příklad 16 - Draft verze pajcu VUT FAST KDK Pešek 2016
|
|
- Drahomíra Bílková
- před 6 lety
- Počet zobrazení:
Transkript
1 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 VZPĚR SOŽEÉHO PRUTU A KŘÍŽOVÉHO PRUTU ZE DVOU ÚHEÍKŮ Vpočítejte návrhovou vpěrnou únosnost prutu délk 84 milimetrů kloubově uloženého na obou koncí pro všen směr vbočení s průřeem složený e dvou rovnoramenný úhelníků 00x00x0 konstrukční oceli S5. Výpočet proveďte pro dva působ spojení úhelníků: a) složený prut; b) křížový prut. Vstupní hodnot ávrhová osová tlaková síla v prutu 480 k Konstrukční ocel S5 5 Délka prutu 84 MPa mm Vpěrná délka prutu cr, 84 mm Spojk jsou umístěn ve třetiná teoretické délk prutu Průřeové arakteristik 00x00x0 A 95 mm průřeová ploa 4,77.0 mm moment setrvačnosti k ose 4,77.0 mm moment setrvačnosti k ose 4 u,8.0 mm největší moment setrvačnosti k hlavní ose u 5 4 v 7,.0 mm nejmenší moment setrvačnosti k hlavní ose v i 0, 4 mm poloměr setrvačnosti k ose i 0, 4 mm poloměr setrvačnosti k ose i u 8, mm poloměr setrvačnosti k hlavní ose u i v 9, 5 mm poloměr setrvačnosti k hlavní ose v e 8, mm vdálenost těžiště od líce pásnice měřená ve směru os u 9 mm 9, vdálenost těžiště od rohu úhelníku měřená ve směru os u
2 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 Geometrie složeného členěného prutu a 8 mm vdálenost spojek pro spojk ve třetiná délk prutu t b 0 mm tloušťka spojek h b 80 mm výška spojk (ve směru os prutu) b b 80 mm šířka spojk (kolmo na osu prutu) Křížové členěné prut mohou vbočit dvěma působ (směr): Vbočení kolmo k ose hmotné > (výpočet jako pro celistvý průře) Vbočení kolmo k ose nehmotné > (pokud je splněna podmínka pro maximální vdálenost spojek, le počítat jako celistvý průře, jinak se počítá jako členěný prut) Složené prut Křížové prut a 5 i a 70 i Rohodující směr vbočení je ten, pro který vjde nejnižší hodnota součinitele vpěrnosti. min min
3 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 A. SOŽEÝ ČEĚÝ PRUT h, 4 mm vdálenost těžišť pásů 0 Vbočení kolmo k ose kolmo k hmotné ose Moment setrvačnosti 4,77.0,54.0 mm E 0.0,54.0 π π k 84 Poměrná štíhlost λ A ,4 Beroměrný parametr (křivka vpěrné pevnosti b) 0,5 Součinitel vpěrnosti [ + α ( λ 0,) + λ ] 0,5 [ + 0,4 (,4 0,) +,4 ], 0 + λ,0 +,0,4 0,405 ávrhová vpěrná únosnost pro vbočení kolmo k ose hmotné A 0, , b, k γ,0 M Jednotkový posudek, b, 480, 5,0 > EVYHOVUJE
4 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 Vbočení kolmo k ose kolmo k nehmotné ose Patnáctinásobek nejmenšího poloměru setrvačnosti pásu a 8 mm 5 imin 5 9,5 9 mm > nele počítat jako celistvý průře výpočet členěného prutu Moment setrvačnosti Ekvivalentní počáteční geometrická imperekce 84 e0 7, 7 mm Účinný moment setrvačnosti Moment setrvačnosti jakob celistvého průřeu h0 5,4 4 + A, ,77.0 mm Poloměr setrvačnosti jakob celistvého průřeu i A 7, , 0 95 Štíhlost jakob celistvého průřeu mm λ i 84 85, 45,0 Součinitel účinnosti λ 85, µ 0, , e 0,5 h0 A + µ 0,5, ,8,77 7,8. 0 mm E, e 0.0 7,8.0 π π k 84 Smková tuhost Moment setrvačnosti spojk b bb hb 80 80,4.0 mm 4
