4. PRŮBĚH FUNKCE. = f(x) načrtnout.
|
|
- Matyáš Bartoš
- před 9 lety
- Počet zobrazení:
Transkript
1 Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar. Můž s však stát, ž při zadání funkčního přdpisu udělám chbu, ž zvolím nvhodný intrval pro zobrazní grafu, nbo ž si zvolný softwar s vkrslním grafu dokonal nporadí. pro tto případ j nutné naučit s hldat význačné vlastnosti funkc. V této kapitol budou tto význačné vlastnosti uvdn a v závěru kapitol j shrnm a naučím s graf funkc = f(). = f() načrtnout. 4.. Etrém funkc Přdpokládané znalosti V této a dalších částch budm hovořit o monotónnosti funkcí, viz dfinic.4. a budm používat větu..6. Výklad Dfinic 4... Říkám, ž funkc f ( ) má v bodě 0 D f absolutní maimum Df : f( ) f( 0), absolutní minimum : ( ) ( 0), Df f f lokální maimum O ( 0): O ( 0) f( ) f( 0),, jstliž lokální minimum O ( 0): O ( 0) f( ) f( 0), ostré lokální maimum O( 0): O( 0)\{ 0} f( ) < f( ), 0 ostré lokální minimum O( 0): O( 0)\{ 0} f( ) > f( 0 ). Jstliž nastan něktrá z přdchozích možností říkám, ž funkc f ( ) má v bodě 0 trém (absolutní, lokální, ostrý lokální). 0
2 Etrém funkc Řšné úloh Příklad Funkc (0) + = = má v bodě + 0 = 0 absolutní maimum. Nrovnic platí pro všchna R. Po úpravě totiž dostanm ( + ), dál pak 0. Přdchozí úvaha platí pro každé O ( 0) a td funkc má v bodě 0 = 0 také lokální maimum, ktré j ostré, protož 0 < pro všchna R { } \ 0. Příklad Funkc = + má v bodě 0 = 0 ostré lokální minimum, protož nrovnic + > (0) = 0 j splněna v okolí (,) bodu 0 s výjimkou bodu 0, nboť po úpravě dostanm ( + ) > 0. ( ) = 4 < (0). Toto lokální minimum nní absolutní, protož například Výklad Věta 4... Nchť j 0 vnitřní bod D a nchť istuj f ( 0) 0. Pak funkc f ( ) nmá f v bodě 0 lokální ani absolutní trém. Bz důkazu. 0
3 Etrém funkc =f() f( ) f( ) 0 f( ) 0 0 O( ) 0 Obr. 46 Všimněm si na obr. 46, ž tčna k grafu funkc f ( ) v bodě rovnoběžná s osou. Eistuj td pro vhodně zvolné bod, Df O( 0). 0 nní pro f ( 0 ) 0 O ( 0) takové, ž platí f ( ) > f( 0), f( ) < f( 0 ) Poznámka Z vět 4.. vplývá, ž lokální i absolutní trém mohou istovat pouz v bodch 0 D f, v nichž f ( 0 ) = 0, nbo v nichž f ( 0 ) nistuj. Bod 0, v nichž f ( 0 ) = 0 budm nazývat stacionární. Mzi bod, v nichž f ( 0 ) nistuj, patří také krajní bod dfiničního oboru. Výklad Věta 4... Spojitá funkc, jjíž drivac mění v bodě 0 znaménko, má v bodě 0 ostrý lokální trém. 04
4 Etrém funkc Bz důkazu. Uvědomím si, ž podl vět..6 j pro f ( ) > 0 funkc f ( ) rostoucí a pro f ( ) < 0 j funkc f ( ) klsající. Podl vět 4.. můž drivac spojité funkc f ( ) změnit znaménko pouz v bodch 0 D f, v nichž f ( 0 ) = 0, nbo v nichž f ( 0 ) nistuj. Řšné úloh Příklad Určt lokální trém funkc =. Řšní: Funkc j spojitá na množině rálných čísl R. Zjistím nulové bod a bod nspojitosti funkc + a podl vět 4.. rozhodnm, zda v nich bud lokální trém: ( ) = +. =. Bodm nspojitosti funkc j bod = 0. Jjí nulový bod získám řšním rovnic ( + ) = 0, tj. + = 0 a odtud =. Tto bod rozdělí R na tři intrval, viz obr. 47. : R Obr
