říkám, ž funkc f ( ) má v bodě 0 D f absolutní maimum Df : f( ) f( 0), absolutní minimum : ( ) ( 0), Df f f lokální maimum O ( 0): O ( 0) f( ) f( 0),, jstliž lokální minimum O ( 0): O ( 0) f( ) f( 0), ostré lokální maimum O( 0): O( 0)\{ 0} f( ) < f( ), 0 ostré lokální minimum O( 0): O( 0)\{ 0} f( ) > f( 0 ). Jstliž nastan něktrá z přdchozích možností říkám, ž funkc f ( ) má v bodě 0 trém (absolutní, lokální, ostrý lokální). 0

2 Etrém funkc Řšné úloh Příklad Funkc (0) + = = má v bodě + 0 = 0 absolutní maimum. Nrovnic platí pro všchna R. Po úpravě totiž dostanm ( + ), dál pak 0. Přdchozí úvaha platí pro každé O ( 0) a td funkc má v bodě 0 = 0 také lokální maimum, ktré j ostré, protož 0 < pro všchna R { } \ 0. Příklad Funkc = + má v bodě 0 = 0 ostré lokální minimum, protož nrovnic + > (0) = 0 j splněna v okolí (,) bodu 0 s výjimkou bodu 0, nboť po úpravě dostanm ( + ) > 0. ( ) = 4 < (0). Toto lokální minimum nní absolutní, protož například Výklad Věta 4... Nchť j 0 vnitřní bod D a nchť istuj f ( 0) 0. Pak funkc f ( ) nmá f v bodě 0 lokální ani absolutní trém. Bz důkazu. 0

3 Etrém funkc =f() f( ) f( ) 0 f( ) 0 0 O( ) 0 Obr. 46 Všimněm si na obr. 46, ž tčna k grafu funkc f ( ) v bodě rovnoběžná s osou. Eistuj td pro vhodně zvolné bod, Df O( 0). 0 nní pro f ( 0 ) 0 O ( 0) takové, ž platí f ( ) > f( 0), f( ) < f( 0 ) Poznámka Z vět 4.. vplývá, ž lokální i absolutní trém mohou istovat pouz v bodch 0 D f, v nichž f ( 0 ) = 0, nbo v nichž f ( 0 ) nistuj. Bod 0, v nichž f ( 0 ) = 0 budm nazývat stacionární. Mzi bod, v nichž f ( 0 ) nistuj, patří také krajní bod dfiničního oboru. Výklad Věta 4... Spojitá funkc, jjíž drivac mění v bodě 0 znaménko, má v bodě 0 ostrý lokální trém. 04

4 Etrém funkc Bz důkazu. Uvědomím si, ž podl vět..6 j pro f ( ) > 0 funkc f ( ) rostoucí a pro f ( ) < 0 j funkc f ( ) klsající. Podl vět 4.. můž drivac spojité funkc f ( ) změnit znaménko pouz v bodch 0 D f, v nichž f ( 0 ) = 0, nbo v nichž f ( 0 ) nistuj. Řšné úloh Příklad Určt lokální trém funkc =. Řšní: Funkc j spojitá na množině rálných čísl R. Zjistím nulové bod a bod nspojitosti funkc + a podl vět 4.. rozhodnm, zda v nich bud lokální trém: ( ) = +. =. Bodm nspojitosti funkc j bod = 0. Jjí nulový bod získám řšním rovnic ( + ) = 0, tj. + = 0 a odtud =. Tto bod rozdělí R na tři intrval, viz obr. 47. : R Obr