5 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 4 E 4 0.0,77.0 Sv k h0,77.0,4 a n b a,4.0 8 π E π 0.0,77.0 Sv, max k a 8 > S v 447 k Moment uprostřed prutu s uvážením účinků. řádu M e + M S 0 8, cr ávrhová síla v pásu v 480 0, km M A h ,7.0 95,4, k 7,8.0 Vpěrná únosnost pásu e E 0.0,77.0 π π.0 k a 8 Poměrná štíhlost λ A ,449 Beroměrný parametr (křivka vpěrné pevnosti b) 0,5 Součinitel vpěrnosti [ + α ( λ 0,) + λ ] 0,5 [ + 0,4 ( 0,449 0,) + 0,449 ] 0, 4 + λ 0,4 + 0,4 0,449 0,90 A 0, , b, k γ,0 M Jednotkový posudek,, b, 408 0,77,0 > VYHOVUJE
6 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 B. KŘÍŽOVÝ ČEĚÝ PRUT h 9, 97 mm vdálenost těžišť pásů 0 Vbočení kolmo k ose kolmo k hmotné ose Moment setrvačnosti 4 u,8.0 5,.0 mm E 0.0 5,.0 π π k 84 Poměrná štíhlost λ A ,09 Beroměrný parametr (křivka vpěrné pevnosti b) 0,5 Součinitel vpěrnosti [ + α ( λ 0,) + λ ] 0,5 [ + 0,4 (,09 0,) +,09 ], 9 + λ,9 +,9,09 0,554 ávrhová vpěrná únosnost pro vbočení kolmo k ose hmotné A 0, , b, k γ,0 M
7 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 Jednotkový posudek, b, ,9,0 > VYHOVUJE Vbočení kolmo k ose kolmo k nehmotné ose Sedmdesátinásobek nejmenšího poloměru setrvačnosti pásu a 8 mm 70 imin 70 9,5 8 mm > le počítat jako celistvý průře Moment setrvačnosti h0 5 9,97 4 v + A 7, ,9.0 mm E 0.0 9,9.0 π π k 84 Poměrná štíhlost λ A ,804 Beroměrný parametr (křivka vpěrné pevnosti b) 0,5 Součinitel vpěrnosti [ + α ( λ 0,) + λ ] 0,5 [ + 0,4 ( 0,804 0,) + 0,804 ] 0, 9 + λ 0,9 + 0,9 0,804 0,7 ávrhová vpěrná únosnost pro vbočení kolmo k ose nehmotné A 0,7 95 5, b, k γ,0 M Jednotkový posudek, b, ,74,0 > VYHOVUJE
8 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 SHRUTÍ Tp prutu Jednotkový posudek pro vbočení kolmo k hmotné ose kolmo k nehmotné ose Závěr Složený prut, 0,77 evhovuje Křížový prut 0,9 0,74 Vhovuje V obou případe rohoduje vbočení kolmo k hmotné ose, ale v případě křížového prutu jsou jednotkové posudk pro vbočení kolmo k hmotné a nehmotné ose načně vrovnanější > eektivnější vužití materiálu.
5 SLOUPY. Obr. 5.1 Průřezy ocelových sloupů. PŘÍKLAD V.1 Ocelový sloup
SLOUPY. Obecné ponámk Sloup jsou hlavními svislými nosnými element a přenášejí atížení vodorovných konstrukčních prvků do ákladové konstrukce. Modulové uspořádání načně ávisí na unkci objektu a jeho dispoičním
Řešený příklad: Vzpěrná únosnost kloubově uloženého prutu s mezilehlými podporami
3,0 VÝPOČET Dokument č. SX00a-CZ-EU Strana 4 áev Řešený příklad: Vpěrná únosnost kloubově uloženého prutu s meilehlými podporami Eurokód Připravil Matthias Oppe Datum červen 00 Zkontroloval Christian Müller
Řešený příklad: Kloubově uložený sloup s průřezem H nebo z pravoúhlé trubky
VÝPOČET Dokument č. SX004a-CZ-EU Strana 4 áev Eurokód E 993-- Připravil Matthias Oppe Datum červen005 Zkontroloval Christian Müller Datum červen 005 V tomto příkladu se vpočítává vpěrná únosnost kloubově
SLOUP NAMÁHANÝ TLAKEM A OHYBEM
SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro
Řešený příklad: Návrh ocelového za studena tvarovaného sloupku stěny v tlaku a ohybu
VÝPOČEÍ LS Dokuent: SX07a-Z-EU Strana 9 áev Řešený příklad: ávrh ocelového a studena tvarovaného sloupku stěn v tlaku a ohbu Eurokód E 99--, E 99-- Vpracovali V. Ungureanu,. Ru Datu leden 00 Kontroloval
Příklad č.1. BO002 Prvky kovových konstrukcí