5 Etrém funkc = 0 Obr. 48 Vužijm poznatků o řšní nrovnic z kapitol.4 a dostanm: ( ) > 0, ( ) < 0, () > 0. Drivac funkc mění v bodch = 0 a = znaménko, tj. v těchto bodch istují lokální trém. Bod = j stacionárním bodm. Monotónnost funkc na obr. 48. s v bodch = 0 a = mění, viz obr. 47. Graf funkc j Výklad Věta 4... Přdpokládjm, ž f ( 0) = 0 a f ( 0) < 0, rsp. f ( 0) > 0. Pak má funkc f ( ) v bodě 0 ostré lokální maimum, rsp. ostré lokální minimum. Bz důkazu. Pro maimum v bodě 0 platí, ž f ( ) > 0, pro ( 0 δ, 0) a f ( ) < 0 pro ( 0, 0+ δ ) a vhodné δ > 0, viz obr. 49, 50. Funkc f ( ) j zřjmě v intrvalu ( 0 δ, 0+ δ ) klsající a td f ( 0) < 0. 06
6 Etrém funkc =f() 0 + δ 0 0 δ δ δ = f () Obr. 49 Obr. 50 Podobnou úvahu můžm provést pro minimum v bodě 0 a dostanm f ( 0) > 0. Řšné úloh Příklad Určt trém funkc =, jjíž dfiniční obor j D f =<, >. Řšní: Z řšní přdchozího příkladu vím, ž daná funkc má v bodě = ostré lokální maimum a v bodě = 0 má ostré lokální minimum. Z poznámk za větou 4.. vplývá, ž zbývá určit funkční hodnot funkc v krajních bodch dfiničního oboru, tj. v bodch Dostanm: 0 ( ) = 0,6788, 4 ( ) =. 0,98, 9 (0) =.0 = 0, ( ) =., = a =. 4 07
7 Etrém funkc Z přdchozích vztahů vplývá, ž funkc má v lokálním minimu = 0 absolutní minimum a v krajním bodě dfiničního oboru 4 = má absolutní maimum. Výklad Bz důkazu přdchozí větu zobcním. Věta Nchť má funkc f ( ) v bodě spojitou n-tou drivaci pro n a nchť ( n ) ( n) f ( 0) = f ( 0) = = f ( 0) = 0 a f ( 0) 0. ( n) ( n) f ( 0) 0, rsp. f ( 0) > 0, 0 J-li n číslo sudé a < pak má funkc f ( ) v bodě 0 ostré lokální maimum, rsp. ostré lokální minimum. J-li n liché číslo, pak v 0 trém nistuj. Řšné úloh Příklad Určt lokální trém funkc = Řšní: Funkc j polnom, tj. jjí dfiniční obor a dfiniční obor jjích drivací j R = + = ( ) stacionární bod jsou = 0, =. 4. = 8 + 5, (0) = 0, () = 0 budm dál drivovat.. = , (0) = 0, () = 0 v = nistuj trém. (4) (4) 4. = , (0) = 6> 0 v = 0 j ostré lokální minimum. 08
8 Poznámka Etrém funkc Většina praktických úloh vd na hldání absolutního maima nbo minima funkc, ktrá úlohu popisuj. Tnto trém můž, al nmusí být lokální. Řšné úloh Příklad Z bodu O do bodu A vd přímá žlznic, viz obr. 5. Navrhnět umístění přkladového nádraží v bodu B na této trati tak, ab při silniční dopravě z bodu C do bodu B po přímé silnici a násldné dopravě z bodu B do bodu A po žlznici bla cna za přpravu jdnotk zboží njnižší. Cna za dopravu jdnotk zboží po žlznici j 0, Kč/km a po silnici 0,5 Kč/km. Cna přkládk za jdnotku j Kč. Vzdálnost OA j 00 km, vzdálnost OC j 0 km. C=(0,0) 0 B=(,0) A=(00,0) Obr. 5 Řšní: Označm souřadnic bodu B= (,0), kd j hldaná vzdálnost bodu B od bodu O. Délka cst po žlznici pak bud (00 ) km a délka přprav po silnici +0 km. Cna přprav jdnotk zboží j pak dána funkcí = (00 ).0, ,5 +, D =< 0,00 >. Určím absolutní minimum této funkc: 09