5 Etrém funkc = 0 Obr. 48 Vužijm poznatků o řšní nrovnic z kapitol.4 a dostanm: ( ) > 0, ( ) < 0, () > 0. Drivac funkc mění v bodch = 0 a = znaménko, tj. v těchto bodch istují lokální trém. Bod = j stacionárním bodm. Monotónnost funkc na obr. 48. s v bodch = 0 a = mění, viz obr. 47. Graf funkc j Výklad Věta 4... Přdpokládjm, ž f ( 0) = 0 a f ( 0) < 0, rsp. f ( 0) > 0. Pak má funkc f ( ) v bodě 0 ostré lokální maimum, rsp. ostré lokální minimum. Bz důkazu. Pro maimum v bodě 0 platí, ž f ( ) > 0, pro ( 0 δ, 0) a f ( ) < 0 pro ( 0, 0+ δ ) a vhodné δ > 0, viz obr. 49, 50. Funkc f ( ) j zřjmě v intrvalu ( 0 δ, 0+ δ ) klsající a td f ( 0) < 0. 06

6 Etrém funkc =f() 0 + δ 0 0 δ δ δ = f () Obr. 49 Obr. 50 Podobnou úvahu můžm provést pro minimum v bodě 0 a dostanm f ( 0) > 0. Řšné úloh Příklad Určt trém funkc =, jjíž dfiniční obor j D f =<, >. Řšní: Z řšní přdchozího příkladu vím, ž daná funkc má v bodě = ostré lokální maimum a v bodě = 0 má ostré lokální minimum. Z poznámk za větou 4.. vplývá, ž zbývá určit funkční hodnot funkc v krajních bodch dfiničního oboru, tj. v bodch Dostanm: 0 ( ) = 0,6788, 4 ( ) =. 0,98, 9 (0) =.0 = 0, ( ) =., = a =. 4 07

7 Etrém funkc Z přdchozích vztahů vplývá, ž funkc má v lokálním minimu = 0 absolutní minimum a v krajním bodě dfiničního oboru 4 = má absolutní maimum. Výklad Bz důkazu přdchozí větu zobcním. Věta Nchť má funkc f ( ) v bodě spojitou n-tou drivaci pro n a nchť ( n ) ( n) f ( 0) = f ( 0) = = f ( 0) = 0 a f ( 0) 0. ( n) ( n) f ( 0) 0, rsp. f ( 0) > 0, 0 J-li n číslo sudé a < pak má funkc f ( ) v bodě 0 ostré lokální maimum, rsp. ostré lokální minimum. J-li n liché číslo, pak v 0 trém nistuj. Řšné úloh Příklad Určt lokální trém funkc = Řšní: Funkc j polnom, tj. jjí dfiniční obor a dfiniční obor jjích drivací j R = + = ( ) stacionární bod jsou = 0, =. 4. = 8 + 5, (0) = 0, () = 0 budm dál drivovat.. = , (0) = 0, () = 0 v = nistuj trém. (4) (4) 4. = , (0) = 6> 0 v = 0 j ostré lokální minimum. 08

8 Poznámka Etrém funkc Většina praktických úloh vd na hldání absolutního maima nbo minima funkc, ktrá úlohu popisuj. Tnto trém můž, al nmusí být lokální. Řšné úloh Příklad Z bodu O do bodu A vd přímá žlznic, viz obr. 5. Navrhnět umístění přkladového nádraží v bodu B na této trati tak, ab při silniční dopravě z bodu C do bodu B po přímé silnici a násldné dopravě z bodu B do bodu A po žlznici bla cna za přpravu jdnotk zboží njnižší. Cna za dopravu jdnotk zboží po žlznici j 0, Kč/km a po silnici 0,5 Kč/km. Cna přkládk za jdnotku j Kč. Vzdálnost OA j 00 km, vzdálnost OC j 0 km. C=(0,0) 0 B=(,0) A=(00,0) Obr. 5 Řšní: Označm souřadnic bodu B= (,0), kd j hldaná vzdálnost bodu B od bodu O. Délka cst po žlznici pak bud (00 ) km a délka přprav po silnici +0 km. Cna přprav jdnotk zboží j pak dána funkcí = (00 ).0, ,5 +, D =< 0,00 >. Určím absolutní minimum této funkc: 09

