ESR, spinový hamiltonián a spektra

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ESR, spinový hamiltonián a spektra"

Transkript

1 ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností elektronů a zabývá se studem látek obsahujících paramagnetcké částce (molekuly, atomy a paramagnetcká centra ) s nenulovým elektronovým magnetckým momentem. V EPR tedy studujeme látky, v jejchž elektronové struktuře exstuje jeden č více elektronů s nevykompenzovaným spnovým magnetckým momentem (tzv. nepárových elektronů) a slně potlačeným orbtálním magnetckým momentem. Takovýmto látkam jsou například: Volné atomy s lchým počtem elektronů (N, H, ). Atomy (onty) tranztvních prvků. Molekuly s lchým počtem elektronů (NO, ) Molekuly se sudým počtem elektronů, ale s nevykompenzovaným spny (O 2 ). Volné radkály zejména v organckých látkách (nenasycené vazby, CH 3, OH, ). Barevná centra. Vodvostní elektrony (Paulho paramagnetsmus). pnový hamltonán pnovým hamltonánem nazýváme tu část celkového hamltonánu studované soustavy, která obsahuje spnové proměnné. Př sestavování spnového hamltonánu je třeba dbát na to, aby obsahoval členy reprezentující všechny nterakce ovlvňující tvar EPR spektra příslušného volného radkálu v daném prostředí. Obecně je třeba vzít v úvahu členy typu H =μ B g j Ŝ B 0 j, g j - tenzor g-faktoru (1) reprezentující nterakce elektronového magnetckého momentu volného radkálu a magnetckých momentů jader atomů, které jej vytvářejí, s vnějším magnetckým polem a členy typu = A k Î k, k operátor celkového spnu atomu, A k tenzor (magnetcké) hyperjemné nterakce reprezentující vzájemnou nterakc elektronového a jaderných magnetckých momentů. 4Len reprezentující jadernou kvadrupólovou nterakc se obvykle v úvahu nebere, poněvadž je nenulový pouze pro jádra se spnem I >1, kdy navíc ovlvňuje jen pouze přechody, které odpovídají současné změně orentace elektronového jaderného magnetckého momentu. Tyto přechody jsou v EPR zakázané a lze je pozorovat pouze ve zvláštních případech. Zcela obecně můžeme tedy spnový hamltonán zapsat ve tvaru: =μ B B 0 g Ŝ + Î A Ŝ g μ N Î B 0, (3) (2) 1