9 = 0, +.0, Funkc j spojitá, určím td jjí stacionární bod: Etrém funkc 0, +.0,5 = 0 = 5= = = 400, =±. Do patří pouz D 0 =. Přsvědčím s, ž v bodě s jdná o minimum funkc: ( + 00) 50 = = = = ( + 00) 4 ( + 00) ( + 00) 0 J vidět, ž > 0 pro všchna D a td i pro, tj. v bodě = jd o minimum funkc. Nní zjistím funkční hodnot v krajních bodch D a porovnám j s funkční. hodnotou v bodě : 0 (0) = 6, (00) 5, 5, 5,58. Njvýhodnější j postavit nádraží v bodě B, ktrý j od bodu O vzdáln 0 km. Kontrolní otázk. Při vštřování lokálního trému funkc f ( ) v bodě 0 sldujm funkční hodnot této funkc a) v clém jjím dfiničním oboru, b) v okolí bodu 0, c) pouz v bodě 0.. Stacionárním bodm funkc f ( ) nazývám bod 0, v ktrém a) f ( 0) = 0, 0
10 Etrém funkc b) f ( 0) 0, c) f ( 0) nistuj.. Spojitá funkc f ( ) má v bodě v okolí bodu 0 a) nmění znaménko, b) rovná s nul, c) mění znaménko. 4. Pro funkci f ( ) v bodě a) j ostré lokální minimum, b) j ostré lokální maimum, c) nní tam lokální trém. 0 ostrý lokální trém. Pak drivac této funkc f ( ) 0 platí, ž f ( 0) = 0 a f ( 0) > 0. Pak v bodě 0 5. Má-li funkc f ( ) v bodě 0 stacionární bod, pak v bodě 0 lokální trém a) určitě nastan, b) nnastan, c) můž nastat. Odpovědi na kontrolní otázk. b);. a);. c); 4. a), 5. c). Úloh k samostatnému řšní. Najdět intrval, na ktrých j daná funkc rostoucí a na ktrých j klsající: a) 5 =, b) = 5 +, c) =, + 4 d) = + +, ) = +, f) = +.. Najdět intrval, na ktrých j daná funkc rostoucí a na ktrých j klsající: a) =, b) =, c) =,
11 Etrém funkc d) = ln +, ) = ln, f) g) = + cos, h) = sin + cos, i). Ukažt, ž funkc = arctg j pro každé rálné klsající. 4. Nalznět lokální trém daných funkcí: a) = ( 6 ), b) = 6, c) d) = 4 +, ) = 5. Nalznět lokální trém daných funkcí: a) d) = +, b) =, ) = ln( + + ), = arccos + = , +, f) = +. =, c) =, f) =, =. 6. Nalznět lokální trém daných funkcí: + a) = ln, b) = ln, c) = ln, ln d) = ln, ) =, f) = ln + arctg. 7. Nalznět lokální trém daných funkcí: a) = + arctg, b) = 6, c) =, d) = 4 tg, ) = sin, f) = + arccotg( ). 8. Určt absolutní trém funkcí na daném intrvalu: a) = 6+ 0,, 5, b) = ln,,, π c) = tg tg, 0,, d) =, ( 0, ). 9. Číslo 8 rozložt na dva sčítanc tak, ab jjich součin bl njvětší. 0. Najdět takové kladné číslo, ab součt tohoto čísla a jho přvrácné hodnot bl njmnší.. Jaké rozměr musí mít pravoúhlý rovnoběžník daného obvodu s, ab jho úhlopříčka bla njmnší?. Dokažt, ž z všch pravoúhlých rovnoběžníků daného a) obsahu má čtvrc njmnší obvod, b) obvodu má čtvrc njvětší obsah..