9 = 0, +.0, Funkc j spojitá, určím td jjí stacionární bod: Etrém funkc 0, +.0,5 = 0 = 5= = = 400, =±. Do patří pouz D 0 =. Přsvědčím s, ž v bodě s jdná o minimum funkc: ( + 00) 50 = = = = ( + 00) 4 ( + 00) ( + 00) 0 J vidět, ž > 0 pro všchna D a td i pro, tj. v bodě = jd o minimum funkc. Nní zjistím funkční hodnot v krajních bodch D a porovnám j s funkční. hodnotou v bodě : 0 (0) = 6, (00) 5, 5, 5,58. Njvýhodnější j postavit nádraží v bodě B, ktrý j od bodu O vzdáln 0 km. Kontrolní otázk. Při vštřování lokálního trému funkc f ( ) v bodě 0 sldujm funkční hodnot této funkc a) v clém jjím dfiničním oboru, b) v okolí bodu 0, c) pouz v bodě 0.. Stacionárním bodm funkc f ( ) nazývám bod 0, v ktrém a) f ( 0) = 0, 0

10 Etrém funkc b) f ( 0) 0, c) f ( 0) nistuj.. Spojitá funkc f ( ) má v bodě v okolí bodu 0 a) nmění znaménko, b) rovná s nul, c) mění znaménko. 4. Pro funkci f ( ) v bodě a) j ostré lokální minimum, b) j ostré lokální maimum, c) nní tam lokální trém. 0 ostrý lokální trém. Pak drivac této funkc f ( ) 0 platí, ž f ( 0) = 0 a f ( 0) > 0. Pak v bodě 0 5. Má-li funkc f ( ) v bodě 0 stacionární bod, pak v bodě 0 lokální trém a) určitě nastan, b) nnastan, c) můž nastat. Odpovědi na kontrolní otázk. b);. a);. c); 4. a), 5. c). Úloh k samostatnému řšní. Najdět intrval, na ktrých j daná funkc rostoucí a na ktrých j klsající: a) 5 =, b) = 5 +, c) =, + 4 d) = + +, ) = +, f) = +.. Najdět intrval, na ktrých j daná funkc rostoucí a na ktrých j klsající: a) =, b) =, c) =,

11 Etrém funkc d) = ln +, ) = ln, f) g) = + cos, h) = sin + cos, i). Ukažt, ž funkc = arctg j pro každé rálné klsající. 4. Nalznět lokální trém daných funkcí: a) = ( 6 ), b) = 6, c) d) = 4 +, ) = 5. Nalznět lokální trém daných funkcí: a) d) = +, b) =, ) = ln( + + ), = arccos + = , +, f) = +. =, c) =, f) =, =. 6. Nalznět lokální trém daných funkcí: + a) = ln, b) = ln, c) = ln, ln d) = ln, ) =, f) = ln + arctg. 7. Nalznět lokální trém daných funkcí: a) = + arctg, b) = 6, c) =, d) = 4 tg, ) = sin, f) = + arccotg( ). 8. Určt absolutní trém funkcí na daném intrvalu: a) = 6+ 0,, 5, b) = ln,,, π c) = tg tg, 0,, d) =, ( 0, ). 9. Číslo 8 rozložt na dva sčítanc tak, ab jjich součin bl njvětší. 0. Najdět takové kladné číslo, ab součt tohoto čísla a jho přvrácné hodnot bl njmnší.. Jaké rozměr musí mít pravoúhlý rovnoběžník daného obvodu s, ab jho úhlopříčka bla njmnší?. Dokažt, ž z všch pravoúhlých rovnoběžníků daného a) obsahu má čtvrc njmnší obvod, b) obvodu má čtvrc njvětší obsah..

