Úvod do magnetizmu pevných látek

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do magnetizmu pevných látek"

Transkript

1 Úvod do magnetzmu pevných látek. Úvod. Izolované magnetcké momenty 3. Prostředí 4. Interakce 5. agnetcké struktury 6. Doménová struktura a magnetzace

2 .agnetzmus pevných látek -úvod. Zdroje magnetsmu - magnetcký moment..agnetcký moment elementárních částc.. Elektrcký proud (otův Savartův zákon) agnetzmus pevných látek d IdS [ Am ] d ds I

3 .agnetzmus pevných látek -úvod e zajímavé, že magnetcký moment μ je vždy spojen s momentem mechanckým L(m. hybnost) L Kde je tzv. gyromagnetcký poměr L Kanoncká Důkazem této souvslost je Enstenův de Haasův efekt hybnost Spojení magnetckého a mechanckého momentu je dáno nutností p c = p + qa pohybu náboje př vytváření magnetckého pole (x spn elektronu?) Platí zákon zachování momentu setrvačnost, opak arnettův efekt I

4 .agnetzmus pevných látek -úvod L ohrův magneton I m vr e r I ef enší moment hybnost než se musí L e m e v r v m r e ohrův magneton = 9, Am nebo T - není, tj. v základním stavu e e -, m e Vodíkový atom p + ohrův magneton bude, co do velkost, vhodnou jednotkou pro mgt. moment atomů e m e Gyromagnetcký poměr elektronu r

5 .agnetzmus pevných látek -úvod Klascký vs. kvantový systém Analýzou klasckého systému (pevné látky) bychom zjstl, že energe systému je nezávslá na magnetckém pol. (ohr-van Leeuwen theorém) Elektrony v klasckém systému vykonávají v mgt. pol pohyb po kružncích. Avšak proud takto vyvolaný se právě ruší s proudem v důsledku neúplných orbt na hranc vzorku! Proto je třeba s uvědomt, že magnetsmus látek je čstě kvantové povahy. To přesto, že řadu magnetckých jevů ještě nejsme schopn v rámc kvantové mechanky popsat.

6 .agnetzmus pevných látek -úvod Orbtální a spnový moment hybnost elektronu v atomu, kvantová čísla l,m l a s Orbtální moment hybnost L Velkost(ampltuda) l l Průmět do osy () m l oment hybnost mplkuje moment magnetcký g l l gm l Spnový moment hybnost S Velkost(ampltuda) s s Průmět do osy () m s Tzv. g-faktor, vlastnost daná povahou elektronu, g-faktor atomu je jejch kombnací, často bývá =, ale může být menší g g s s gm s Sˆ Sˆ z! m s s s

7 .agnetzmus pevných látek -úvod Orbtální a spnový moment hybnost atomu kvantová čísla l, m l a s, m s l l m l kombnací. m l m l. m l ampltuda l l Průmět do osy () s m s. m S. g s s pouze m S! Průmět do osy () Předbíháme E gm Energe elektronu v atomu je závslá na mgt. pol, celková energe elektronu se v mgt. pol posune podle a m Zeemanův efekt = štěpení spektrálních čar E

8 .agnetzmus pevných látek -úvod Orbtální a spnový moment hybnost atomu kvantová čísla l, m l a s, m s l s m l = -l, (-l+), l m l. m s = -s, (-s+), s. edna z kombnací základní stav vz. níže Hundova pravdla Dy +3, 4f 9 Výsledek pro ont: m l o o o o o o o o o S = 5/ L = 5

9 každá energetcká hladna se rozpadá na celkem Lymanova sere u vodíku (se spn-orbtální nterakcí) Kvůl nterakc s magnetckým polem se každá hladna rozpadá na j+ ekvdstantních hladn Předbíháme g pro tř hladny jsou Landé faktor g = pro S / (j=/, l=0) g = / 3 pro P / (j=/, l=) g = 4 / 3 pro P 3 / (j=3/, l=) E gm Rozštěpení je různé pro různé orbtaly kvůl g E = g Spn-orbtální štěpení emná struktura (3) Štěpení mgt. polem Zeemanovo štěpení Platí výběrové pravdlo m l 0;

10 . agnetzmus pevných látek -úvod Pole a magnetzace Vakuum: H 0 T Hm Ve vakuu jsou oba vektory až na faktor μ 0 totožné (Pevná) látka: H 0 V materálu mohou být oba vektory velm rozdílné ve směru vektorů Za předpokladu, že je přímo úměrné H H Am H H 0 0 r je mgt. susceptblta r je mgt. permeablta

11 . agnetzmus pevných látek -úvod Pole a magnetzace Pohled na magnetzac materálu e to magnetcký moment vztažený na objem = koncentrace mgt. momentu V V Am 3 m agnetzace je velčna, která se váže na mkroskopcké magnetcké momenty atomů To znamená, že na mgt. ntenztu H lze pohlížet jako na koncentrac mgt. momentu. H Am Lneární magnetka Přes tento pohled je třeba mít na pamět, že magnetcký dpól je zdrojem mgt. pole! (3)

12 .agnetzmus pevných látek -úvod Př měření susceptblty musíme být opatrní kvůl demagnetzačnímu pol! Vntřní pole H a H,které působí na měřený vzorek může být jné než pole aplkované. H d N 0 H exp erment H a H a - - N N N + vlastn vlastn H N Demagnetzační faktor ůžeme zapomenout pro «Pozor na geometr vzorku!

13 .agnetzmus pevných látek -úvod echancký moment působící na magnetcký moment v magnetckém pol E Energe magnetckého momentu v magnetckém pol agnetcká ndukce v místě r od magnetckého momentu umístěného v počátku r Pole klesá s r 3! 0 r 4r 0 E Zeemanův efekt m g m

14 Z e V m p H 0 ˆ Atom v magnetckém pol Předpokládejme Hamltonan atomu se Z elektrony v základním stavu.izolované magnetcké momenty V magnetckém pol se Hamltonan změní na Z e r m e gs L H H 0 8 ˆ ˆ Změna energe v důsledku paramagnetsmu Změna energe v důsledku damagnetsmu en když nejsou elektrony spárované Vždy ea p p C Kanoncká hybnost Enstenův de Haasův efekt

15 Damagnetsmus Posun energe základního stavu v důsledku přítomnost pole.izolované magnetcké momenty Z e r m e E 0 8 (Všechny elektrony spárovány) z, 0,0 y x r Z e r m e E 0 3 r y x Helmholtzova volná energe F pro mgt. látky d pdv SdT df Z e T,V r m V Ne E V N F 6 Kulová symetre f(t)!

16 .Izolované magnetcké momenty Damagnetsmus E F 0 Z e m r e Z T, V r Z eff r 0 H N atomů se Z elektrony v objemu V Uvažujeme jen poslední slupku NaCl, Kr, gcl, g N V F e 0 6m Cl e a Z r I Delokalzované π-elektrony = velké r velký damagnetsmus L Paramagnetsmus odpadá všechny onty mají uzavřené slupky Z eff r

17 .Izolované magnetcké momenty Damagnetsmus -shrnutí. Damagnetsmus je velm slabý efekt. Vyskytuje se u všech prvků (atomů) 3. Na damagnetckou látku působí v nehomogenním mgt. pol síla směrem do míst nžšího pole = je záporná 4. Většna látek skládajících se z atomů se spárovaným elektrony 5. Některé polokovy (), pozor na příspěvek nelokalzovaných elektronů Paul paramagnetsmus vs. Landau damagnetsmus E F

18 .Izolované magnetcké momenty Paramagnetsmus =/ (Nespárované elektrony) Celkový moment hybnost atomu s nespárovaným elektrony je dán součtem orbtálního L a spnového S momentu hybnost L S Pro počítání platí Hundova pravdla (níže) Hledáme střední hodnotu magnetckého momentu atomu v mgt. pol. Nejprve pro =0,5 (m = 0,5) tj. máme jen dvě možnost + μ a - μ (Např. L=0 a S=0,5) E = - E g Střední hodnota mgt. momentu m = ( + )

19 .Izolované magnetcké momenty Paramagnetsmus =/ g m tanh k T / S 0,96 0,76 m = ( + ) 0 tanh( /k T) aká část mgt. momentu se zorentovala do směru pole? /k T S n n max g m g tanh k T Pro / S = 0,5 př 300K se musí 50 T!!!

20 .Izolované magnetcké momenty Paramagnetsmus =/ H H tanh S k T / S 0 tanh( /k T) Pro malé pole tanh kt kt /k T H n H k T n 0 k T 3,00E-0,00E-0 Cureův zákon,00e-0 0,00E T (K)

21 aká část mgt. momentu se narovnala do směru pole? y S 3k.Izolované magnetcké momenty Paramagnetsmus = x coth rllounova funkce aclaurn pro coth Cureův zákon n 0 T eff C 0 T y / S 0 - coth y S ng y g / kt eff g =/ = nf. Vdíme do jaké míry se atomové momenty stočí do směru pole Klascký lmt Cureův zákon paramagnetcké látky + magnetzmus pozadí /k T

22 =/ / S 0 = nf /k T Hledáme pravděpodobnost výskytu jednotlvých orentací atomových momentů, tedy pravděpodobnost výskytu jednotlvých m = kvantový pohled Hledáme do jaké míry se atomové momenty stočí m do směru pole = klascký pohled = Pozn. aclaurn pro malá y ( )y ( y ) 3...

23 .Izolované magnetcké momenty S L Spn-orbtální nterakce - jemná struktura Káždý atom s nezaplněnou slupkou může mít nenulovou hodnotu S a L. Oba tyto vektory se mohou kvantově měnt od S do +S, resp. Od L do +L. To znamená, že pokud mez spnovým momentem a orbtálním momentem exstuje nterakce mohou se tyto dva momenty kombnovat do kombnací. m s -/ 0 / m L Tak se vytváří mnohem jemnější krok pro změnu celkového momentu hybnost atomu. Vytváří se jemná struktura. To, co se zachovává, je a nkol S a L. Který stav je základní?

24 .Izolované magnetcké momenty Hundova pravdla = jaký je základní stav atomu ) Uspořádat elektrony tak, aby se maxmalzoval spn S = mnmalzujeme Coulombckou repulz ) Uspořádat elektrony tak, aby se maxmalzoval L = rotace ve stejném směru mnmalzuje Coulombckou repulz 3) Spn orbtální nterakce způsobí: L S L S Ho +3, 4f 0 S = L = 6 Termy: 5 Do půlky Přes půlku I 8 K označení ontu vytvoříme term S L S P D F G H I Počet kombnací m l o o o o o o o o o o

25 .Izolované magnetcké momenty Adabatcká demagnetzace - chlazení Výměna entrope S mez spny a fonony S k lnw W je počet uspořádání mgt. momentů S k N ln Varace s opakováním Pro =±/ a N atomů Látku ochladíme např. He ve zmagnetovaném stavu ( 0) = entrope spnů je mnmální Pomalu snžujeme mgt. pole = entrope spnů roste, ale na úkor fononů = látka se ochlazuje

26 3. Prostředí Krystalové pole Interakce orbtalů obklopujících atomů s orbtaly atomu magnetckého Volný atom/ont Tetraedrcká koordnace Oktaedrcká koordnace d-orbtaly se štěpí t g e g t g e g

27 3. Prostředí Krystalové pole Vysokospnové a nízkospnové uspořádání Volný ont PŘÍKLAD Fe + d-orbtaly se štěpí nízkospnové ΔE vysokospnové ΔE = snímáme degenerac S = 0 S =

28 3. Prostředí Krystalové pole Zamrzání orbtálního momentu orbtal quenchng Krystalové pole vyřadí 3. Hundovo pravdlo (spnorbtální nterakce) platné pro volný on. Pro koordnovaný d-on je energetcky výhodnější takové uspořádání, že orbtální příspěvek elektronů k mgt. momentu ontu je nulový. ejch z-složky se navzájem všechny vynulují a tedy. L Z 0 eff g S L exp eff g S eff g S T 3+,V 4+ 3d 0,5,5,55,70,73 V 3+ 3d 3,63,6,83 Cr 3+,V + 3d 3,5 3,5 0,77 3,85 3,87 Cu + 3d 9 0,5,5 3,55,83,73

29 Krystalové pole 3. Prostředí ahnův - Tellerův jev Elektrony (nostele magnetsmu) se snaží snížt energ atomu skrze změnu symetre Snžujeme symetr = = snímáme degenerac Oktaedrcká koordnace d 9, low-spn d 7 nebo hgh-spn d 4 d x y e g Klesá energe d z Čtvercová koordnace d xy t g d xz, d yz

30 4. Interakce (mez magnetckým momenty) agnetcká dpolární nterakce Energe E dvou magnetckých momentů E 4r r r r Pro magnetcký moment a vzdálenost momentů 0, nm E 0 3 T K Přílš slabá nterakce pro většnu teplot nevede k magnetckému uspořádání

31 4. Interakce Výměnná nterakce Operátor spnového momentu setrvačnost je z y x Ŝ k jŝ Ŝ ˆ S S z y x Ŝ Ŝ Ŝ ˆ Užtečnější je jeho druhá mocnna (D) je Vlastní hodnota D operátoru spnového momentu setrvačnost je 4 3 S z y x Ŝ Ŝ Ŝ ˆ Vlastní hodnota D operátoru spnového momentu setrvačnost je tedy S s s ˆ defnce

32 4. Interakce Výměnná nterakce Interakc dvou elektronů (spnů) a a b lze nejlépe popsat ve formě Hesenbergův typ nterakce ˆ Aˆ a S Dvojce spnů je tedy reprezentována operátorem Sˆ b Vlastní hodnoty Sˆ Sˆ Sˆ ab a b nebo s 0 nebo ˆ S s s

33 4. Interakce Výměnná nterakce Z toho plynou vlastní hodnoty operátoru dvojce elektronů Sˆ Sˆ a a Sˆ Sˆ b b Dvojce spnů může být tedy reprezentována operátorem O tom, který stav nastane rozhoduje E E S T báze,,, pro s = tř možná uspořádání spnů = trplet T pro s = 0 jedno možné uspořádání = snglet ˆ spn S S 0 0 pro S pro T S +

34 4. Interakce Výměnná nterakce Pro nterakc více elektronů Obecné poznámky: ˆ spn j j S S (Hesenberg) j ) Dva elektrony na stejném atomu (atomový orbtal) = trplet Hundovo pravdlo ) Dva elektrony na různých atomech (molekulový orbtal) = snglet Vazebný kontra prot-vazebný orbtal, větší energetcká úspora je pro vazebný, což upřednostňuje snglet Často v pevných látkách volíme j = pro nejblžší sousedy a j = 0 pro ostatní vzdálenější sousedy

35 4. Interakce Výměnná nterakce - přímá výměna alý překryv magnetckých orbtalů d a především f snžuje šanc na přímou nterakc dvou spnů. ( atomy se nevdí, výměna je málo pravděpodobná. e pravděpodobné, že u Fe,Co, N, se přímá nterakce pouze podílí na feromagnetsmu a důležtou rol zde hrají volné elektrony. Ve většně materálů musíme uvažovat nějakou formu nepřímé nterakce.

36 4. Interakce Výměnná nterakce nepřímá výměna Supervýměna - superexchange noho oxdů a fluordů přechodných kovů a vzácných zemn má v základním stavu nějakou formu magnetckého uspořádání (no, nf, FeO, ) magnetcké atomy se přímo nevdí a pro komunkac používají prostředníka n O ferro antferro základní exctovaný exctovaný výhodnější

37 4. Interakce Výměnná nterakce - nepřímá výměna Double exchange Týká se především sloučenn kovů, které vykazují více oxdačních stavů (n, Fe,..). ako příklad nám poslouží (La,Sr)nO 3 LanO 3 n +3 La -xsr x no 3 SrnO 3 n +4 n +3 + n +4 Př všech teplotách antferromagnetcký zolant (superexchage) x Pod krtckou teplotou Tc ferromagnetcký vodč (double exchage) e g e g e g e g kolosální magnetorezstence t g t g t g t g n +3 n +3 n +3 n +4

38 4. Interakce Výměnná nterakce - nepřímá výměna RKKY magnetcké atomy komunkují nepřímo přes volné nostele proudu (kovy a polovodče) ˆ spn j j S S (Hesenberg) j F, j mk h 4 F pd x cos x x x 4 F(k F sn x r j )exp agnetcký on polarzuje okolní volné elektrony. Protože ale polarzace/susceptblta elektronů vykazuje q-dsperz, dochází k nterferenčním jevům. r l j h ggantcká magnetorezstence velký odpor malý odpor =0 Fe Cr Fe >0 Fe Cr Fe AF-vazba

39 4. Interakce.0x0-4 RKKY - nepřímá výměna 5.0x0-5 j () x Sb.974 V 0.06 Te 3 (k F r j )=3.6 F -.0x x F (k F r) c ontu *0 5 (m -3 ) h*0 5 (m -3 ) Sb.974 V 0.06 n Te 3 (k F r j )=.7 4 6

40 5. agnetcké struktury Ferromagnetsmus Wessův model Interakce -tých mgt. momentů s j-tým : Pro -tý ont: ˆ j j S S Předpokládejme, že v důsledku výměnné nterakce exstuje na místě -tého ontu molekulární pole ( mp ), které se přdává k vnějšímu pol j g j S j (Hesenberg ex. - ferro) (Zeeman - para) ˆ g S mp mp g Potom máme paramagnet v celkovém pol mp + = Wessův model mp pochází z výměnné nterakce ˆ S S g S j j j j prozatím L=0 j S j

41 5. agnetcké struktury Ferromagnetsmus Wessův model Celkové pole olekulární pole můžeme považovat za úměrné magnetzac C mp mp C Ferromagnet pak řešíme jako paramagnet s vntřním / molekulárním polem: rllounova fce y S coth y coth y y g / paramagnet k T y g ( ) / k ferromagnet Celý proces je uzavřená smyčka vntřní pole polarzuje magnetcké momenty a ty naopak vytvářejí vntřní pole! aterál se sám zmagnetuje bez účnku vnějšího pole! = spontánní magnetzace T

42 paramagnet y g / k T / S Řešíme dvě rovnce 0 5. agnetcké struktury Ferromagnetsmus Wessův model y =/ y = nf. g S coth y ( ) / nejnázornější je grafcké řešení pro =0 S ng k ferromagnet / S 0 T přímka coth k y T y / g T>T C T=T C T<T C /k T y

43 5. agnetcké struktury Ferromagnetsmus Wessův model Krtcká teplota znamená, že obě funkce mají v počátku stejnou směrnc g T k y C S S )y ( y ) ( 3 g y T k S ) ( y 3 eff S C k n k ) ( g T 3 3 ) ( g T k C S mp 3 000T pro běžný ferromagnet!!!

44 5. agnetcké struktury Ferromagnetsmus Wessův model C 0 T C 0 (T T ) CW Cureův zákon - paramagnetcké látky Cureův Wessův zákon - ferromagnetcké látky v paramagnetckém stavu T C T CW

45 ( m 3.kg - ) 6.00E-008 Sb.99 V 0.0 Te 3 Sb.98 V 0.0 Te 3 Sb.96 V 0.03 Cr 0.0 Te E-008 Sb.93 V 0.03 Cr 0.04 Te 3.00E E+000 Fty susceptblty podle Cure- Wessova zákona ( pod 50K už se projevuje ferromagnetsmus ) 5. agnetcké struktury Ferromagnetsmus T ( K ) (T P P3 P ) Parameter Value Error P E E-9 P P E E Parameter Value Error P E-6 P P E E Parameter Value Error P.03E E-9 P P E E Parameter Value Error P.76E E-9 P P E E

46 5. agnetcké struktury Ferromagnetsmus.5 Sb.984 V 0.06 Te 3 T = K Koerctvní pole H C, C (0-6 Tm 3 kg - ) Sb.974 V 0.06 Te 3 Sb.96 V 0.0 Cr Te 3 Sb.93 V 0.0 Cr 0.0 Te 3 Remanentní magnetzace R -.5 a) ( T ) Hysterézní smyčky jsou jasným důkazem ferromagnetsmu.

47 ˆ j j 5. agnetcké struktury Antferromagnetsmus S S j Pro <0 Nejčastěj dvě podmřížky, které jsou orentovány prot sobě = +

48 Předpokládejme, že jedna mřížka magnetzuje tu druhou bez přítomnost vnějšího pole. 5. agnetcké struktury Antferromagnetsmus = + Ten to předpoklad není úplně realstcký, lepe by bylo předpokládat, že obě podmřížky přspívají k magnetzac každé podmřížky = přesnější výpočet teoretcké T C :

49 5. agnetcké struktury Antferromagnetsmus C 0 (T T ) N U antferomagnetu závsí susceptblta na vzájemné orentac a m (mřížky) // T N T T CW n 3k eff T N n 3k eff eff g

50 5. agnetcké struktury Ferrmagnetsmus ) Počet atomů v obou podmřížkách se neshoduje agnetcké momenty podmřížek se neshodují Příklady: ) agnetcký moment atomů v obou podmřížkách se neshoduje 3) Obojí Spnely = O. Fe O 3 = n, Fe, Co, N, Cu, Zn Granáty = R 3 Fe 5 O R = vzácné zemny árový fert = ao.6fe O 3 Ferty jsou zolanty nemají ztráty vířvým proudy jsou vhodné pro vysokofrekvenční aplkace = tlumvky, nvertory..

51 6. Doménová struktura a magnetzace DOÉNY Pokud spontánní uspořádání začne ve více místech vzorku najednou, nemusí být všechny oblast vzorku zpolarzovány shodným směrem. Vznká doménová struktura. Hrance domén mohou mít podobu lochova hrance Néelova hrance e zřejmé, že z hledska výměnné nterakce je tvorba domén nevýhodná. ěly by se samy rozmotat až do stavu jedno-doménového vzorku.

52 DOÉNY 5. agnetcké struktury To, co energetcky zvýhodňuje tvorbu domén, je demagnetzační energe H d N H 0 Pokud H H Edemag E domén_ hranc nemusí dvergovat ze vzorku ušetříme energ na tvorbu pole mmo vzorek. akou doménovou strukturu má vzorek (nemusí to být ta energetcký nejvýhodnější) závsí na jeho magnetcké, tepelné a mechancké hstor. Posun doménové hrance je blokován vždy přítomnou ansotropí magnetckých vlastností, takže daná doménová struktura se nemění spontánně, ale vlvem pole a teploty.

53 DOÉNY 5. agnetcké struktury Změna doménové struktury je proces spojený se změnou energe vzorku. Tvorba, posun a zánk doménových hranc je ale pro různé materály různě náročný. To určuje, jestl se doménová struktura mění téměř spontánně nebo jen s použtím pole, teploty a podobně. S tím jsou spojeny pojmy remanentní magnetzace R a koerctvní pole H C Podle toho dělíme materály na magnetcky tvrdé měkké. S R S H C H H

Úvod do magnetizmu pevných látek

Úvod do magnetizmu pevných látek Úvod do magnetzmu pevných látek. Úvod. Izolované magnetcké momenty 3. Postředí 4. Inteakce 5. agnetcké stuktuy 6. Doménová stuktua a magnetzace .agnetzmus pevných látek -úvod. Zdoje magnetsmu - magnetcký

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

ESR, spinový hamiltonián a spektra

ESR, spinový hamiltonián a spektra ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností

Více

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové MAGNETICKÉ POLE V LÁTCE, MAXWELLOVY ROVNICE MAGNETICKÉ VLASTNOSTI LÁTEK Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

Kapitola 3. Magnetické vlastnosti látky. 3.1 Diamagnetismus

Kapitola 3. Magnetické vlastnosti látky. 3.1 Diamagnetismus Kapitola 3 Magnetické vlastnosti látky Velká část magnetických projevů je zejména u paramagnetických a feromagnetických látek způsobena především spinovým magnetickým momentem. Pokud se po sečtení všech

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Hlavní body - elektromagnetismus

Hlavní body - elektromagnetismus Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické

Více

4.5.7 Magnetické vlastnosti látek

4.5.7 Magnetické vlastnosti látek 4.5.7 Magnetické vlastnosti látek Předpoklady: 4501 Předminulá hodina magnetická indukce závisí i na prostředí, ve kterém ji měříme permeabilita prostředí = 0 r, r - relativní permeabilita prostředí (zda

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 23.01.2013 Číslo DUMu: VY_32_INOVACE_06_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 23.01.2013 Číslo DUMu: VY_32_INOVACE_06_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 23.01.2013 Číslo DUMu: VY_32_INOVACE_06_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

Elektronický obvod. skládá se z obvodových součástek navzájem pospojovaných vodiči působí v něm obvodové veličiny Příklad:

Elektronický obvod. skládá se z obvodových součástek navzájem pospojovaných vodiči působí v něm obvodové veličiny Příklad: Elektroncký obvod skládá se obvodových součástek navájem pospojovaných vodč působí v něm obvodové velčny Příklad: část reálného obvodu schéma část obvodu Obvodové velčny elektrcké napětí [V] elektrcký

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6)

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6) 1. Stavebn energetcké vlastnost budov Energetcké chování budov v zním období se v současné době hodnotí buď s pomocí průměrného součntele prostupu tepla nebo s pomocí měrné potřeby tepla na vytápění. 1.1.

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie ATOM 1. ročník Datum tvorby 11.10.2013 Anotace a) určeno pro

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

6.3.2 Periodická soustava prvků, chemické vazby

6.3.2 Periodická soustava prvků, chemické vazby 6.3. Periodická soustava prvků, chemické vazby Předpoklady: 060301 Nejjednodušší atom: vodík s jediným elektronem v obalu. Ostatní prvky mají více protonů v jádře i více elektronů v obalu změny oproti

Více

Elektřina a magnetizmus magnetické pole

Elektřina a magnetizmus magnetické pole DUM Základy přírodních věd DUM III/2-T3-13 Téma: magnetické pole Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus magnetické pole

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK OSTRAVA 004 - Recenzent: Doc RNDr Ladslav Sklenák, CSc Prof RNDr Vlém Mádr, CSc Název: Termodynamka a statstcká fyzka Autor:

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU ŘÍZENÍ OTÁČEK AYNCHONNÍHO MOTOU BEZ POUŽITÍ MECHANICKÉHO ČIDLA YCHLOTI Petr Kadaník ČVUT FEL Praha, Techncká 2, Praha 6 Katedra elektrckých pohonů a trakce e-mal: kadank@feld.cvut.cz ANOTACE V tomto příspěvku

Více

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2.

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2. . Spektrální rozklad samoadjungovaných operátorů.. Motvace Vlastní čísla a vlastní vektory symetrcké matce A = A λe = λ λ = λ 3λ + = λ 3+ λ 3 Vlastní čísla jsou λ = 3+, λ = 3. Pro tato vlastní čísla nalezneme

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra experimentální fyziky MAGISTERSKÁ PRÁCE

Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra experimentální fyziky MAGISTERSKÁ PRÁCE Unverzta Palackého v Olomouc Přírodovědecká fakulta Katedra expermentální fyzky ELEKTROMAGNETICKÁ INDUKCE V UČIVU STŘEDOŠKOLSKÉ FYZIKY MAGISTERSKÁ PRÁCE Olomouc 014 Alena Večeřová Prohlášení Prohlašuj,

Více

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce FYZIKA II Petr Praus 10. Přednáška Magnetické pole v látce Osnova přednášky Magnetické pole v látkovém prostředí, Ampérovy proudové smyčky, veličiny B, M, H materiálové vztahy, susceptibilita a permeabilita

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A] Pracovní úkol 1. Proměřte závislost magnetické indukce na proudu magnetu. 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické

Více

- 1 - Obvodová síla působící na element lopatky větrné turbíny

- 1 - Obvodová síla působící na element lopatky větrné turbíny - - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel Základy větrání stájových objektů Stájové objekty: objekty otevřené skot, ovce, kozy apod. - přístřešky chránící ustájená zvířata pouze před přímým náporem větru, před dešťovým a sněhovým srážkam, v létě

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Elektřina a magnetizmus závěrečný test

Elektřina a magnetizmus závěrečný test DUM Základy přírodních věd DUM III/2-T3-20 Téma: závěrečný test Střední škola Rok: 2012 2013 Varianta: TEST - A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník TEST Elektřina a magnetizmus závěrečný

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole. Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole

Více

5. Materiály pro MAGNETICKÉ OBVODY

5. Materiály pro MAGNETICKÉ OBVODY 5. Materiály pro MAGNETICKÉ OBVODY Požadavky: získání vysokých magnetických kvalit, úspora drahých kovů a náhrada běžnými materiály. Podle magnetických vlastností dělíme na: 1. Diamagnetické látky 2. Paramagnetické

Více

Polymorfismus kovů Při změně podmínek (zejména teploty), nebo např.mechanickým působením změna krystalické struktury.

Polymorfismus kovů Při změně podmínek (zejména teploty), nebo např.mechanickým působením změna krystalické struktury. Struktura kovů Kovová vazba Krystalová mříž: v uzlových bodech kationy (pro atom H: m jádro :m obal = 2000:1), Mezi kationy: delokalizovaný elektronový plyn, vyplňuje celé kovu těleso. Hmotu udržuje elektrostatická

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

5. MĚŘENÍ STEJNOSMĚRNÝCH MOTORŮ. 5.1 Stejnosměrný motor s cizím buzením 5.1.1 Štítkové údaje

5. MĚŘENÍ STEJNOSMĚRNÝCH MOTORŮ. 5.1 Stejnosměrný motor s cizím buzením 5.1.1 Štítkové údaje nastavíme synchronzac se sítí (označení LINE), což značí, že př kmtočtu 50 Hz bude počet záblesků, kterým osvětlíme hřídel, 3000 mn -1. Řízením dynamometru docílíme stav, kdy se na hřídel objeví tř nepohyblvé

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

Úvod do elektrokinetiky

Úvod do elektrokinetiky Úvod do elektrokinetiky Hlavní body - elektrokinetika Elektrické proudy pohyb nábojů Ohmův zákon, mikroskopický pohled Měrná vodivost σ izolanty, vodiče, polovodiče Elektrické zdroje napětí (a proudu)

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 006, překlad: Vladimír Scholtz (007) Obsah KONTOLNÍ OTÁZKY A ODPOVĚDI OTÁZKA 1: VEKTOOVÉ POLE OTÁZKA : OPAČNÉ NÁBOJE OTÁZKA 3:

Více

21.5 Členění v závislosti na objemu výroby

21.5 Členění v závislosti na objemu výroby Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1 VÝVOJ SOFWARU NA PLÁNOVÁNÍ PŘESNOSI PROSOROVÝCH SÍÍ PRECISPLANNER 3D DEVELOPMEN OF HE MEASUREMEN ACCURACY PLANNING OF HE 3D GEODEIC NES PRECISPLANNER 3D Martn Štroner 1 Abstract A software for modellng

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul. Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby

Více

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin 2. Metalografie - zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin Vnitřní stavba kovů a slitin ATOM protony, neutrony v jádře elektrony v obalu atomu ve vrstvách

Více

Základy elektrotechniky - úvod

Základy elektrotechniky - úvod Elektrotechnika se zabývá výrobou, rozvodem a spotřebou elektrické energie včetně zařízení k těmto účelům používaným, dále sdělovacími a informačními technologiemi. Elektrotechnika je úzce spjata s matematikou

Více

INŽ ENÝ RSKÁ MECHANIKA 2002

INŽ ENÝ RSKÁ MECHANIKA 2002 Ná dní konference s mezná dní účastí INŽ ENÝ RSÁ MECHANIA 00 1. 16. 5. 00, Svratka, Č eská republka PODRITICÝ RŮ ST TRHLINY VE SVAROVÉ M SPOJI OMORY PŘ EHŘÍVÁ U Jan ouš, Ondřej Belak 1 Abstrakt: V důsledku

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Elektrotechnika 1. Garant předmětu: doc. Ing. Jiří Sedláček, CSc. Autoři textu:

Elektrotechnika 1. Garant předmětu: doc. Ing. Jiří Sedláček, CSc. Autoři textu: Elektrotechnka arant předětu: doc ng Jří Sedláček, CSc Autoř textu: doc ng Jří Sedláček, CSc doc ng Mloslav Stenbauer, PhD Brno, leden Elektrotechnka Předluva Předkládaná skrpta slouží jako základní studjní

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

PRVKY KOVOVÝCH KONSTRUKCÍ

PRVKY KOVOVÝCH KONSTRUKCÍ VYSOKÉ UEÍ TECHICKÉ V BR FAKULTA STAVEBÍ PROF. IG. JIDICH MELCHER, DrSc. DOC. IG. MIROSLAV BAJER, CSc. PRVKY KOVOVÝCH KOSTRUKCÍ MODUL BO02-M07 AVRHOVÁÍ OCELOVÝCH KOSTRUKCÍ A MEZÍ STAV ÚAVY STUDIJÍ OPORY

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL. Obsah. 2. Metody fotoelektronové spektroskopie

ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL. Obsah. 2. Metody fotoelektronové spektroskopie ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL Ústav fyzkální cheme J. Heyrovského, Akademe věd České republky, v.v.., Dolejškova 3, 182 23 Praha 8 Došlo 4.8.08, přjato 18.12.08.

Více

Rezonanční elektromotor II

Rezonanční elektromotor II - 1 - Rezonanční elektromotor II Ing. Ladislav Kopecký, 2002 V tomto článku dále rozvineme a zpřesníme myšlenku rezonančního elektromotoru. Nejdříve se zamyslíme nad vhodnou konstrukcí elektromotoru. Z

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Studijní opora MODEL IS-LM, FISKÁLNÍ A MONETÁRNÍ POLITIKA. Část 1 Model IS-LM

Studijní opora MODEL IS-LM, FISKÁLNÍ A MONETÁRNÍ POLITIKA. Část 1 Model IS-LM Studjní opora Název předmětu: EKONOMIE II (část makroekonome) Téma 2 MODEL IS-LM, FISKÁLNÍ A MONETÁRNÍ POLITIKA Část 1 Model IS-LM Zpracoval: doc. RSDr. Luboš ŠTANCL, CSc. Operační program Vzdělávání pro

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více