Příklad č.1 Posuďte šroubový přípoj ocelového táhla ke styčníkovému plechu. Táhlo je namáháno osovou silou N Ed = 900 kn. Šrouby M20 5.6 d = mm d 0 = mm f ub = MPa f yb = MPa A s = mm 2 Střihová rovina
Název Řešený příklad: Pružná analýza jednolodní rámové konstrukce
Dokument: SX09a-Z-EU Strana 8 Řešený příklad: Pružná analýa jednolodní rámové Je navržena jednolodní rámová vrobená válcovaných profilů podle E 993--. Příklad ahrnuje pružnou analýu podle teorie prvního
BO02 PRVKY KOVOVÝCH KONSTRUKCÍ
BO0 PRVKY KOVOVÝCH KONSTRUKCÍ PODKLADY DO CVIČENÍ Obsah NORMY PRO NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ... KONVENCE ZNAČENÍ OS PRUTŮ... 3 KONSTRUKČNÍ OCEL... 3 DÍLČÍ SOUČINITEL SPOLEHLIVOSTI MATERIÁLU... 3 KATEGORIE
Normálová napětí při ohybu - opakování
Normálová napětí při ohbu - opakování x ohýbaný nosník: σ x τ x Průřeová charakteristika pro normálová napětí a ohbu je moment setrvačnosti nebo něj odvoený modul průřeu x - / /= Ed W m + σ x napětí normálové
Část 5.8 Částečně obetonovaný spřažený ocelobetonový sloup
Část 5.8 Částečně obetonovaný spřažený ocelobetonový sloup P. Schaumann, T. Trautmann University o Hannover J. Žižka České vysoké učení technické v Praze 1 ZADÁNÍ V příkladu je navržen částečně obetonovaný
PŘÍKLAD č. 1 Třecí styk ohýbaného nosníku
FAST VUT v Brně PRVKY KOVOVÝCH KONSTRUKCÍ Ústav kovových a dřevěných konstrukcí Studijní skupina: B2VS7S Akademický rok: 2017 2018 Posluchač:... n =... PŘÍKLAD č. 1 Třecí styk ohýbaného nosníku Je dán
Normálová napětí v prutech namáhaných na ohyb
Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené
Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:
Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul
Řešený příklad: Pružný návrh jednolodní rámové konstrukce ze svařovaných profilů
Dokument: SX00a-Z-EU Strana 7 áev Eurokód Vpracoval Arnaud Lemaire Datum duben 006 Kontroloval Alain Bureau Datum duben 006 Je navržena jednolodní rámová konstrukce vrobená e svařovaných proilů podle.
Příklad č.1. BO002 Prvky kovových konstrukcí
Příklad č.1 Posuďte šroubový přípoj ocelového táhla ke styčníkovému plechu. Táhlo je namáháno osovou silou N Ed = 900 kn. Šrouby M20 5.6 d = mm d 0 = mm f ub = MPa f yb = MPa A s = mm 2 Střihová rovina
PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN
PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti
4. Tažené a tlačené pruty, stabilita prutů Tažené pruty, tlačené pruty, stabilita prutů.
4. Tažné a tlačné prut, stabilita prutů Tažné prut, tlačné prut, stabilita prutů. Tah Ed 3 -pružnéřšní Posouní pro všchn tříd: Únosnost t,rd : pro noslabnou plochu t,rd pl, Rd A f /γ M0 pro oslabnou plochu
pedagogická činnost
http://web.cvut.cz/ki/ pedagogická činnost -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový ýprůřez - Konstrukční ustanovení - Základová
NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ
NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN
studentská kopie Př. 9 Složený členěný prut ze dvou úhelníků 15ε = 15 = 15...bezpečně třída 3 (nemusíme redukovat plochu)
Př. 9 Složený členěný prut e dou úhelníků Stnote únosnost prutu tořeného dojcí ronormenný úhelníků 9x8. Prut toří dgonálu příhrdoého tuždl sstémoá délk prutu je 4 m. Spojk P-8x8 jsou umístěn třetná prutu.
NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU
NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN
Ohyb - smyková napětí
Oh - smková napětí p + + - - l x ohýaný nosník - M σ x - x Průřeové charakteristik pro smková napětí a ohu jsou statický moment ploch S a moment setrvačnosti. S A části průr T [ m ] max Mení stav únosnosti
Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017
Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním
Návrh žebrové desky vystavené účinku požáru (řešený příklad)
Návrh žebrové desky vystavené účinku požáru (řešený příklad) Posuďte spřaženou desku v bednění z trapézového plechu s tloušťkou 1 mm podle obr.1. Deska je spojitá přes více polí, rozpětí každého pole je
Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem
2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
studentská kopie 7. Hala návrh sloupu
7. Hala návrh sloupu Va s vetnutými sloup a louově připojenými vaní představují stati neurčitou soustavu. Při výpočtu le použít ja jednodušený, ta i podroný model, terý osahuje všehn prut vaníu i sloupu.
1.3.1 Výpočet vnitřních sil a reakcí pro nejnepříznivější kombinaci sil
OHYB NOSNÍKU - SVAŘOVANÝ PROFIL TVARU Ι SE ŠTÍHLOU STĚNOU (Posouzení podle ČSN 0-8) Poznámka: Dále psaný text je lze rozlišit podle tpu písma. Tpem písma Times Ne Roman normální nebo tučné jsou psané poznámk,
8. Střešní ztužení. Patky vetknutých sloupů. Rámové haly.
8. Střešní ztužení. Patky vetknutých sloupů. Rámové haly. Střešní ztužení hal: ztužidla příčná, podélná, svislá. Patky vetknutých sloupů: celistvé, dělené, plastický a pružný návrh. Rámové halové konstrukce:
Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.
. cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty
Sylabus přednášek OCELOVÉ KONSTRUKCE. Princip spolehlivosti v mezních stavech. Obsah přednášky. Návrhová únosnost R d (design resistance)
Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K34OK 4 kredity ( + ), zápočet, zkouška Prof. Ing. František Wald, CSc., místnost B 63. Úvod,
BO002 PRVKY KOVOVÝCH KONSTRUKCÍ
BO PRVKY KOVOVÝCH KONSTRUKCÍ PODKLADY DO CVIČENÍ Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani tpem informací nenahrazuje náplň přednášek. Obsah NORMY PRO NAVRHOVÁNÍ
Uplatnění prostého betonu
Prostý beton -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový průřez -Konstrukční ustanovení - Základová patka -Příklad Uplatnění prostého
Smyková napětí v ohýbaných nosnících
Pružnost a plasticita, 2.ročník kominovaného studia Smková napětí v ohýaných nosnících Základní vtah a předpoklad řešení ýpočet smkového napětí odélníkového průřeu Dimenování nosníků namáhaných na smk
= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08
Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a
Řešený příklad: Spojitý sloup průřezu H nebo pravoúhlé trubky ve vícepodlažní budově
Dokument č. SX00a-CZ-EU Strana z 7 ázev Eurokód E 993-- Připravil Matthias Oppe Datum červen 005 Zkontroloval Christian Müller Datum červen 005 Tento příklad se zabývá spojitými sloupy průřezu H nebo RHS
Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou
Příkld 1: SPŘAŽEÝ SLOUP (TRUBKA VYPLĚÁ BETOE) ZATÍŽEÝ OSOVOU SILOU Posuďte oboustrnně kloubově uložený sloup délk L 5 m, který je entrik ztížen silou 1400 kn. Sloup tvoří trubk Ø 45x7 z oeli S35 vplněná
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením
Dokument č. SX003a-CZ-EU Strana 1 z 8 Eurokód :200 Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením Tento příklad podrobně popisuje posouzení prostého nosníku s rovnoměrným zatížením.