12 Etrém funkc. Z válcového kmn o průměru d s má vtsat trám obdélníkového průřzu tak, ab měl maimální nosnost. Z nauk o pvnosti j známo, ž nosnost trámu j dána vztahm = kab, kd k>0 j součinitl matriálu, a j šířka a b výška trámu. 4. Z čtvrcového plchu o straně a s má vrobit otvřná krabic tak, ž v rozích s odstřihnou čtvrc a zbtk s zahn do krabic. Jak vlká musí být strana odstřižných čtvrců, ab bl objm krabic maimální? 5. Cstovní kanclář pořádá zájzd. J-li počt účastníků zájzdu 00 a méně, j cna pro jdnoho účastníka 600 Kč. Při větším počtu nž 00 s cna sníží za každého účastníka navíc o,50 Kč. Při kolika účastnících bud obrat cstovní kanclář njvětší? Výsldk úloh k samostatnému řšní. a) rostoucí:, a,, klsající:, ; b) rostoucí: (, ) a (, ) ) (,), klsající: (, ; c) rostoucí: d) rostoucí:, a (, (, ), klsající: (, ) ), klsající: ( ) ( klsající: (, ) a (,) a (, ), klsající: (, ) a (, ) ;, v, j konstantní, = ; ) rostoucí:,0 a 0, a,.. a) rostoucí: (,0) b) rostoucí:, klsající: (0, ) (,0) a (, ) ; c) rostoucí: ( ) (,0) a ( 0,) ; d) rostoucí: ( 0, ), klsající: (,0) 0, ; f) rostoucí: (, ) ; g) rostoucí: (, ) ); f) rostoucí: (, ) a (, ), ( ), klsající: 0, ;,, klsající: ; ) rostoucí: ; h) rostoucí: π π 5 π + kπ, + kπ, klsající: + kπ, π + kπ, k Z ,, klsající: 0,, ; i) rostoucí: ( ) klsající: (,0). 4. a) ma = 0 pro = 0, min = pro = 4 ; b) ma = 0 pro =, min = pro = ; c) nmá lokální trém; d) ma = pro = 0 ; ) nmá lokální trém; f) min = pro =,

13 Etrém funkc min = pro =. 5. a) min = pro = 0 ; b) min = pro =, ma = pro = ; c) ma = pro =, ma = pro =, min = 0 pro = 0 ; d) ma = pro = ; ) ma = pro = ; f) ma pro = =, min = 0 pro = a) min = pro = ; b) nmá lokální trém; c) min = pro = ; d) ma pro = =, min = pro = ; ) ma = pro = ; f) min = ln- pro = a) nmá lokální trém; b) ma = 6 pro = 0, min = 0 pro = 4, min = 0 pro = 4 ; c) ma = pro =, min = 0 pro = ; 4π π d) ma = + 4kπ pro = + kπ, k Z, 4π π min = + 4kπ + pro = + kπ, k Z ; ) ( π + kπ ) 4 π ma = pro = + kπ, 4 5π ( + kπ ) 4 5π min pro k 4 π = = + π, k Z ; f) ma = pro =, 4 π min = + pro =. 8. a) ma = 7 pro =, min = pro = ; 4 b) π ma = pro =, min = pro = ; c) ma = pro =, nmá 4 absolutní minimum; d) min 0.69 pro =, nmá absolutní maimum. π 9. [ 4 4] s s =.. a=, b= d d a =, b=. 4. a a =, Vma = n = 70. 4