12 Etrém funkc. Z válcového kmn o průměru d s má vtsat trám obdélníkového průřzu tak, ab měl maimální nosnost. Z nauk o pvnosti j známo, ž nosnost trámu j dána vztahm = kab, kd k>0 j součinitl matriálu, a j šířka a b výška trámu. 4. Z čtvrcového plchu o straně a s má vrobit otvřná krabic tak, ž v rozích s odstřihnou čtvrc a zbtk s zahn do krabic. Jak vlká musí být strana odstřižných čtvrců, ab bl objm krabic maimální? 5. Cstovní kanclář pořádá zájzd. J-li počt účastníků zájzdu 00 a méně, j cna pro jdnoho účastníka 600 Kč. Při větším počtu nž 00 s cna sníží za každého účastníka navíc o,50 Kč. Při kolika účastnících bud obrat cstovní kanclář njvětší? Výsldk úloh k samostatnému řšní. a) rostoucí:, a,, klsající:, ; b) rostoucí: (, ) a (, ) ) (,), klsající: (, ; c) rostoucí: d) rostoucí:, a (, (, ), klsající: (, ) ), klsající: ( ) ( klsající: (, ) a (,) a (, ), klsající: (, ) a (, ) ;, v, j konstantní, = ; ) rostoucí:,0 a 0, a,.. a) rostoucí: (,0) b) rostoucí:, klsající: (0, ) (,0) a (, ) ; c) rostoucí: ( ) (,0) a ( 0,) ; d) rostoucí: ( 0, ), klsající: (,0) 0, ; f) rostoucí: (, ) ; g) rostoucí: (, ) ); f) rostoucí: (, ) a (, ), ( ), klsající: 0, ;,, klsající: ; ) rostoucí: ; h) rostoucí: π π 5 π + kπ, + kπ, klsající: + kπ, π + kπ, k Z ,, klsající: 0,, ; i) rostoucí: ( ) klsající: (,0). 4. a) ma = 0 pro = 0, min = pro = 4 ; b) ma = 0 pro =, min = pro = ; c) nmá lokální trém; d) ma = pro = 0 ; ) nmá lokální trém; f) min = pro =,
13 Etrém funkc min = pro =. 5. a) min = pro = 0 ; b) min = pro =, ma = pro = ; c) ma = pro =, ma = pro =, min = 0 pro = 0 ; d) ma = pro = ; ) ma = pro = ; f) ma pro = =, min = 0 pro = a) min = pro = ; b) nmá lokální trém; c) min = pro = ; d) ma pro = =, min = pro = ; ) ma = pro = ; f) min = ln- pro = a) nmá lokální trém; b) ma = 6 pro = 0, min = 0 pro = 4, min = 0 pro = 4 ; c) ma = pro =, min = 0 pro = ; 4π π d) ma = + 4kπ pro = + kπ, k Z, 4π π min = + 4kπ + pro = + kπ, k Z ; ) ( π + kπ ) 4 π ma = pro = + kπ, 4 5π ( + kπ ) 4 5π min pro k 4 π = = + π, k Z ; f) ma = pro =, 4 π min = + pro =. 8. a) ma = 7 pro =, min = pro = ; 4 b) π ma = pro =, min = pro = ; c) ma = pro =, nmá 4 absolutní minimum; d) min 0.69 pro =, nmá absolutní maimum. π 9. [ 4 4] s s =.. a=, b= d d a =, b=. 4. a a =, Vma = n = 70. 4
14 Etrém funkc Kontrolní tst. Najdět intrval, na ktrých j funkc = + rostoucí a na ktrých j klsající. a) rostoucí (, ) a (, ), klsající (,), b) rostoucí (,), klsající (, ) a (, ), c) rostoucí (, ), klsající (, ).. Najdět intrval, na ktrých j funkc a) rostoucí (, ), klsající (,), b) rostoucí (,), klsající (, ), c) rostoucí (, ), klsající (, ). = rz monotónní:. Najdět intrval, na ktrých j funkc = + arccotg rz monotónní. a) rostoucí (,), klsající (, ) a (, ), b) rostoucí (,), klsající (, ), c) rostoucí (, ) a (, ), klsající (,). 4. Najdět všchn lokální trém funkc a) pro =, = 0 pro = 0, ma = 4 min b) = pro = 0, min = 4 pro =, ma 0 9 = =, min = 0 = 0. c) ma pro pro =. 5. Najdět všchn lokální trém funkc = sin + cos. a) ma = pro 5 π = π, min = pro =, 4 4 b) ma = pro = 0, min = pro = π, π c) ma = pro = + kπ, k clé č., min = pro 4 6. Určt absolutní trém funkc = ln na intrvalu <, >. a) ma = pro =, min = ln pro =, b) ma = pro =, min = pro =, 5 = π + kπ, k clé č. 4 5
15 Etrém funkc c) ma = ln pro =, min = pro =. 7. Vpočtět rozměr obdélníku o ploš 5 cm tak, ab měl njkratší úhllopříčku. a) a = 5 cm, b = 5 cm; b) a = 4,75 cm, b = 5,5 cm, c) a = 4,5 cm, b = 5,9 cm. Výsldk tstu. a);. b);. c); 4. b); 5. c); 6. a); 7. a). Průvodc studim Pokud jst správně odpověděli njméně v 5 případch, pokračujt další kapitolou. V opačném případě j třba prostudovat kapitolu 4.. znovu. 6
1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.
Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností
3.3. Derivace základních elementárních a elementárních funkcí
Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních
{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
ε, budeme nazývat okolím bodu (čísla) x
Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž
f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
1. Limita funkce - výpočty, užití
Difrnciální a intgrální počt. Limita funkc - výpočt, užití Vpočtět násldující it: +.8..cos +. + 5+. 5..5.. 8 sin sin.7 ( cos.9 + sin cos. + 5cos. + log( +... + + + 5 +.5..7.8.9.. 5+ + 9 + + + + 8 sin sin5
Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy
Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna
Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b
Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1
h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R
.4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..
INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)
INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc
dx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
Diferenciální počet funkce jedné proměnné 1
Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce
1 ) 3, a 5 6 b ( 4. x+2 x, b) f(x)= sin 3x = 3 sin x 4 sin 3 x ] (užijte vzorce: sin(α + β), sin 2x a cos 2x) f 1 : y = x 1. f 1 : y = 3 + ln x 1
DOMÁCÍ ÚLOHY z MATEMATIKY VT) Opakování SŠ matmatiky Pomocí intrvalů zapišt nrovnosti: a), b) + >, c), d) > a),, b), 5), + ), c),, d), + ) Zjdnodušt výraz: a) 5 a a a ), b) a 5 6 b b 5 ) a b a a) a, a
hledané funkce y jedné proměnné.
DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální
Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost
.7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,
Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,
Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou
Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A,
Přijímací zkoušk do NMS MATEMATIKA, zadání A, jméno: V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna správná. Zakroužkujt ji! Za každou správnou odpověď získát uvdné bod. Za nsprávnou
L HOSPITALOVO PRAVIDLO
Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o
MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity
MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit
2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).
9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)
14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce
. Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní
( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce
MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu
Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
I. MECHANIKA 8. Pružnost
. MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.
základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie
Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází
c ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =
ELEKTŘINA A MAGNETIZMUS
ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ
Funkce. Vlastnosti funkcí
FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční
5.2. Určitý integrál Definice a vlastnosti
Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)
4.3.2 Vlastní a příměsové polovodiče
4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si
FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění
FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt
6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH
Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle
Univerzita Tomáše Bati ve Zlíně
Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že
.5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování
Zjednodušený výpočet tranzistorového zesilovače
Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
2. Frekvenční a přechodové charakteristiky
rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy
Definice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme
DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě
Řešení. Označme po řadě F (z) Odtud plyne, že
Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme
Stručný přehled učiva
Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TEHNIKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADEH VIČENÍ Č. Ing. Ptra Schribrová, Ph.D. Ostrava Ing. Ptra Schribrová, Ph.D. Vsoká škola báňská Tchnická univrzita
Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
FUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
Katedra aplikované matematiky, VŠB TU Ostrava.
SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné
PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ
Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční
DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH
DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině
x 2(A), x y (A) y x (A), 2 f
II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
Limita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.
Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt
MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
Funkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného
3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE
. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její
Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)
pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku
FUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +
Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou
Diferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
Funkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2
I Drivac jdnoduchých funkcí pomocí pravidl a vzorců Užitím P U druhého a třtího člnu použijm P Nní podl V a posldní čln podl V Použijm P Dál V a na drivaci trojčlnu v poldní závorc V a V Výsldk upravím
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH Ing. Ptra Schribrová, Ph.D. Ostrava Tnto studijní matriál vznikl za finanční podpor Evropského sociálního fondu
LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ A JEJICH UŽITÍ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/3.098 IV- Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol LOKÁLNÍ
MATEMATIKA I - vybrané úlohy ze zkoušek v letech
MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné
Seminární práce z matematiky
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro
M ě ř e n í o d p o r u r e z i s t o r ů
M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor
Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.
1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY
Diferenciální počet funkcí jedné reálné proměnné - 4.1 - LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Při hledání lokálních etrémů postupujeme podle následujícího programu Nalezneme
Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde
Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými
Ukázka závěrečného testu
Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál
30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R
Příklady k přednášce 3
Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
LIMITA FUNKCE, SPOJITOST FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8
Aplikace derivace ( )
Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické
Průběh funkce II (hledání extrémů)
.. Průběh funkce II (hledání etrémů) Předpoklad: Pedagogická poznámka: Poslední příklad v běžné vučovací hodině nestíháme. Rchlost postupu je možné značně ovlivnit tím, kolik času dáte studentům na výzkumné
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017
Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................
Variace. Kvadratická funkce
Variace 1 Kvadratická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratická funkce Kvadratická
(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení
.. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému
7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
Funkce. b) D =N a H je množina všech kladných celých čísel,
Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (
10. Derivace, průběh funkce
Moderní technologie ve studiu aplikované yziky CZ..07/..00/07.008 0. Derivace, průběh unkce Před mnoha lety se matematici snažili o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH
1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU
Matematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace