Cykliny D v regulaci a dysregulaci buněčného cyklu u mnohočetného myelomu
|
|
- Helena Sedláková
- před 7 lety
- Počet zobrazení:
Transkript
1 PŘEHLED Cykliny D v regulaci a dysregulaci buněčného cyklu u mnohočetného myelomu Cyclins D in Regulation and Dysregulation of the Cell Cycle in Multiple Myeloma Kubiczková L. 1,2, Dúcka M. 1, Sedlaříková L. 1, Kryukov F. 1, Hájek R. 1,2, Ševčíková S. 1,2 1 Babákova myelomová skupina, Ústav patologické fyziologie, LF MU, Brno 2 Oddělení klinické hematologie, FN Brno Souhrn Mnohočetný myelom je druhé nejčastější hematoonkologické onemocnění charakterizované klonální proliferací plazmatických buněk a produkcí monoklonálního imunoglobulinu. Jedná se o heterogenní onemocnění, avšak mnohé studie uvádějí, že dysregulace cyklinů D patří k sjednocujícím událostem v rané patogenezi mnohočetného myelomu. Téměř u všech pacientů s tímto onemocněním byla pozorována zvýšená exprese alespoň jednoho z cyklinů D, nicméně v mnoha případech je mechanizmus jejich zvýšené exprese neznámý. Kromě známých a dobře popsaných úloh cyklinů D v buněčném cyklu se ukazuje, že mají i jiné funkce, kterými mohou přispívat k progresi nádorových onemocnění. Cykliny D slouží také jako prognostický marker a ke klasifikaci podskupin mnohočetného myelomu. V tomto přehledovém článku se zaměřujeme na význam cyklinů D u mnohočetného myelomu. Klíčová slova mnohočetný myelom cyklin D patogeneze regulace buněčného cyklu TC skupiny Summary Multiple myeloma is the second most common hematooncological disease characterized by clonal proliferation of plasma cells and monoclonal immunoglobulin production. It is a heterogenous disease; however, dysregulation of cyclins D seems to be an early unifying pathogenic event in multiple myeloma. In almost all patients, there is increased expression level of at least one of the cyclins D. Nevertheless, the mechanism of this increase is unknown in many cases. Next to well-known roles of cyclins D in the cell cycle, they have many other functions contributing to tumor cell progression. Cyclins D are prognostic markers and are also used for subclassification of multiple myeloma. In this review, we focus on significance of cyclins D in multiple myeloma. Key words multiple myeloma cyclin D pathogenesis cell cycle regulation TC groups Tato práce byla podpořena výzkumným záměrem Ministerstva školství, mládeže a tělovýchovy MSM , grantem IGA Ministerstva zdravotnictví NT14575, NT12130 a NT13190 a interním grantem LF MU MUNI/11/ /InGA17/2012. This study was supported by scientific program of the Czech Ministry of Education, Youth and Sports MSM , Grant of the Ministry of Health NT14575, NT12130 and NT13190 and internal grant of Faculty of Medicine, Masaryk Univerzity MUNI/11/InGA17/2012. Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do bi omedicínských časopisů. The Editorial Board declares that the manuscript met the ICMJE uniform requirements for biomedical papers. RNDr. Sabina Ševčíková, Ph.D. Babákova myelomová skupina Ústav patologické fyziologie LF MU, Brno Kamenice 5, A Brno sevcik@med.muni.cz Obdrženo/Submitted: Přijato/Accepted: Klin Onkol 2013; 26(5):
2 Úvod Mnohočetný myelom (MM) je nádorové onemocnění terminálních stadií B lymfocytů, známých jako monoklonální plazmatické buňky (PB). Pro MM jsou charakteristické tři základní znaky, které rovněž slouží k jeho dia gnóze. Především jde o infiltraci kostní dřeně (KD) maligními PB, dále pak o produkci M- Ig (především jde o IgG a IgA, méně často o IgM nebo IgD), který bývá detekován v moči a/ nebo v séru. Výjimečně, pokud jsou maligní buňky vysoce dediferencované, tvoří pouze lehké řetězce imunoglobulinu (Ig), κ nebo λ. Třetím znakem jsou osteolytické léze. Dnes je již známo, že všechny případy MM jsou předcházeny premaligním stavem, monoklonální gamapatií nejasného významu (MGUS) [1,2]. U MM byly popsány dvě onkogenní dráhy, které vedou k jeho vzniku. Na základě těchto raných onkogenních událostí je pak možné MM rozdělit do dvou skupin: hyperdiploidní MM, který zahrnuje asi 50 % všech případů nemoci, a nonhyperdiploidní MM [3,4]. Pro hyperdiploidní nádory jsou typické numerické aberace jako monozomie chromozomů 13, 14, 16 a 22 a trizomie chromozomů 3, 5, 7, 9, 15, 19 a 21 [5]. Naopak typ nonhyperdiploidní je charakterizován přítomností reciprokých chromozomálních translokací zahrnujících lokus pro těžký řetězec imunoglobulinu (IgH) (14q32) [6], méně často i lokus pro lehký řetězec (IgL): κ (2p12) anebo λ (22q11) [7]. Asi ve 40 % případů MM byla popsána přítomnost pěti opakovaných reciprokých translokací IgH, které jsou příčinou změny pozice různých genů či onkogenů, jejichž exprese je deregulovaná po translokaci do oblasti zesilovače trans kripce IgH. Zmíněnými translokačními partnery jsou oblasti 11q13 (CCND1), 4p16 (FGFR3 a MMSET), 6p21 (CCND3), 16q23 (MAF) a 20q11 (MAFB), tedy oblasti chromozomů, kde se nacházejí geny pro cykliny D nebo jejich transkripční faktory [4,8]. Cykliny D Počáteční studie všech tří molekul cyklinů D (D1, D2 a D3) odhalily jejich podobnou strukturu, funkční redundanci, různou expresi v odlišných typech tkání a odlišnou expresi v závislosti na vývojovém stadiu buněk. Cyklin D1 je vysoce exprimován v játrech, naopak cyklin D3 v thymu. Dále bylo zjištěno, že exprese cyklinu D3 je specifická pro mladé proliferující tkáně, zatímco exprese cyklinu D1 se během vývoje mění [9]. Každý cyklin D je kódován vlastním genem. Gen pro cyklin D1 se nachází v lokusu 11q13, gen pro cyklin D2 pak v lokusu 12p13 a cyklin D3 je kódován lokusem 6p21 [10]. I přesto, že geny leží na rozdílných chromozomech, proteinové struktury jsou si značně podobné; cykliny D2 a D3 jsou identické z 62 %, s cyk linem D1 pak sdílejí homologii z 62 %, resp. 51 % (obr. 1). Největší homologie mezi cykliny D (78 %) se vyskytuje v doméně označované jako cyclin box, která zprostředkovává vazbu cyklinů s cyklin-dependentními kinázami (Cdk) a je nezbytná pro interakci komplexu cyklin-cdk s inhibitory Cdk p21 Cip1, p27 Kip1 a p57 Kip2. Všechny tři cykliny D sdílejí LxCxE motiv na N konci, kterým se vážou na protein Rb. Na C konci mají doménu PEST bohatou na prolin, kyselinu glutamovou, serin a treonin, která je charakteristická pro rychle degradovatelné proteiny. Na C konci se také nachází i specifický treoninový zbytek, jehož fosforylací je aktivována degradace cyklinů D v proteazomu (Thr 286 u cyklinu D1, Thr 280 u cyklinu D2 a Thr 283 u cyklinu D3). Úsek mezi doménou cyclin box a C koncem obsahuje domény, které jsou mezi cykliny D jen slabě konzervovány a jsou zodpovědné za interakci cyklinu D1 s transkripčními faktory (TF) [11]. Je známo, že cyklin D1 vystupuje ve dvou