14 Etrém funkc Kontrolní tst. Najdět intrval, na ktrých j funkc = + rostoucí a na ktrých j klsající. a) rostoucí (, ) a (, ), klsající (,), b) rostoucí (,), klsající (, ) a (, ), c) rostoucí (, ), klsající (, ).. Najdět intrval, na ktrých j funkc a) rostoucí (, ), klsající (,), b) rostoucí (,), klsající (, ), c) rostoucí (, ), klsající (, ). = rz monotónní:. Najdět intrval, na ktrých j funkc = + arccotg rz monotónní. a) rostoucí (,), klsající (, ) a (, ), b) rostoucí (,), klsající (, ), c) rostoucí (, ) a (, ), klsající (,). 4. Najdět všchn lokální trém funkc a) pro =, = 0 pro = 0, ma = 4 min b) = pro = 0, min = 4 pro =, ma 0 9 = =, min = 0 = 0. c) ma pro pro =. 5. Najdět všchn lokální trém funkc = sin + cos. a) ma = pro 5 π = π, min = pro =, 4 4 b) ma = pro = 0, min = pro = π, π c) ma = pro = + kπ, k clé č., min = pro 4 6. Určt absolutní trém funkc = ln na intrvalu <, >. a) ma = pro =, min = ln pro =, b) ma = pro =, min = pro =, 5 = π + kπ, k clé č. 4 5

15 Etrém funkc c) ma = ln pro =, min = pro =. 7. Vpočtět rozměr obdélníku o ploš 5 cm tak, ab měl njkratší úhllopříčku. a) a = 5 cm, b = 5 cm; b) a = 4,75 cm, b = 5,5 cm, c) a = 4,5 cm, b = 5,9 cm. Výsldk tstu. a);. b);. c); 4. b); 5. c); 6. a); 7. a). Průvodc studim Pokud jst správně odpověděli njméně v 5 případch, pokračujt další kapitolou. V opačném případě j třba prostudovat kapitolu 4.. znovu. 6

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

1. Limita funkce - výpočty, užití

1. Limita funkce - výpočty, užití Difrnciální a intgrální počt. Limita funkc - výpočt, užití Vpočtět násldující it: +.8..cos +. + 5+. 5..5.. 8 sin sin.7 ( cos.9 + sin cos. + 5cos. + log( +... + + + 5 +.5..7.8.9.. 5+ + 9 + + + + 8 sin sin5

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A,

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A, Přijímací zkoušk do NMS MATEMATIKA, zadání A, jméno: V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna správná. Zakroužkujt ji! Za každou správnou odpověď získát uvdné bod. Za nsprávnou

Více

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

Stručný přehled učiva

Stručný přehled učiva Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Katedra aplikované matematiky, VŠB TU Ostrava.

Katedra aplikované matematiky, VŠB TU Ostrava. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné

Více

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině

Více

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE . LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH Ing. Ptra Schribrová, Ph.D. Ostrava Tnto studijní matriál vznikl za finanční podpor Evropského sociálního fondu

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Diferenciální počet funkcí jedné reálné proměnné - 4.1 - LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Při hledání lokálních etrémů postupujeme podle následujícího programu Nalezneme

Více

LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ A JEJICH UŽITÍ

LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ A JEJICH UŽITÍ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/3.098 IV- Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol LOKÁLNÍ

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Průběh funkce II (hledání extrémů)

Průběh funkce II (hledání extrémů) .. Průběh funkce II (hledání etrémů) Předpoklad: Pedagogická poznámka: Poslední příklad v běžné vučovací hodině nestíháme. Rchlost postupu je možné značně ovlivnit tím, kolik času dáte studentům na výzkumné

Více

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

10. Derivace, průběh funkce

10. Derivace, průběh funkce Moderní technologie ve studiu aplikované yziky CZ..07/..00/07.008 0. Derivace, průběh unkce Před mnoha lety se matematici snažili o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM PNO NRG LKTROMAGNTCKÝM VLNNÍM lktromagntické vlnní, stjn jako mchanické vlnní, j schopno pnášt nrgii Tuto nrgii popisujm pomocí tzv radiomtrických, rsp fotomtrických vliin Rozdlní vyplývá z jdnoduché úvahy:

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body Urèete, kde je unkce rostoucí a kde klesající: Prùbìh unkce a) () =ln 0; e klesající ; e ; + rostoucí b) () =+ [( ; 0) [ (0; ) klesající ; ( ; ) [ (; +) rostoucí] c) () =e jj [ ( ; 0) rostoucí ; (0; +)

Více

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu. Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Zákazové značky. Název, význam a užití. Zákaz vjezdu všech vozidel v obou směrech. Zákaz vjezdu všech vozidel

Zákazové značky. Název, význam a užití. Zákaz vjezdu všech vozidel v obou směrech. Zákaz vjezdu všech vozidel Příloha č. 3 k vyhlášc č. 294/2015 Sb. Zákazové značky Číslo Bl Vyobrazní o Zákaz vjzdu všch vozidl v obou směrch Značka zakazuj vjzd všm druhům vozidl. B2 B3 B4 Zákaz vjzdu všch vozidl Značka zakazuj

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova)

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova) Punčochář, J: AEO; 5. kapitola 1 5. kapitola: Vysokofrkvnční zsilovač (rozšířná osnova) Čas k studiu: 6 hodin íl: Po prostudování této kapitoly budt umět dfinovat pracovní bod BJT a FET určit funkci VF

Více

Základní poznatky o funkcích

Základní poznatky o funkcích Základní poznatk o funkcích Tajemství černé skříňk (Definice funkce, základní pojm) 0 c, d, g, h 0 a) ANO b) NE 0 D( f )={ 6} H( f )={ 7} 0 a) D( f )={ 0 } b) H( f )={ 8 9 0 } c) f ( 0)= f ( )=9 f ( )=

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Funkce. Vlastnosti funkce. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Funkce. Vlastnosti funkce. Text a příklady. Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Vlastnosti funkce. Tet a příklad. Ročník.

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

Zadání témat. Řešení témat. Zadání úloh. Úloha 3.3 Baterie na β-radioaktivitu (5b) Téma5 Fontány. Téma 1 Pravidelné mnohostěny

Zadání témat. Řešení témat. Zadání úloh. Úloha 3.3 Baterie na β-radioaktivitu (5b) Téma5 Fontány. Téma 1 Pravidelné mnohostěny 2 Studntský matmaticko-fyzikální časopis ročník VIII číslo 3 Trmín odslání: 14. 1. 2002 Zadání témat Téma5 Fontány Podívjt s na obrázk, na ktrém j namalovaná fontána a vysvětlt, jak funguj. Odhadnět, do

Více

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

Fyzikální podstata fotovoltaické přeměny solární energie

Fyzikální podstata fotovoltaické přeměny solární energie účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

V (c) = (30 2c)(50 2c)c = 1500c 160c 2 + 4c 3. V (c) = 24c 320.

V (c) = (30 2c)(50 2c)c = 1500c 160c 2 + 4c 3. V (c) = 24c 320. Domácí úkol č. 3 Řešení Pozn.: úhly, které se zdají být pravé, jsou ve všech obrázcích opravdu pravé. 1. Z kartonu je třeba vyříznout čtverce v rozích, viz obr. 1 a přehnout podle přerušovných čar. Krabice

Více

Trivium z optiky 37. 6. Fotometrie

Trivium z optiky 37. 6. Fotometrie Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Definice funkce tangens na jednotkové kružnici :

Definice funkce tangens na jednotkové kružnici : Registrační číslo projektu: CZ..07/../0.00 FUNKCE TANGENS Definice funkce tangens na jednotkové kružnici : Funkce tangens je daná ve tvaru : y tgx sin x. cos x Důvod je dobře vidět na předchozím obr. z

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule.

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule. Lokální xtrémy - řšné příklady 1 Lokální xtrémy Vyštřt lokální xtrémy násldujících funkcí víc proměnných: 1 Příklad fx, y = x + xy + 3y + 5x + y Spočtm parciální drivac a položím j rovny nul Vznikn soustava

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

CZ.1.07/1.5.00/

CZ.1.07/1.5.00/ Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více