2 kde B 0 je vnější magnetcké pole, Ŝ je operátor elektronového spnu, Î jsou operátory jaderných spnů, g jaderné g-faktory, g je tenzor g-faktoru volného radkálu, A jsou tenzory hyperjemné nterakce elektronového magnetckého momentu s magnetckým momenty jader. čítá se přes všechna jádra s nenulovým jaderným magnetckým momentem. První člen hamltonánu (3) se lší od spnového hamltonánu volného elektronu tím, že je v něm g- faktor volného elektronu nahrazen tenzorem g-faktoru g.jaká je příčna této zkutečnost, která významně ovlvňuje polohy a tvary EPR spekter volných radkálů? V molekulární struktuře volného radkálu je orentace orbtu obsazeného nepárovým elektronem pevně fxovaná chemckým vazbam. Orbtální magnetcký moment nepárového elektronu ve volném radkálu v kondenzovaném prostředí proto nemůže an vykonávat preces kolem směru vnějšího magnetckého pole, an měnt vůč němu svou orentac. V základním orbtálním stavu je tedy efektvní orbtální magnetcký moment nepárového elektronu vždy nulový. Následkem toho je v prvním přblížení g-faktor volného radkálu roven g-faktoru volného elektronu g e. V druhém přblížení však nepatrné příměs vyšších orbtálních stavů nepárového elektronu spolu se spn-orbtální nterakcí vedou k výsledkům, ze kterých vyplývá, že g-faktor volného radkálu je obecně symetrckým tenzorem 2. řádu. Tenzory hyperjemné nterakce vystupující v druhém členu hamltonánu (3) jsou tenzory stejného typu. Velkost složek obou tenzorů závsí na volbě souřadného systému, ve kterém jsou vyjádřeny. Obecnou vlastností symetrckých tenzorů 2. řádu je, že lze vždy nalézt jejch tzv. hlavní soustavu souřadnou, ve které jsou nenulové pouze dagonální prvky, nazývané hlavním hodnotam tenzoru, a že jejch stopa je nvarantní vůč lbovolným rotačním operacím. Hlavní hodnoty tenzoru hyperjemné nterakce elektronového magnetckého momentu s magnetckým momentem -tého jádra se lší od hodnoty zotropní štěpící konstanty a o příspěvky dpolární hyperjemné nterakce mez oběma magnetckým momenty. Poněvadž první dva členy spnového hamltonánu (3) popsují anzotropní nterakce, budou jeho vlastní hodnoty, a tedy polohy čar v EPR spektru obecně závset na orentac volného radkálu vůč vnějšímu magnetckému pol. Závslost příspěvku prvního členu (3) na orentac volného radkálu vůč vnějšímu magnetckému pol je zřejmá. Anzotrope hyperjemné nterakce, popsané druhým členem (3), je důsledkem orentační závslost dpolární hyperjemné nterakce. Poněvadž možné orentace elektronového jaderných magnetckých momentů jsou určeny orentací vnějšího magnetckého pole, závsí velkost dpolární hyperjemné nterakce na orentac střední hodnoty polohového vektoru r, a tedy na orentac orbtu obsazeného nepárovým elektronem vůč vnějšímu magnetckému pol. V případech, kdy orentace volného radkálu podléhá rychlým a chaotckým změnám, jak je tomu např. v málo vskózních roztocích, dochází ke zprůměrování dpolární hyperjemné nterakce. Vzhledem k tomu, že stopa tenzoru dpolární hyperjemné nterakce je nulová, dpolární hyperjemná nterakce vymzí. Podmínkou pro takové zprůměrování je, aby v čase kratším, než je převrácená hodnota rozdílu extrémních hodnot dpolárního hyperjemného štěpení vyjádřeného ve frekvenčních jednotkách, zaujal volný radkál všechny všechny možné orentace vůč vnějšímu magnetckému pol. Za těchto podmínek se hyperjemné nterakce ve volném radkálu redukují na Fermho kontaktní nterakce. Rychlým a chaotckým změnam orentace volného radkálu v málo vskózních rozpouštědlech je zprůměrován příspěvek prvního členu spnového hamltonánu (3) na hodnotu charakterzovanou tzv. zotropním g-faktorem volného radkálu g=(g x x +g y y +g z z )/3. Podmínkou pro takové zprůměrování opět je, aby změny orentace volného radkálu byly dostatečně rychlé a neuspořádané tak, aby v čase kratším, než je převrácená hodnota rozdílu příspěvků tohoto členu odpovídajících extrémním hodnotám dagonálních prvků tenzoru g vyjádřeného ve frekvenčních jednotkách, zaujal volný radkál všechny možné orentace vůč vnějšímu magnetckému pol. 2

3 Z provedeného rozboru vyplývá, že volný radkál v roztoku o nízké vskoztě lze popsat zotropním spnovým hamltonánem =g μ B B 0 Ŝ+ a Î Ŝ g μ N Î B 0. (4) hrnutí, doplnění předchozího podle přednášky prof. Štěpánkové Volný atom (ont) (Russel-oundersovo schéma) Uvažme postupně jednotlvé členy hamltonánu: Coulombcké nterakce, spn-spnové nterakce uvntř atomu spn atomu kvantové číslo orbtální moment atomu kvantové číslo L energe soustavy závsí na q, L, orbtální a spnová degenerace spn-orbtální nterakce celkový moment hybnost kvantové číslo J energe soustavy závsí na q,l,, J Hundova pravdla určují základní stav nterakce s vnějším magnetckým polem H ZJ =g J μ B J z B ext (4) 2J +1 ekvdstantních hladn Zeemanovský multplet možno pozorovat EPR přechody s Δ J z =±1 ndukované střídavým magnetckým polem rezonanční podmínka: ħ ω 0 =g J μ B B ext hyperjemné nterakce nterakce mez magnetckým momenty elektronu (l, s) a jádra (I) hf = μ 0 2 π γ e γ I ħ Î [ 2 l r r ( 3 3 r( nold s r) r 2 ŝ ) π ŝ δ(r) ] (5) každá hladna Zeemanovského multpletu se rozštěpí na 2I + 1 hladn => hyperjemná struktura EPR spektra jaderné členy jaderný zeemanovský multplet (jaderná dpólová nterakce apod.) jaderná kvadrupólová nterakce obecně slabší 3

4 Atom zabudovaný v látce účnky krystalového pole působení sousedních atomů H kr záleží na relatvní velkost jednotlvých nterakcí: slabé, středně slné, slné krystalové pole slabé stuace podobná volnému atomu (ontu) často středně slné krystalové pole - zamrzání orbtálního momentu, pouze malý vlv daný spn-orbtální nterakcí efektvní spnový hamltonán je možno vyjádřt pomocí spnového operátoru Ŝ elektronový zeemanovský člen hyperjemná nterakce Î A Ŝ jaderný zeemanovský člen B ext g μ B Ŝ Podobně pro molekuly volných radkálů: Krystal: =B ext g Ŝ + k I ( k) A ( k) Ŝ k nehybná orentace vůč B ext γ k ħ I ( k) B ext (6) spektrum EPR závsí na orentac hlavních os g resp. A tenzorů (tj. na orentac molekuly) vůč směru vnějšího pole Polykrystal: superpozce spekter pro různé orentace s relatvní četností danou pravděpodobností dané orentace Kapalny, málo vazké roztoky, malé molekuly anzotropní nterakce se středují př rychlých náhodných rotacích molekul ve vztazích zůstává třetna stopy tenzorů pro hyperjemnou nterakc stopa je daná jen Fermho kontaktní nterakcí závslost na elektronové hustotě na jádře Příklad: a) gnál atomu vodíku bude mít střed na g=2,0022, bude rozštěpen na dublet 1:1 hyperjemnou nterakcí s jádrem. b) gnál metylového radkálu H 3 C* bude mít střed na g=2,00255, bude rozštěpen na kvartet 1:3:3:1 hyperjemnou nterakcí s třem ekvdstantním vodíkovým jádry 4

5 Expermentální technka: rezonátory, vlnová technka (frekvence EPR jsou vysoké (řádově GHz), proto pro jsou přenos sgnálu potřeba vlnovody, ) EPR se měří kontnuálně Lteratura [1] Poznámky z přednášky prof. Štěpánkové. [2] V. Prosser a kol. : Expermentální metody bofyzky, ACADEMIA, Praha,

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekapling Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekaplingem rozumíme odstranění vlivu J-vazby XA na na spektra jader A působením dalšího radiofrekvenčního pole ( ω X )na

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se

Více

MIKROVLNNÁ SPEKTROSKOPIE RADIKÁLU FCO 2. Lucie Kolesniková

MIKROVLNNÁ SPEKTROSKOPIE RADIKÁLU FCO 2. Lucie Kolesniková MIKROVLÁ SPEKTROSKOPIE RADIKÁLU FCO 2 Lucie Kolesniková Ústav analytické chemie, Fakulta chemicko-inženýrská, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 E-mail: lucie.kolesnikova@vscht.cz

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

Úvod do magnetizmu pevných látek

Úvod do magnetizmu pevných látek Úvod do magnetzmu pevných látek. Úvod. Izolované magnetcké momenty 3. Prostředí 4. Interakce 5. agnetcké struktury 6. Doménová struktura a magnetzace .agnetzmus pevných látek -úvod. Zdroje magnetsmu -

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE

IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE Úvod Ramanova spektrometrie je metodou vibrační molekulové spektrometrie. Za zakladatele této metody je považován indický fyzik Čandrašékhara

Více

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

Dvourozměrná NMR spektroskopie metody

Dvourozměrná NMR spektroskopie metody Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

Spinový moment hybnosti /magnetický moment, interakce s magnetickým polem

Spinový moment hybnosti /magnetický moment, interakce s magnetickým polem Spnový oent hybnost /anetcký oent, nterakce s anetcký pole Velkost jednoho elektronového spnu: Velkost jednoho jaderného spnu: s s( s ) 3 ( ) Sudé Sudé Z 0 Sudé Lché Z... apř: He, C, 6 O celočíselné apř:

Více

Hranolový spektrometr

Hranolový spektrometr Hranolový spektrometr a vodíkové spektrum Ú k o l y 1. Okalibrujte hranolový spektro.. Určente vlnové délky spektrálních čar vodíkové výbojky. 3. Určente kvantové elektronové přechody v atomu vodíku. 4.

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra 445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.

Více

1 Tepelné kapacity krystalů

1 Tepelné kapacity krystalů Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud

Více

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211 10..15 Úlohy na hledání etrémů Předpoklady: 1011 Pedagogcká poznámka: Kromě příkladů a není pro studenty problém vypočítat dervace funkcí. Problémem je hlavně nalezení těchto funkčních závslostí, tam postupujeme

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

4.4 Exploratorní analýza struktury objektů (EDA)

4.4 Exploratorní analýza struktury objektů (EDA) 4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk

Více

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm)

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm) Gyromagnetická částice, jev magnetické rezonance Pojmy s kterýma se můžete setkat: u elektronů lze Bohrův magneton Zkoumat NMR lze jen ty jádra, které mají nenulový jaderný spin: Několik systematických

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

Barva produkovaná vibracemi a rotacemi

Barva produkovaná vibracemi a rotacemi Barva produkovaná vibracemi a rotacemi Hana Čechlovská Fakulta chemická Obor fyzikální a spotřební chemie Purkyňova 118 612 00 Brno Barva, která je produkována samotnými vibracemi je relativně mimořádná.

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

NMR biomakromolekul RCSB PDB. Progr. NMR

NMR biomakromolekul RCSB PDB. Progr. NMR NMR biomakromolekul Typy biomakromolekul a možnosti studia pomocí NMR proteiny a peptidy rozmanité složení, omezení jen velikostí molekul nukleové kyseliny (RNA, DNA) a oligonukleotidy omezení malou rozmanitostí

Více

L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.

L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami. L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo

Více

NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech

NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech Spinový hamiltonián Hamiltonián soustavy jader a elektronů v magnetickém poli lze zapsat

Více

9. MĚŘENÍ TEPELNÉ VODIVOSTI

9. MĚŘENÍ TEPELNÉ VODIVOSTI Měřicí potřeby 9. MĚŘENÍ TEPELNÉ VODIVOSTI 1) střídavý zdroj s regulačním autotransformátorem 2) elektromagnetická míchačka 3) skleněná kádinka s olejem 4) zařízení k měření tepelné vodivosti se třemi

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR... Počet signálů C 17 18 2 O 2 MeO Počet signálů = počet neekvivalentních skupin OMe = informace o symetrii molekuly Spektrum 1 MR... Počet

Více

Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence)

Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence) Pružnost Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence) R. Hook: ut tensio, sic vis (1676) 1 2 3 Pružnost 1) Modul pružnosti 2) Vazby mezi atomy

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Petr Dvořák. Studium spin-mřížkové a spin-spinové relaxace NMR jader 1

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Petr Dvořák. Studium spin-mřížkové a spin-spinové relaxace NMR jader 1 Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Petr Dvořák Studium spin-mřížkové a spin-spinové relaxace NMR jader H ve vodě Katedra fyziky nízkých teplot Vedoucí bakalářské

Více

Vlnění, optika a atomová fyzika (2. ročník)

Vlnění, optika a atomová fyzika (2. ročník) Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová

Více

Chemické složení vesmíru

Chemické složení vesmíru Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Chemické složení vesmíru Jak sledujeme chemické složení ve vesmíru? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně,

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. IX Název: Charakteristiky termistoru Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 17.10.2013 Odevzdal

Více

4. STANOVENÍ PLANCKOVY KONSTANTY

4. STANOVENÍ PLANCKOVY KONSTANTY 4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

Projekty do předmětu MF

Projekty do předmětu MF Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra optiky ZÁVĚREČNÁ PRÁCE Projekty do předmětu MF Vypracoval: Miroslav Mlynář E-mail: mlynarm@centrum.cz Studijní program: B1701 Fyzika Studijní

Více

Metody pro studium pevných látek

Metody pro studium pevných látek Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi

Více

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

MĚŘENÍ INDUKČNOSTI A KAPACITY

MĚŘENÍ INDUKČNOSTI A KAPACITY Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky

Více

IDEÁLNÍ KRYSTALOVÁ MŘÍŽKA

IDEÁLNÍ KRYSTALOVÁ MŘÍŽKA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D13_Z_MOLFYZ_Idealni_krystalova_mrizka_real ny_krystal_typy_vazeb_pl Člověk a příroda

Více

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A 2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;

Více

Ch - Elektronegativita, chemická vazba

Ch - Elektronegativita, chemická vazba Ch - Elektronegativita, chemická vazba Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument

Více

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

ZÁKLADY SPEKTROSKOPIE

ZÁKLADY SPEKTROSKOPIE VĚDOU A TECHNIKOU KE SPOLEČNÉMU ROZVOJI DODATEK PŘESHRANIČNÍ LETNÍ ŠKOLA VĚDY A TECHNIKY ZÁKLADY SPEKTROSKOPIE EURÓPSKA ÚNIA EURÓPSKY FOND REGIONÁLNEHO ROZVOJA SPOLOČNE BEZ HRANÍC FOND MIKROPROJEKTŮ 1.

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ MOLEKULOVÁ FYZIKA 1

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ MOLEKULOVÁ FYZIKA 1 OSTRAVSKÁ UNIVERZITA V OSTRAVĚ MOLEKULOVÁ FYZIKA 1 Molekulové jevy v kapalinách ERIKA MECHLOVÁ OSTRAVA 2004 Tento projekt byl spolufinancován Evropskou unií a českým státním rozpočtem Recenzent: Prof.

Více

ELEKTROMAGNETICKÉ ZÁŘENÍ

ELEKTROMAGNETICKÉ ZÁŘENÍ VY_32_INOVACE_FY.16 ELEKTROMAGNETICKÉ ZÁŘENÍ Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Elektromagnetické záření Jakýkoli

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval:.Jakub Višňák... stud.sk.:... dne: 23.10.2006

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval:.Jakub Višňák... stud.sk.:... dne: 23.10.2006 Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum IV Úloha č. A 20 Název: Fourierovská infračervená spektroskopie Pracoval:.Jakub Višňák... stud.sk.:... dne: 23.10.2006 Odevzdal

Více

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak.

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak. Referát z Fyziky Detektory ionizujícího záření Vypracoval: Valenčík Dušan MVT-bak. 2 hlavní skupiny detektorů používaných v jaderné a subjaderné fyzice 1) počítače interakce nabitých částic je převedena

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc.

Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc. Nanotechnologie a jejich aplikace doc. RNDr. Roman Kubínek, CSc. Předpona pochází z řeckého νανος což znamená trpaslík 10-9 m 380-780 nm rozsah λ viditelného světla Srovnání známých malých útvarů SPM Vyjasnění

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

ó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

3 Elektromagnetické vlny ve vakuu

3 Elektromagnetické vlny ve vakuu 3 Elektromagnetické vlny ve vakuu Od mechanických vln s pružinkami a závažími se nyní přesuneme k vlnám elektromagnetickým. Setkáváme se s nimi na každém kroku radiové vlny, mikrovlny, světlo nebo třeba

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů Techologe skla 00/03 C V I Č E N Í 4. Představeí rmy pltex Czech. Vlastost skla a sklovy 3. Adtvta 4. Příklady výpočtů Hospodářská akulta. Představeí rmy pltex Czech a.s. [,] Frma pltex Czech je součástí

Více

Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda

Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda 1 Úvod Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda V této úloze se zaměříme na měření parametrů kladného sloupce doutnavého výboje, proto je vhodné se na

Více

Absorpční fotometrie

Absorpční fotometrie Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: IX Název: Charakteristiky termistoru Pracoval: Pavel Brožek stud. skup. 12 dne 31.10.2008

Více

Základy fyzikálněchemických

Základy fyzikálněchemických Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé

Více

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ RAKC POPTÁVKY DOMÁCNOTÍ PO NRGII NA ZVYŠOVÁNÍ NRGTICKÉ ÚČINNOTI: TORI A JJÍ DŮLDKY PRO KONTRUKCI MPIRICKY OVĚŘITLNÝCH MODLŮ tela Rubínová, Unverzta Karlova v Praze, Centrum pro otázky žvotního prostředí,

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

Oddělení fyziky vrstev a povrchů makromolekulárních struktur

Oddělení fyziky vrstev a povrchů makromolekulárních struktur Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

JADERNÁ MAGNETICKÁ REZONANCE

JADERNÁ MAGNETICKÁ REZONANCE JADERNÁ MAGNETICKÁ REZONANCE ÚVOD Jaderná magnetická reonance, nukleární magnetická reonance, NMR - tři nejpoužívanější výra pro spektrální metodu vužívající magnetických vlastností atomových jader některých

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace

Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Ing. Pavel Oupický Oddělení optické diagnostiky, Turnov Ústav fyziky plazmatu AV ČR, v.v.i., Praha Úvod Teorie vzniku a kvantifikace

Více

Energie v magnetickém poli. Jaderný paramagnetismus.

Energie v magnetickém poli. Jaderný paramagnetismus. Enege v magnetcém pol. Jadený paamagnetmu. šeobecně: Damagneta účny eletonů v chemcých vazbách e do značné míy vzáemně ompenzuí výledný vlv e velm labý. K měření e nutné velm homogenní a tablní pole až

Více

Radiobiologický účinek záření. Helena Uhrová

Radiobiologický účinek záření. Helena Uhrová Radiobiologický účinek záření Helena Uhrová Fáze účinku fyzikální fyzikálně chemická chemická biologická Fyzikální fáze Přenos energie na e Excitace molekul, ionizace Doba trvání 10-16 - 10-13 s Fyzikálně-chemická

Více

Navaříme si elektřinu aneb výlet do světa elektrických dipólů

Navaříme si elektřinu aneb výlet do světa elektrických dipólů Navaříme si elektřinu aneb výlet do světa elektrických dipólů JIŘÍ ERHART, PETR DESENSKÝ katedra fyziky, Fakulta přírodovědně-humanitní a pedagogická, Technická univerzita v Liberci Abstrakt Příspěvek

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

Využití matematických modelů xdsl pro silnoproudá vedení

Využití matematických modelů xdsl pro silnoproudá vedení ok / Year: Svazek / Volume: Číslo / Number: 6 Využtí matematkýh modelů xdsl pro slnoproudá vedení The usng of xdsl mathematal models fo power lne Petr Mrákava, Jří Mšure xmraka@stud.fee.vutbr.z, msure@fee.vutbr.z

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického

Více

Elektrické vlastnosti pevných látek

Elektrické vlastnosti pevných látek Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy

Více