izoformách, druhá izoforma cyklinu D1 vzniká alternativním sestřihem mrna pro cyklin D1 a označuje se jako cyklin D1b. Cyklin D1b je dlouhý 274 aminokyselin, s cyklinem D1 je identický v prvních 240 aminokyselinách a liší se svým C koncem, kde postrádá exon 5 nesoucí ně kte ré klíčové interakční motivy včetně aminokyselinového zbytku Thr 286, jehož fosforylací je kontrolován jak export cyklinu D1b z jádra, tak jeho stabilita [12]. Ve srovnání s cyklinem D1 se poločas rozpadu cyklinu D1b neliší, rozdílná je však jeho lokalizace, jelikož se nachází pouze v buněčném jádře [13,14]. Obr. 1. Porovnání proteinových struktur cyklinu D2 a D3 s cyklinem D1. Srovnání proteinových struktur cyklinů D2 a D3 s cyklinem D1. Všechny cykliny D obsahují LxCxE motiv, kterým se vážou na protein Rb. Největší homologie se dále vyskytuje v doméně cyclin box, která zprostředkovává jejich vazbu na Cdk. Na C konci mají doménu PEST, která je charakteristická pro rychle degradovatelné proteiny. AMK znázorňují velikost daného cyklinu D a procenta udávají míru homologie mezi cyklinem D1 a cykliny D2 a D3. Cykliny D v regulaci buněčného cyklu Cykliny D jsou regulačními podjednotkami holoenzymu, který je aktivní v průběhu rané fáze G1 a umožňuje progresi buněčného cyklu z G1 do S fáze tím, že fosforyluje protein Rb [15]. V závislosti na typu tkáně tvoří cykliny D komplex s jednou ze dvou kataly- 314 Klin Onkol 2013; 26(5):
3 Modely mapující funkci cyklinů D v různých fázích hematopoézy Myši deficientní pouze pro jeden z cyklinů D, konkrétně D1, jsou menší, s častějším projevem retinopatie, nicméně hematopoéza je u nich postižena jen minimálně, což poukazuje na značnou funkční redundanci cyklinů D [24]. Aby bylo možné poznat specificky funkci jednotlivých cyklinů D, byly vytvořeny myši deficientní pro dva typy cyklinů a exprimující pouze jeden typ: D1, D2 nebo D3. Bylo zjištěno, že v rané fázi embryogeneze se myši vyvíjejí normálně, což znamená, že cykliny D mohou být aspoň v průběhu embryonálního vývoje zaměnitelné nebo že vývoj určitých typů tkání může být nezávislý na přítomnosti cyklinů D. Nicméně později ve výtických podjednotek, buď s Cdk4, nebo s Cdk6. Vzájemnou kombinací cyklinů s Cdk4/ 6 může vzniknout až šest typů komplexů, které vykazují podobné biochemické funkce [16]. Na rozdíl od jiných typů cyklinů, jejichž koncentrace se periodicky mění během progrese buněčného cyklu nezávisle na okolních vlivech, hladina cyklinů D závisí na signálech z mimobuněčného prostředí. Pokud tedy dojde k mitogenní stimulaci, hladina cyklinů D se navyšuje, spolu se zánikem stimulu pak hladina cyklinů D klesá. Navíc je exprese cyklinů D v buňce regulována různými TF, což umožňuje v závislosti na typu tkáně aktivovat různé cyk liny D, a tím i aktivitu Cdk4/ 6 [17,18]. Po vzniku komplexu cyklinu D s Cdk4/ 6 dochází k částečné fosforylaci nádorového supresoru retinoblastoma proteinu (Rb) a vzniku tzv. hypofosforylované formy Rb [15]. Rb obsahuje až 16 potenciálních míst pro fosforylaci, pouze tři z nich jsou preferovány komplexy cyklinů D s Cdk4/ 6, konkrétně Ser 780, Ser 795 a Thr 826 [19]. Fosforylace proteinu Rb komplexem cyklin D/ Cdk4/ 6 vede mimo jiné k disociaci specifických histonových deacetyláz (HDAC), chromatin remodulujících enzymů, které blokují expresi genu pro cyklin E. Díky tomu může dojít k navýšení hladiny cyklinu E, který záhy tvoří komplex s Cdk2. V počáteční fázi G 1 je komplex cyklin E/ Cdk2 suprimován Cdk inhibitorem p27 Kip1, který naopak, stejně jako p21 Cip1, neinhibuje komplex cyklin D/ Cdk4/ 6, ale aktivuje jej [20]. Z toho důvodu je pro vznik aktivního komplexu cyklin D/ Cdk4/ 6 nutné navýšení nejen hladiny cyklinu D, ale i p27 Kip1, který je vázán v komplexu cyklin E/ Cdk2. Dochází tedy k vyvázání inhibitoru p27 Kip1 z komplexu cyklin E/ Cdk2, tím se zvyšuje jeho nevázaná forma, která přispívá k aktivaci komplexu cyklin D/ Cdk4/ 6, a zároveň dochází k aktivaci komplexu cyklin E/ Cdk2 [16]. Aktivní komplex cyk lin E/ Cdk2 fosforyluje dále prb v pozici Ser567, a tím vytváří hyperfosforylovanou inaktivní formu prb, která posléze uvolňuje rodinu transkripčních faktorů E2F, čímž je iniciována transkripce genů potřebných pro přechod do fáze S, včetně genu pro cyklin E [21,22]. Dalším substrátem komplexu cyklin E/ Cdk2 je Obr. 2. Postupná fosforylace proteinu Rb zabezpečující přechod z fáze G1 do S. Pro progresi buněčného cyklu je důležitá hypofosforylace Rb pomocí komplexu cyklin D/Cdk4/6. Hyperfosforylace prb pomocí komplexu cyklin E/Cdk2 inaktivuje prb, který není schopný vázat transkripční faktor E2F, čímž je umožněn přechod buňky do S fáze buněčného cyklu. G1-pm G1-postmitotická fáze, G1-ps G1-pre-S fáze, R restrikční bod jeho inhibitor p27 Kip1, který je fosforylací označen pro ubikvitinaci a následnou degradaci proteazomem. Pozorujeme zde tedy pozitivní zpětnou vazbu, kdy komplex cyklin E/ Cdk2 suprimuje protein prb, čímž dochází k aktivaci transkripčního faktoru E2F, což vede ke zvýšené expresi cyklinu E, který pak v komplexu s Cdk2 může udržovat supresi Rb a inaktivaci p27 Kip1. Díky tomu dochází k progresi buněčného cyklu z poslední části fáze G1 do S (obr. 2) [23]. voji myší exprimujících pouze cyklin D1 byly pozorovány poruchy hematopoézy, které vedly k těžké anémii a úmrtí. Také u myší exprimujících pouze cyklin D2 nebo D3 docházelo k vývojovým abnormalitám, které dříve či později po narození vedly k úmrtí [25]. Naopak myši deficientní pro všechny tři typy cyklinů D nejsou životaschopné ani během embryogeneze, což znamená, že pro proliferaci savčích buněk je nutná přítomnost alespoň jednoho typu cyklinu D. Pomocí tohoto modelu bylo zjištěno, že se embrya neexprimující cykliny D vyvíjejí normálně až do embryonálního dne 13,5, kdy je již vyvinuta většina tkání a orgánů. Po 13. dni vývoje se však u embryí začaly objevovat poruchy ve vývoji srdce, anémie a poruchy cirkulace, které společně vedly k úmrtí do 16. dne embryonálního vývoje [26]. Na základě zmíněného modelu bylo také prokázáno, že přítomnost cyklinů D je nutná pro progresi buněčného cyklu během S a G2/ M fáze a jejich deficience u hematopoetických kmenových buněk (HSCs) vede k jejich sníženému počtu, neschopnosti tvořit kolonie a celkově ochromuje vývoj dalších buněčných stadií. U buněk odvozených z těchto myší byla navíc testována schopnost onkogenní transformace po vnesení vektorů nesoucích onkogeny Ras a Myc. Bylo pozorováno, Klin Onkol 2013; 26(5):
4 že u cyklin D deficientních buněk byla velmi snížena vnímavost k onkogenním stimulům, což naznačuje, že přítomnost cyklinů D je potřebná k plné onkogenní transformaci, alespoň v případě těchto onkogenů [26]. Pomocí in vitro modelu založeného na primokulturách CD34+ hematopoetických progenitorových buněk bylo zjištěno, že navýšení exprese cyklinu D1 je důležité pro diferenciaci buněk do mye loidní linie a selektivní navýšení cyklinu D3 naopak do linie megakaryocytární [27]. Toto pozorování potvrzují dřívější studie, ve kterých bylo prokázáno, že fyziologicky jsou u HSCs zastoupeny hlavně cykliny D2 a D3 a jejich snížená exprese je nezbytná pro terminální diferenciaci buněk do granulocytární myeloidní linie [28,29]. Pomocí transgenních myších modelů bylo dále prokázáno, že u transgenních myší se zvýšenou expresí cyklinu D3 (a v mnohem menším množství také cyk linu D1) byla nápadně zvýšena polyploidizace megakaryocytů [30,31]. Zmíněná pozorování naznačují, že cykliny D nejsou důležité pouze v procesu progrese buněčného cyklu, ale hrají zásadní úlohu také v procesu samotné diferenciace HSCs. Pro proliferující B lymfocyty je typická přítomnost cyklinů D2 a D3, zejména pak akumulace cyklinu D2 je velmi důležitá během progrese přes G1 bod restrikce [32,33]. Pomocí myšího modelu deficientního pro cyklin D2 bylo prokázáno, že přítomnost tohoto cyklinu je nutná pro BCR indukovanou proliferaci B lymfocytů. Navíc byla u těchto myší velmi snížena CD5+ B buněčná složka a byly pozorovány deficity v přesmyku imunoglobulinové IgG třídy, což naznačuje, že cyklin D2 je kritický pro vývoj CD5+ B lymfocytů, dále je důležitý pro jejich klonální expanzi závislou na kontaktu s antigenem a je klíčovou molekulou v BCR signální kaskádě [34]. Zajímavé je, že zmíněné B lymfocyty jsou stále schopny proliferace po jiné než BCR stimulaci, nicméně doba progrese do S fáze je značně delší. Progrese je u nich možná díky kompenzaci ztráty funkce cyklinu D2 cyklinem D3, který je zodpovědný za fosforylaci prb [35]. Role cyklinů D u mnohočetného myelomu Důležité poznatky o úloze cyklinů D v B buňkách přinesly studie mapující expresi cyklinů D u B buněčných malignit, jako jsou leukemie, lymfomy a mnohočetný myelom. Cykliny D se podílejí na patogenezi lymfomů, u lymfomu plášťových buněk (mantle cell lymphoma MCL) nesoucích translokaci t(11;14) byla pozorována konstitutivně zvýšená exprese cyklinu D1, který je fyziologicky přítomen pouze u proliferujících progenitorů B buněk [36]. Navíc u cyklin D1 negativních MCL byla popsána zvýšená exprese cyklinů D2 a/ nebo D3 [37]. U chronické lymfocytární leukemie (CLL) a lymfoplazmocytární leukemie (LPL) byla naopak popsána zvýšená exprese cyklinu D2, ale ne D1 ani D3, což může naznačovat, že patologické buňky u těchto onemocnění tvoří maligní protějšky normálních CD5+ B buněk [38]. U MM byla popsána deregulovaná exprese všech typů cyklinů D. U myelomových PB buněk byla pozorována zvýšená exprese genů pro cykliny D1, D2 i D3 téměř u všech případů MM a MGUS, i přesto však míra proliferace zůstává velmi nízká [39,40]. Deregulace cyklinů D u MM je přibližně v 25 % případů způsobena přímo, translokací IgH do oblastí zahrnujících geny CCND1 (11q13), CCND3 (6p21), nebo nepřímo, translokací IgH do oblastí genů pro transkripční faktory MAF (c- MAF, 16q23 nebo MAFB, 20q11), které regulují expresi cyklinu D2. Mírně zvýšená exprese cyklinů D2 je přítomna také u případů MM s translokací (4;14) zahrnující MMSET/ FGFR3, nicméně mechanizmus této deregulace není zatím jasný [40]. Navíc i přesto, že u normálních B buněk a PB není cyklin D1 přítomen, asi u 2/ 3 případů MGUS a MM bez primární IgH translokace byl cyklin D1 a někdy i D2 exprimován bialelicky. Tato dodatečná kopie chromozomu 11 se vyskytuje téměř výhradně u hyperdiploidních MM exprimujících cyklin D1. U zbývající třetiny MM případů bez IgH translokace, z nichž je asi 40 % hyperdiploidních, je popsána zvýšená exprese cyklinu D2 v myelomových PB ve srovnání s normálními PB. Konečně, vzácně se vyskytující případy MM (< 5 %), u kterých není navýšena exprese žádného z cyklinu D, mají často inaktivován Rb, čímž jsou schopny zajistit progresi buněčného cyklu bez nutnosti navýšení hladiny cyklinů D [40]. Vzhledem k úloze cyklinů D v progresi buněčného cyklu z fáze G1 do S se předpokládalo, že deregulovaná exprese cyklinu D1 povede ke zvýšené proliferaci. Nicméně sled reakcí vedoucích k posunu z G1 do S je regulován Cdk inhibitory (např. p18 INK4c ), a proto ke zvýšené proliferaci myelomových buněk dochází až v průběhu pozdějších onkogenních událostí, které inaktivují Rb nebo Cdk inhibitory [41]. Bylo však popsáno, že vyšší hladina cyklinů D1 u MM prodlužuje trvání S fáze [42]. Mezi nově popsané, nekatalytické funkce cyklinů D u MM patří jejich schopnost bránit v apoptóze. Přítomnost cyklinu D1 vede k intracelulární akumulaci různých molekulárních chaperonů, jejichž funkcí je regulace sbalování proteinů. Důležitým antiapoptotickým chaperonem, jehož exprese je aktivována cyklinem D1, je Hsp70 (z angl. heat shock protein), který se váže na proteiny Bax a AIF (apoptózu indukující faktor), a tím zamezuje jejich schopnostem navodit apoptózu. Ovlivňuje také transkripční faktor NF-κB, který reguluje jak pro-apoptotické, tak i anti-apoptotické geny. Hsp70 by mohl být mediátorem cytoprotektivního efektu cyklinu D1 bránícího navození apoptózy určitými léky [43]. Cytoprotektivní funkce chaperonu Hsp70 byla pozorována také u myelomových buněk, proto by Hsp70 mohl být atraktivním cílem léčby MM v případech, kdy je exprimován cyklin D1 [44]. Nově zjištěnou funkcí cyklinu D1 je jeho úloha při opravách poškozené DNA po působení ionizujícího záření. Na opravě DNA pomocí homologní rekombinace se podílejí proteiny BRCA2 a RAD51. Bylo zjištěno, že BRCA2 podporuje vazbu cyklinu D1 do poškozených míst v DNA, kde cyklin D1 přímou interakcí pomáhá vázat rekombinázu RAD51. Dále bylo objasněno, že nižší hladina cyklinu D1 oslabuje vazbu RAD51 na poškozenou DNA a inhibuje proces homologní rekombinace, čímž zvyšuje citlivost buněk k radiaci. Tento 316 Klin Onkol 2013; 26(5):
5 efekt byl pozorován u maligních buněk postrádajících protein Rb, což znamená, že cyklin D1 není nezbytný pro proliferaci Rb negativních buněk, avšak hraje důležitou úlohu při opravě radiací poškozené DNA. Tato nově objevená funkce cyklinu D1 by mohla být v budoucnu využita k cílené inhibici cyklinu D1 i u Rb negativních MM, které se doposud jevily jako necitlivé k inhibici exprese cyklinu D1 [45]. Molekulární klasifikace na základě přítomnosti translokací a exprese cyklinů D Extrémně nízká míra proliferace spolu s dysregulací cyklinů D u MM a MGUS je v souladu s poznatky získanými na myším modelu, kde nadměrná exprese transgenního Ccnd1 v B buňkách nenarušila jejich normální vývoj nebo míru proliferace. Samotná nadměrná exprese Ccnd1 také nevedla k vývoji nádoru u myši, pokud nebyl navíc přítomen další aktivovaný transgen jako Myc či Ras [46,47]. Zvýšená exprese genů pro cykliny D u více než 2/ 3 MM a MGUS, u typu hyperdiploidního i nonhyperdiploidního vedla ke stanovení hypotézy, podle které je dysregulace cyklinů velmi časnou, možná i iniciační onkogenní událostí vedoucí ke vzniku MM. K nejranějším onkogenním změnám pravděpodobně dochází již v B buňkách germinálního centra a zdá se, že jsou přítomny i dále v premaligních buňkách u MGUS [39]. Analýza raných onkogenních změn, tedy pěti opakujících se IgH translokací, specifických trizomií a všeobecně zvýšené exprese cyklinů D vedla k vytvoření nového klasifikačního systému TC (translokace a cyklin D) (obr. 3). Podle tohoto systému je možné MM rozdělit do osmi skupin, čtyři skupiny jsou založeny na přítomnosti opakovaných translokací: TC 11q13 (CCND1), TC 6p21 (CCND3), TC 4p16 (MMSET a obyčejně i FGFR3) a TC maf, 16q23 (c- MAF) + 20q11 (MAFB). Další čtyři skupiny byly vytvořeny na základě změněné exprese cyklinů D bez přítomnosti translokace. Patří sem skupiny TC D1, TC D1 + D2, TC D2 a skupina TC NONE, ve které je zvýšená exprese cyk linů D normální. Všechny vyjmenované skupiny mají odlišnou genovou expresi a klinický vývoj (tab. 1) [39]. Jelikož typickým klinickým příznakem MM je výskyt osteolytických ložisek, byla provedena korelace mezi přítomností ložisek a TC skupinami. Osteolytická ložiska byla pozorována s vysokou prevalencí (asi 90 %) u skupin TC 6p21, TC 11q13, TC D1 a TC D1 + D2, nižší prevalence (asi 55 %) pak byla sledována u skupin TC 4p16 a TC maf. Dále bylo prokázáno, že určité TC skupiny mají důležitý prognostický význam. 6p21 2 % none 2 % 11q13 16 % 4p16 14 % D2 19 % maf (c-maf) 5 % maf (mafb) 2 % D1 32 % D1 + D2 7 % maf (mafa) 1 % Obr. 3. Distribuce genetických podtypů u nově diagnostikovaných případů MM pomocí TC klasifikace. Koláčový graf znázorňuje relativní výskyt různých genetických podtypů MM na základě TC klasifikace. S horší prognózou je spojena skupina TC 4p16 a TC maf, naopak lepší prognózu mají pacienti ze skupin TC 11q13, TC D1 a TC NONE. Tyto výsledky naznačují, že TC klasifikace může být užitečná pro klasifikaci pacientů s odlišnými podtypy MM [39]. Tab. 1. TC skupiny. Rozdělení MM do podskupin na základě přítomnosti opakující se translokace a deregulace exprese cyklinů D [39]. TC skupina Primární translokace Translokační partner Cyklin D Ploidie Proliferační index Prognóza 6p21 6p21 CCND3 D3 NH průměrný? dobrá 11q13 11q13 CCND1 D1 D, NH průměrný dobrá D1 žádná žádný D1 H nízký dobrá D1+D2 žádná žádný D1 a D2 H vysoký? špatná D2 žádná žádný D2 H, NH průměrný? NONE žádná žádný žádný NH průměrný? dobrá 4p16 4p16 FGFR3/MMSET D2 NH > H průměrný špatná MAF 16q23 20q11 8q24 H hyperdiploidní, NH nonhyperiploidní c-maf mafb mafa D2 NH vysoký špatná Klin Onkol 2013; 26(5):
6 Souhrn V rané patogenezi MM dochází u většiny pacientů k dysregulaci cyklinů D. I přes jejich funkci v regulaci buněčné proliferace, dysregulace cyklinů D u myelomových buněk není spojena s vyšší proliferací, ale s prodlouženým trváním fáze S. Vyvstává tedy otázka, jakým mechanizmem se cykliny D podílejí na patogenezi MM. Jednou z možností může být aktivace chaperonu Hsp70, který chrání buňky před apoptózou. Při studiu myších modelů bylo zjištěno, že cykliny D jsou potřebné pro vstup hematopoetických kmenových buněk do buněčného cyklu a že buňky exprimující cykliny D jsou citlivější k onkogenní transformaci zprostředkované onkogeny MYC a RAS. Mutace těchto onkogenů byly popsány i u MM. U 25 % případů MM je příčinou dysregulace cyklinů D translokace zahrnující gen pro IgH a gen pro cyklin D1, cyklin D3 nebo pro TF MAF aktivující transkripci genu pro cyklin D2. Asi u 40 % případů s navýšenou expresí cyklinu D1 není přítomná translokace zasahující cyklin D1, ale dochází k jeho bialelické expresi. Jednou z příčin může být mutace genů RAS, které kódují proteiny zapojené do regulace exprese cyklinu D1. Prevalence těchto mutací je %. Na základě dysregulace exprese cyklinů D, opakujících se translokací a specifických trizomií je možné MM rozdělit do osmi TC skupin. Všechny tyto skupiny mají odlišnou genovou expresi a klinický vývoj. S lepší prognózou je spojována skupina TC 11q13, TC D1 a TC NONE. Naopak horší prognózu mají pacienti patřící do skupin TC 4p16 a TC MAF. V budoucnu by bylo zajímavé zjistit, zda jsou u MM cykliny D dysregulované i na proteinové úrovni, a dále objasnit nové funkce cyklinů, které by mohly vést k nalezení nových terapeutických cílů a k zlepšení léčby MM. Literatura 1. Adam Z, Pour L, Krejčí M et al. Mnohočetný myelom. In: Adam Z, Krejčí M, Vorlíček J (eds). Speciální onkologie. Praha: Galén 2010: Hájek R, Adam Z, Ščudla V et al. Dia gnostika a léčba mnohočetného myelomu. Trans Hematol Dnes 2012; 18 (Suppl 1): Fonseca R, Barlogie B, Bataille R et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004; 64(4): Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene 2001; 20(40): Fonseca R, Bailey RJ, Ahmann GJ et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100(4): Bergsagel PL, Chesi M, Nardini E et al. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci U S A 1996; 93(24): Fonseca R, Blood E, Rue M et al. Clinical and bio logic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101(11): Chesi M, Bergsagel PL. Many multiple myelomas: making more of the molecular mayhem. Hematology Am Soc Hematol Educ Program 2011; 2011: Sun W, Lee DK, Lee CC et al. Differential expression of D-type G1 cyclins during mouse development and liver regeneration in vivo. Mol Reprod Dev 1996; 43(4): Xiong Y, Menninger J, Beach D et al. Molecular cloning and chromosomal mapping of CCND genes encoding human D-type cyclins. Genomics 1992; 13(3): Musgrove EA, Caldon CE, Barraclough J et al. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11(8): Knudsen KE, Diehl JA, Haiman CA et al. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 2006; 25(11): Lu F, Gladden AB, Diehl JA. An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res 2003; 63(21): Solomon DA, Wang Y, Fox SR et al. Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem 2003; 278(32): Ho A, Dowdy SF. Regulation of G(1) cell- cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev 2002; 12(1): Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002; 2(2): Weinberg RA. prb and control of the cell cycle clock. In: Weinberg RA (ed.). The bio logy of cancer. New York: Garland Science 2007: Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1- phase progression. Genes Dev 1999; 13(12): Martinsson HS, Starborg M, Erlandsson F et al. Single cell analysis of G1 check points- the relationship between the restriction point and phosphorylation of prb. Exp Cell Res 2005; 305(2): Cheng M, Olivier P, Diehl JA et al. The p21(cip1) and p27(kip1) CDK inhibitors are essential activators of cyclin D- dependent kinases in murine fibroblasts. EMBO J 1999; 18(6): Harbour JW, Luo RX, Dei Santi A et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 1999; 98(6): Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18(2): Foster DA, Yellen P, Xu L et al. Regulation of G1 Cell Cycle Progression: Distinguishing the Restriction Point from a Nutrient- Sensing Cell Growth Checkpoint(s). Genes Cancer 2010; 1(11): Fantl V, Stamp G, Andrews A et al. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 1995; 9(19): Ciemerych MA, Kenney AM, Sicinska E et al. Development of mice expressing a single D-type cyclin. Genes Dev 2002; 16(24): Kozar K, Ciemerych MA, Rebel VI et al. Mouse development and cell proliferation in the absence of D- cyclins. Cell 2004; 118(4): Furukawa Y, Kikuchi J, Nakamura M et al. Lineage- specific regulation of cell cycle control gene expression during haematopoietic cell differentiation. Br J Haematol 2000; 110(3): Dai MS, Mantel CR, Xia ZB et al. An expansion phase precedes terminal erythroid differentiation of hematopoietic progenitor cells from cord blood in vitro and is associated with up- regulation of cyclin E and cyclin-dependent kinase 2. Blood 2000; 96(12): Kato JY, Sherr CJ. Inhibition of granulocyte differentiation by G1 cyclins D2 and D3 but not D1. Proc Natl Acad Sci U S A 1993; 90(24): Zimmet JM, Ladd D, Jackson CW et al. A role for cyclin D3 in the endomitotic cell cycle. Mol Cell Biol 1997; 17(12): Sun S, Zimmet JM, Toselli P et al. Overexpression of cyclin D1 moderately increases ploidy in megakaryocytes. Haematologica 2001; 86(1): Solvason N, Wu WW, Kabra N et al. Induction of cell cycle regulatory proteins in anti-immunoglobulin-stimulated mature B lymphocytes. J Exp Med 1996; 184(2): Tanguay DA, Chiles TC. Regulation of the catalytic subunit (p34psk- J3/ cdk4) for the major D-type cyclin in mature B lymphocytes. J Immunol 1996; 156(2): Solvason N, Wu WW, Parry D et al. Cyclin D2 is essential for BCR- mediated proliferation and CD5 B cell development. Int Immunol 2000; 12(5): Lam EW, Glassford J, Banerji L et al. Cyclin D3 compensates for loss of cyclin D2 in mouse B-lymphocytes activated via the antigen receptor and CD40. J Biol Chem 2000; 275(5): Motokura T, Bloom T, Kim HG et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 1991; 350(6318): Fu K, Weisenburger DD, Greiner TC et al. Cyclin D1- negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood 2005; 106(13): Delmer A, Ajchenbaum- Cymbalista F, Tang R et al. Overexpression of cyclin D2 in chronic B- cell malignancies. Blood 1995; 85(10): Bergsagel PL, Kuehl WM, Zhan F et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106(1): Fonseca R, Bergsagel PL, Drach J et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009; 23(12): Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005; 23(26): Kuroda Y, Sakai A, Tsuyama N et al. Ectopic cyclin D1 overexpression increases chemosensitivity but not cell proliferation in multiple myeloma. Int J Oncol 2008; 33(6): Roué G, Pichereau V, Lincet H et al. Cyclin D1 mediates resistance to apoptosis through upregulation of molecular chaperones and consequent redistribution of cell death regulators. Oncogene 2008; 27(36): Liu M, Aneja R, Liu C et al. Inhibition of the mitotic kinesin Eg5 up- regulates Hsp70 through the phosphatidylinositol 3- kinase/ Akt pathway in multiple myeloma cells. J Biol Chem 2006; 281(26): Jirawatnotai S, Hu Y, Michowski W et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 2011; 474(7350): Lovec H, Grzeschiczek A, Kowalski MB et al. Cyclin D1/ bcl- 1 cooperates with myc genes in the generation of B- cell lymphoma in transgenic mice. EMBO J 1994; 13(15): Bodrug SE, Warner BJ, Bath ML et al. Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 1994; 13(9): Klin Onkol 2013; 26(5):
Buněčný cyklus a molekulární mechanismy onkogeneze
Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich
Lekce z analýz genových expresních profilů u MM a návrh panelu genů pro ČR. Mgr. Silvie Dudová
Lekce z analýz genových expresních profilů u MM a návrh panelu genů pro ČR Mgr. Silvie Dudová Centrum základního výzkumu pro monoklonální gamapatie a mnohočetný myelom, ILBIT LF MU Brno Laboratoř experimentální
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
Apoptóza Onkogeny. Srbová Martina
Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV EXPERIMENTÁLNÍ BIOLOGIE
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV EXPERIMENTÁLNÍ BIOLOGIE Bakalářská práce Brno 2013 Monika Dúcka MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV EXPERIMENTÁLNÍ BIOLOGIE ODDĚLENÍ GENETIKY
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Pavlína Tinavská Laboratoř imunologie, Nemocnice České Budějovice
Pavlína Tinavská Laboratoř imunologie, Nemocnice České Budějovice nízce agresivní lymfoproliferativní onemocnění základem je proliferace a akumulace klonálních maligně transformovaných vyzrálých B lymfocytů
růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Průběh mitózy v buněčné kultuře fibroblastů Buněčný cyklus Kinázy závislé na cyklinech
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Specifická imunitní odpověd. Veřejné zdravotnictví
Specifická imunitní odpověd Veřejné zdravotnictví MHC molekuly glykoproteiny exprimovány na všech jaderných buňkách (MHC I) nebo jenom na antigen prezentujících buňkách (MHC II) u lidí označovány jako
Ing. Martina Almáši, Ph.D. OKH-LEHABI FN Brno, Babákova myelomová skupina při Ústavu patologické fyziologie, LF MU, Brno
Zpracování a využití biologického materiálu pro výzkumné účely od nemocných s monoklonální gamapatií Ing. Martina Almáši, Ph.D. OKH-LEHABI FN Brno, Babákova myelomová skupina při Ústavu patologické fyziologie,
Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Dr. B. Duronio, The University of North Carolina at Chapel Hill Buněčný cyklus Kinázy závislé na cyklinech kontrolují buněčný
Projekt MGUS V.Sandecká, R.Hájek, J.Radocha, V.Maisnar. Velké Bílovice
Projekt MGUS 2010 V.Sandecká, R.Hájek, J.Radocha, V.Maisnar CZECH CMG ČESKÁ MYELOMOVÁ SKUPINA M Y E L O M A NADAČNÍ FOND GROUP Velké Bílovice 25.4.2009 Česká myelomová skupina a její nadační fond spolupracují
Beličková 1, J Veselá 1, E Stará 1, Z Zemanová 2, A Jonášová 2, J Čermák 1
Beličková 1, J Veselá 1, E Stará 1, Z Zemanová 2, A Jonášová 2, J Čermák 1 1 Ústav hematologie a krevní transfuze, Praha 2 Všeobecná fakultní nemocnice, Praha MDS Myelodysplastický syndrom (MDS) je heterogenní
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?
Tekuté biopsie u mnohočetného myelomu
Tekuté biopsie u mnohočetného myelomu Mgr. Veronika Kubaczková Babákova myelomová skupina ÚPF LF MU Pacientský seminář 11. května 2016, Brno Co jsou tekuté biopsie? Představují méně zatěžující vyšetření
NÁLEZ DVOJITĚ POZITIVNÍCH T LYMFOCYTŮ - CO TO MŮŽE ZNAMENAT? Ondřej Souček Ústav klinické imunologie a alergologie Fakultní nemocnice Hradec Králové
NÁLEZ DVOJITĚ POZITIVNÍCH T LYMFOCYTŮ - CO TO MŮŽE ZNAMENAT? Ondřej Souček Ústav klinické imunologie a alergologie Fakultní nemocnice Hradec Králové LEUKÉMIE x LYMFOM Nádorová onemocnění buněk krvetvorné
Příspěvek k hodnocení prognostického potenciálu indexu proliferace a apoptózy plazmatických buněk u mnohočetného myelomu
Příspěvek k hodnocení prognostického potenciálu indexu proliferace a apoptózy plazmatických buněk u mnohočetného myelomu Minařík J., Ordeltová M., Ščudla V., Vytřasová, M., Bačovský J., Špidlová A. III.interní
Proteinové znaky dětské leukémie identifikované pomocí genových expresních profilů
Proteinové znaky dětské leukémie identifikované pomocí genových expresních profilů M.Vášková a spol. Klinika dětské hematologie a onkologie 2.LF UK a FN Motol Childhood Leukemia Investigation Prague Průtoková
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových
Mgr. Zuzana Kufová , Mikulov. Genomické analýzy u Waldenströmovy makroglobulinémie
Mgr. Zuzana Kufová 10.4.2015, Mikulov Genomické analýzy u Waldenströmovy makroglobulinémie Obsah přednášky Genomický profil u WM Mutace v genu MYD88 Mutace v genu CXCR4 Diagnostika Výsledky http://socratic.org/questions/how-do-functional-groups-affect-the-structure-and-function-of-macromolecules
Molekulárně cytogenetické vyšetření pacientů s mnohočetným myelomem na OLG FN Brno
Molekulárně cytogenetické vyšetření pacientů s mnohočetným myelomem na OLG FN Brno Filková H., Oltová A., Kuglík P.Vranová V., Kupská R., Strašilová J., Hájek R. OLG FN Brno, PřF MU Brno, IHOK FN Brno
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Změny v dg. kritéri di u mnohočetn. etného myelomu
Změny v dg. kritéri riích a kritéri riích léčebnl ebné odpovědi di u mnohočetn etného myelomu Vladimír Maisnar II. interní klinika OKH FN a LF UK Hradec Králov lové Setkání České myelomové skupiny Velké
Úloha chromozomových aberací v patogenezi monoklonální gamapatie nejasného významu
Klin. Biochem. Metab., 20 (41), 2012, No. 2, p. 91 96. Úloha chromozomových aberací v patogenezi monoklonální gamapatie nejasného významu Mikulášová A. 1, 2, 3, Kuglík P. 1, 2, Smetana J. 1, 2, Grešliková
Výsledky léčby Waldenströmovy makroglobulinemie na IHOK FN Brno
C Z E C H G R O U P C Z E C H G R O U P Výsledky léčby Waldenströmovy makroglobulinemie na IHOK FN Brno Luděk Pour IHOK FN Brno 10-11.4. 2015 XIII. Roční setkání CMG C M G Č E S K Á M YE LO M O VÁ S K
Jak analyzovat monoklonální gamapatie
Jak analyzovat monoklonální gamapatie -od stanovení diagnózy až po detekci léčebné odpovědi Říhová Lucie a kol. OKH, FN Brno BMG při ÚPF, LF MU Monoklonální gamapatie(mg) heterogenní skupina onemocnění
Roman Hájek Tomáš Jelínek. Plazmocelulární leukémie (PCL)
Roman Hájek Tomáš Jelínek Plazmocelulární leukémie (PCL) Definice (1) vzácná forma plazmocelulární dyskrázie nejagresivnější z lidských monoklonálních gamapatií incidence: 0,04/100 000 obyvatel evropské
Mnohobarevná cytometrie v klinické diagnostice
Mnohobarevná cytometrie v klinické diagnostice Mgr. Marcela Vlková, Ph.D. Ústav klinické imunologie a alergologie, FN u sv. Anny v Brně Průtoková cytometrie v klinické laboratoři Relativní a absolutní
INTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
Výskyt MHC molekul. RNDr. Ivana Fellnerová, Ph.D. ajor istocompatibility omplex. Funkce MHC glykoproteinů
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc = ajor istocompatibility omplex Skupina genů na 6. chromozomu (u člověka) Kódují membránové glykoproteiny, tzv. MHC molekuly, MHC molekuly
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,
IgD myelomy. Retrospektivní analýza léčebných výsledků 4 center České republiky za posledních 5 let
IgD myelomy Retrospektivní analýza léčebných výsledků 4 center České republiky za posledních 5 let Maisnar V., Ščudla V., Hájek R., Gregora E., Tichý M., Minařík J., Havlíková K. za CMG II. interní klinika
Mechanismy a působení alergenové imunoterapie
Mechanismy a působení alergenové imunoterapie Petr Panzner Ústav imunologie a alergologie LF UK a FN Plzeň Zavedení termínu alergie - rozlišení imunity a přecitlivělosti Pasivní přenos alergenspecifické
Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno
Retinoblastom Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno Retinoblastom (RBL) zhoubný nádor oka, pocházející z primitivních
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Přehled výzkumných aktivit
Přehled výzkumných aktivit ROK 2004 Lenka Zahradová Laboratoř experimentální hematologie a buněčné imunoterapie Oddělení klinické hematologie FNB Bohunice Přednosta: prof. MUDr. M. Penka, CSc. Oddělení
Protinádorová imunita. Jiří Jelínek
Protinádorová imunita Jiří Jelínek Imunitní systém vs. nádor l imunitní systém je poslední přirozený nástroj organismu jak eliminovat vlastní buňky které se vymkly kontrole l do boje proti nádorovým buňkám
Buněčný cyklus, spojení se signálními cestami a molekulární mechanismy onkogeneze
Buněčný cyklus, spojení se signálními cestami a molekulární mechanismy onkogeneze MUDr. Jiří Vachtenheim, CSc. Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny
Nádorové kmenové buňky - CSCs (Cancer stem cells)
Nádorové kmenové buňky - CSCs (Cancer stem cells) Původ CSCs? a) somatické kmenové buňky b) TA buňky (progenitory)* Podstatou je akumulace chyb v regulaci diferenciace, proliferace a apoptósy. Tyto chyby
Waldenström macroglobulinemia and mirna
Waldenström macroglobulinemia and mirna Lenka Bešše, PhD Babak Myeloma Group, Brno KSSG, St Gallen 13 th Workshop Multiple Myeloma April 10-11, 2015 Mikulov Waldenström macroglobulinemia (WM) lymphoplasmacytic
Změny v dg. kritéri di u mnohočetn
Změny v dg. kritéri riích a kritéri riích léčebnl ebné odpovědi di u mnohočetn etného myelomu Vladimír Maisnar II. interní klinika OKH FN a LF UK Hradec Králov lové 3. seminář pro pacienty s MM Lednice,
Leukemie a myeloproliferativní onemocnění
Leukemie a myeloproliferativní onemocnění Myeloproliferativní tumory Klonální onemocnění hematopoetických stem cells charakterizované proliferací jedné nebo více myeloidních řad. Dospělí peak 5. 7. dekáda,
Roman Hájek. Zbytkové nádorové onemocnění. Brno
Roman Hájek Zbytkové nádorové onemocnění Brno 11. 5. 2016 Zbytkové nádorové onemocnění 1. Minimal residual disease (MRD) Proč lékaře zbytkové nádorové onemocnění stále více zajímá? Moderní léčebné strategie
ONKOGENETIKA. Spojuje: - lékařskou genetiku. - buněčnou biologii. - molekulární biologii. - cytogenetiku. - virologii
ONKOGENETIKA Spojuje: - lékařskou genetiku - buněčnou biologii - molekulární biologii - cytogenetiku - virologii Důležitost spolupráce různých specialistů při detekci hereditárních forem nádorů - (onkologů,internistů,chirurgů,kožních
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
Vytvořilo Oddělení lékařské genetiky FN Brno
GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI
Progrese HIV infekce z pohledu laboratorní imunologie
Progrese HIV infekce z pohledu laboratorní imunologie 1 Lochmanová A., 2 Olbrechtová L., 2 Kolčáková J., 2 Zjevíková A. 1 OIA ZÚ Ostrava 2 klinika infekčních nemocí, FN Ostrava HIV infekce onemocnění s
ÚVOD DO TRANSPLANTAČNÍ IMUNOLOGIE
ÚVOD DO TRANSPLANTAČNÍ IMUNOLOGIE Základní funkce imunitního systému Chrání integritu organizmu proti škodlivinám zevního a vnitřního původu: chrání organizmus proti patogenním mikroorganizmům a jejich
LÉKAŘSKÁ VYŠETŘENÍ A LABORATORNÍ TESTY
LÉKAŘSKÁ VYŠETŘENÍ A LABORATORNÍ TESTY Pokud čtete tento text, pravděpodobně jste v kontaktu s odborníkem na léčbu mnohočetného myelomu. Diagnóza mnohočetného myelomu je stanovena pomocí četných laboratorních
Cytogenetické vyšetřovací metody v onkohematologii Zuzana Zemanová
Cytogenetické vyšetřovací metody v onkohematologii Zuzana Zemanová Centrum nádorové cytogenetiky Ústav klinické biochemie a laboratorní diagnostiky VFN a 1. LF UK v Praze Klinický význam cytogenetických
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
RMG = nutná součást dalšího zlepšování péče o pacienty s MM
RMG = nutná součást dalšího zlepšování péče o pacienty s MM V. Maisnar za Českou myelomovou skupinu Epidemiologická data MM (dle NOR) 1% všech malignit, 10% hematologických Muži/Ženy = 3/2, medián věku:
Roman Hájek. Zbytkové nádorové onemocnění. Mikulov 5.září, 2015
Roman Hájek Zbytkové nádorové onemocnění Mikulov 5.září, 2015 Zbytkové nádorové onemocnění 1. Minimal residual disease (MRD) Proč lékaře zbytkové nádorové onemocnění stále více zajímá? Protože se zásadně
Prognostický význam amplifikace 1q21 u nemocných s MM
Prognostický význam amplifikace 1q21 u nemocných s MM Pavel Němec Univerzitní výzkumné centrum - Česká myelomová skupina, Lékařská fakulta, Masarykova univerzita, Brno, Česká republika Oddělení genetiky
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Příloha č.4 Seznam imunologických vyšetření
Příloha č.6 Laboratorní příručka Laboratoří MeDiLa, v05 - Seznam imunologických Příloha č.4 Seznam imunologických Obsah IgA... 2 IgG... 3 IgM... 4 IgE celkové... 5 Informační zdroje:... 6 Stránka 1 z 6
Česká Myelomová Skupina na poli mnohočetného myelomu
Česká Myelomová Skupina na poli mnohočetného myelomu Vladimír Maisnar IV. interní hematologická klinika LF UK a FN Hradec Králové Lázně Bělohrad, 10. září 2016 Epidemiologická data: MM 1% všech malignit,
Inhibitory ATR kinasy v terapii nádorů
Inhibitory ATR kinasy v terapii nádorů J.Vávrová, M Řezáčová Katedra radiobiologie FVZ Hradec Králové UO Brno Ústav lékařské chemie LF Hradec Králové UK Praha Cíl léčby: zničení nádorových buněk zachování
HODNOCENÍ CYTOGENETICKÝCH A FISH NÁLEZŮ U NEMOCNÝCH S MNOHOČETNÝM MYELOMEM VE STUDII CMG ORGANIZACE VÝZKUMNÉHO GRANTU NR/
HODNOCENÍ CYTOGENETICKÝCH A FISH NÁLEZŮ U NEMOCNÝCH S MNOHOČETNÝM MYELOMEM VE STUDII CMG 22. ORGANIZACE VÝZKUMNÉHO GRANTU NR/8183-4. KLONÁLNÍ CHROMOSOMOVÉ ABERACE U MNOHOČETNÉHO MYELOMU (MM). Klasické
Přínos vyšetření klonality plazmocytů u monoklonálních gamapatií pomocí polychromatické průtokové cytometrie
Přínos vyšetření klonality plazmocytů u monoklonálních gamapatií pomocí polychromatické průtokové cytometrie Autor: 1 Mgr. Lucie Říhová, Ph.D. Recenzent: 2 prof. MUDr. Roman Hájek, CSc. 1 Oddělení klinické
Stanovení autoprotilátek proti TSH receptoru
Stanovení autoprotilátek proti TSH receptoru Fejfárková Z., Pikner R. Oddělení klinických laboratoří, Klatovská nemocnice a.s., Klatovy, pikner@nemkt.cz Stanovení autoprotilátek proti TSH receptoru (anti
Senescence v rozvoji a léčbě nádorů. Řezáčová Martina
Senescence v rozvoji a léčbě nádorů Řezáčová Martina Replikační senescence Alexis Carrel vs. Leonard Hayflick and Paul Moorhead Diferencované bb mohou prodělat pouze omezený počet dělení - Hayflickův limit
Můj život s genetikou
Můj život s genetikou Aneta Mikulášová Molekulární biologie a genetika Přírodovědecká fakulta Masarykova univerzita Univerzitní vzdělávání genetiky 150 roků po Mendelovi Brno, 29. 5. 2015 Studium Molekulární
Akutní leukémie a myelodysplastický syndrom. Hemato-onkologická klinika FN a LF UP Olomouc
Akutní leukémie a myelodysplastický syndrom Hemato-onkologická klinika FN a LF UP Olomouc Akutní leukémie (AL) Představují heterogenní skupinu chorob charakterizovaných kumulací klonu nevyzrálých, nádorově
Příloha č.4 Seznam imunologických vyšetření. Obsah. Seznam imunologických vyšetření
Příloha č.4 Seznam imunologických vyšetření Obsah IgA... 2 IgG... 3 IgM... 4 IgE celkové... 5 Informační zdroje:... 6 Stránka 1 z 6 Název: IgA Zkratka: IgA Typ: kvantitativní Princip: turbidimetrie Jednotky:
Diferenciální diagnostika selhání ledvin u mnohočetného myelomu. Zdeněk Adam Interní hematoonkologická klinika LF MU a FN Brno
Diferenciální diagnostika selhání ledvin u mnohočetného myelomu Zdeněk Adam Interní hematoonkologická klinika LF MU a FN Brno Základní epidemiologická data Incidence renálního selhání s kreatininem > 1,5
NGS analýza u MGUS a MM
NGS analýza u MGUS a MM Aneta Mikulášová Brian A. Walker, Christopher P. Wardell, Markéta Wayhelová, Petr Kuglík, Roman Hájek, Gareth J. Morgan XII. Workshop mnohočetný myelom a Roční setkání České myelomové
Mutace s dobrou prognózou, mutace se špatnou prognózou omezené možnosti biologické léčby pro onkologické pacienty
Mutace s dobrou prognózou, mutace se špatnou prognózou omezené možnosti biologické léčby pro onkologické pacienty J.Berkovcová, M.Dziechciarková, M.Staňková, A.Janošťáková, D.Dvořáková, M.Hajdúch Laboratoř
Studium genetické predispozice ke vzniku karcinomu prsu
Univerzita Karlova v Praze 1. lékařská fakulta Studium genetické predispozice ke vzniku karcinomu prsu Petra Kleiblová Ústav biochemie a experimentální onkologie, 1. LF UK - skupina molekulární biologie
Subpopulace B lymfocytů v klinické imunologii
Subpopulace B lymfocytů v klinické imunologii Marcela Vlková Ústav klinické imunologie a alergologie, FN u sv. Anny v Brně B lymfocyty základními buňkami specifické humorální imunity primární funkce -
Možnosti využití hematologické léčby u MG
Možnosti využití hematologické léčby u MG Tomáš Kozák 3. lékařská fakulta UK v Praze a FN Královské Vinohrady Autoimunitní choroby (AID) Ehrlich a Morgenroth, 1901: horror autotoxicus Shoenfeld, 1999,
Jaké máme leukémie? Akutní myeloidní leukémie (AML) Akutní lymfoblastická leukémie (ALL) Chronické leukémie, myelodysplastický syndrom,
Akutní myeloidní leukémie (AML) Jaké máme leukémie? Akutní lymfoblastická leukémie (ALL) Chronické leukémie, myelodysplastický syndrom, Chronické leukémie, mnohočetný myelom, Někdy to není tak jednoznačné
Změna typu paraproteinu po transplantační léčbě mnohočetného myelomu
Změna typu paraproteinu po transplantační léčbě mnohočetného myelomu Maisnar V., Tichý M., Smolej L., Kmoníček M., Žák P., Jebavý L., Palička V. a Malý J. II. interní klinika OKH a ÚKIA, FN a LF UK Hradec
Mimodřeňová expanze plazmocytů do CNS u mnohočetného myelomu
Setkání uživatelů Průtokové cytometrie Beckman Coulter, 13.-14.5.2018, Valeč Mimodřeňová expanze plazmocytů do CNS u mnohočetného myelomu Říhová Lucie a kol. OKH, FN Brno BMG při ÚPF, LF MU Lokalizace
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
Léčba MM: pohled za horizont Přehled molekulárních mechanismů potenciálních nových léků v léčbě MM
Léčba MM: pohled za horizont Přehled molekulárních mechanismů potenciálních nových léků v léčbě MM RNDr. Sabina Ševčíková, Ph.D. Babákova myelomová skupina při ÚPF, LF MU Tato prezentace vznikla za finanční
Elementy signálních drah. cíle protinádorové terapie
Elementy signálních drah cíle protinádorové terapie Martin Pešta, Ondřej Topolčan Department of Internal Medicine II, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic Cílená
rní tekutinu (ECF), tj. cca 1/3 celkového množstv
Představují tzv. extracelulárn rní tekutinu (ECF), tj. cca 1/3 celkového množstv ství vody v tělet (voda tvoří 65-75% váhy v těla; t z toho 2/3 vody jsou vázanv zané intracelulárn rně) Lymfa (míza) Tkáňový
Testování biomarkerů u kolorektálního karcinomu.
Testování biomarkerů u kolorektálního karcinomu. Milada Matějčková (1), Pavel Fabian (2) Lenka Dubská (2), Eva Parobková(1), Martin Beránek(3), Monika Drastíková(3), Daniel Tvrdík(4)), Jiří Drábek(6),
Stanovení párů těžkých/lehkých řetězců imunoglobulinu u monoklonální gamapatie nejistého významu - pilotní projekt CMG
Stanovení párů těžkých/lehkých řetězců imunoglobulinu u monoklonální gamapatie nejistého významu - pilotní projekt CMG Pika T., Klincová M., Lochman P., Maisnar V., Tichý M., Ščudla V., Hájek R. Olomouc,
Epidemiologie hematologických malignit v České republice
Epidemiologie hematologických malignit v České republice Zpráva je plněním Národního onkologického programu ČR a vychází z uzavřených a validovaných dat Národního onkologického registru za období 1976
Úvod do nonhla-dq genetiky celiakie
Úvod do nonhla-dq genetiky celiakie František Mrázek HLA laboratoř, Ústav Imunologie LF UP a FN Olomouc Celiakie - časté chronické zánětlivé onemocnění tenkého střeva s autoimunitní a systémovou složkou
Buněčný cyklus. When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants.
Buněčný cyklus When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants. (Rudolf Wirchow, 1858) Buněčný cyklus cyklus buněčných procesů začínajících
Seznam vyšetření. Detekce markerů: F2 (protrombin) G20210A, F5 Leiden (G1691A), MTHFR C677T, MTHFR A1298C, PAI-1 4G/5G, F5 Cambridge a Hong Kong
VD.PCE 02 Laboratorní příručka Příloha č. 2: Seznam vyšetření Molekulární hematologie a hematoonkologie Detekce markerů: F2 (protrombin) G20210A, F5 Leiden (G1691A), MTHFR C677T, MTHFR A1298C, PAI-1 4G/5G,
Biomarkery - diagnostika a prognóza nádorových onemocnění
Biomarkery - diagnostika a prognóza nádorových onemocnění O. Topolčan,M.Pesta, J.Kinkorova, R. Fuchsová Fakultní nemocnice a Lékařská fakulta Plzeň CZ.1.07/2.3.00/20.0040 a IVMZČR Témata přednášky Přepdpoklady
Interakce viru klíšťové encefalitidy s hostitelským organismem a patogeneze infekce
Parazitologický ústav, Akademie věd České republiky Laboratoř interakcí vektor-hostitel České Budějovice Interakce viru klíšťové encefalitidy s hostitelským organismem a patogeneze infekce Daniel Růžek,
Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu
Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu Úvod Myelosuprese (poškození krvetvorby) patří mezi nejčastější vedlejší účinky chemoterapie.
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Přínos molekulární genetiky pro diagnostiku a terapii malignit GIT v posledních 10 letech
Přínos molekulární genetiky pro diagnostiku a terapii malignit GIT v posledních 10 letech Minárik M. Centrum aplikované genomiky solidních nádorů (CEGES), Genomac výzkumný ústav, Praha XXIV. JARNÍ SETKÁNÍ
Cytometrická detekce intracelulárních signalizačních proteinů
Cytometrická detekce intracelulárních signalizačních proteinů Proč? Ačkoli značení povrchových antigenů může dobře charakterizovat různé buněčné populace, neposkytuje nám informace o funkční odpovědi buňky
Intracelulární detekce Foxp3
Intracelulární detekce Foxp3 Ústav imunologie 2.LFUK a FN Motol Daniela Rožková, Jan Laštovička T regulační lymfocyty (Treg) Jsou definovány funkčně svou schopností potlačovat aktivaci a proliferaci CD4+
Genová etiologie nemocí
Genová etiologie nemocí 1. Obecná etiologie nemocí 1. Obecná etiologie nemocí 2. Mutace genů v germinativních a somatických buňkách 3. Molekulární fyziologie genu 4. Regulace aktivity genu (genové exprese)
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Molekulární hematologie a hematoonkologie
VD.PCE 02 Laboratorní příručka Příloha č. 2: Seznam vyšetření GENETIKA Molekulární hematologie a hematoonkologie Detekce markerů: F2 (protrombin) G20210A, F5 Leiden (G1691A F2 (protrombin) G20210A, F5
Laboratoř molekulární patologie
Laboratoř molekulární patologie Ústav patologie FN Brno Prof. RNDr. Jana Šmardová, CSc. 19.11.2014 Složení laboratoře stálí členové Prof. RNDr. Jana Šmardová, CSc. Mgr. Květa Lišková Mgr. Lenka Pitrová
Elektrochemická analýza metalothioneinu u pacientů s onkologickým onemocněním
Blok: Nádorové markery Elektrochemická analýza metalothioneinu u pacientů s onkologickým onemocněním René Kizek 1,2*, JiříSochor 1,2, David Hynek 1,2, Soňa Křížková 1,2, Vojtěch Adam 1,2, Tomáš Eckschlager