Šroubovaný přípoj konzoly na sloup
Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup
Příklad - opakování 1:
Příklad - opakování 1: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku Skladba stropu: Podlaha, tl.60mm, ρ=2400kg/m 3 Vlastní žb deska, tl.dle návrhu, ρ=2500kg/m 3 Omítka, tl.10mm,
Klasifikace rámů a složitějších patrových konstrukcí
Klasifikace rámů a složitějších patrových konstrukcí Klasifikace závisí na geometrii i zatížení řešit pro každou kombinaci zatížení!! 1. Konstrukce řešené podle teorie 1. řádu (α > 10): F α 10 Pro dané
K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku
K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku 1 Zadání úlohy Vypracujte návrh betonového konstrukčního prvku (průvlak,.). Vypracujte návrh prvku ve variantě železobetonová konstrukce
Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky
Statický výpočet postup ve cvičení 5. Návrh a posouzení sloupu vzpěrné délky Statický výpočet postup ve cvičení 5. Návrh a posouzení sloupu např. válcovaný průřez HEB: 5.1. Výpočet osové síly N Ed [stálé
Řešený příklad: Prostě uložený a příčně nedržený nosník
Dokument č. SX001a-CZ-EU Strana 1 8 Eurokód Připravil Alain Bureau Datum prosinec 004 Zkontroloval Yvan Galéa Datum prosinec 004 Řešený příklad: Prostě uložený a příčně nedržený Tento příklad se týká detailního
EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =
NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose
BO02 PRVKY KOVOVÝCH KONSTRUKCÍ
BO0 PRVKY KOVOVÝCH KONSTRUKCÍ PODKLADY DO CVIČENÍ Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani tpem informací nenahrazuje náplň přednášek. Obsah NORMY PRO NAVRHOVÁNÍ
5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.
5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w
Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:
5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného
Ocelové konstrukce 3 Upraveno pro ročník 2011/2012
Ocelové konstrukce 3 Upraveno pro ročník 011/01 Prof. Josef acháček B63 PP pro řádné posluchače je na webu 1. týden: tabilita nosníku a ohbu.. týden: tabilita stěn. 3. týden: Tenkostěnné a studena tvarované
BO004 KOVOVÉ KONSTRUKCE I
BO004 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ VYPRACOVAL: Ing. MARTIN HORÁČEK, Ph.D. AKADEMICKÝ ROK: 2018/2019 Obsah Dispoziční řešení... - 3 - Příhradová vaznice... - 4 - Příhradový vazník... - 6 - Spoje
5. Aplikace výsledků pro průřezy 4. třídy.
5. plikace výsledků pro průřez 4. tříd. eff / eff / Výsledk únosnosti se používají ve tvaru součinitele oulení ρ : ρ f eff kde d 0 Stěn namáhané tlakem a momentem: Základní případ: stlačovaná stěna: výsledk
Řešený příklad: Stabilita prutové konstrukce s posuvem styčníků
Dokument SX008a-CZ-EU Strana 1 z 9 Řešený příklad: Stabilita prutové konstrukce s posuvem Tento příklad řeší celkovou stabilitu prutové konstrukce a stabilitu s posuvem. Řešen je nevztužený dvoupodlažní
NCCI: Jednoose symetrické pruty konstantního průřezu namáhané ohybem a osovým tlakem
CC: Jednoose smetrické prut konstantního průřeu namáhané ohbem a osovým tlakem S00a-CZ-EU CC: Jednoose smetrické prut konstantního průřeu namáhané ohbem a osovým tlakem Tento CC dokument se abývá metodou
Řešený příklad: Prostě podepřená vaznice průřezu IPE
Dokument: SX01a-CZ-EU Strana 1 z Eurokód Vpracoval Mladen Lukic Datum Leden 006 Kontroloval Alain Bureau Datum Leden 006 Řešený příklad: Prostě podepřená vaznice průřezu IPE Tento příklad se zabývá podrobným
Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů
Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Pro. Ing. František ald, CSc., místnost B 632
Řešený příklad: Šroubový přípoj taženého úhelníku ztužidla ke styčníkovému plechu
Dokument: SX34a-CZ-EU Strana z 8 Řešený příklad: Šroubový přípoj taženého úhelníku ztužidla ke Příklad ukazuje posouzení šroubového přípoje taženého úhelníku ztužidla ke, který je přivařen ke stojině sloupu.
1 Použité značky a symboly
1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
PROBLÉMY STABILITY. 9. cvičení
PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější
STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE
STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE Datum: 01/2016 Stupeň dokumentace: Dokumentace pro stavební povolení Zpracovatel: Ing. Karel
Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů
Jedenácté cvičení bude vysvětlovat tuto problematiku: Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů
χ je součinitel vzpěrnosti pro příslušný způsob vybočení.
6.3 Vpěrná únosnost prutů 6.3. Tlačené prut stálého průřeu 6.3.. Vpěrná únosnost () Tlačený prut se má posuovat na vpěr podle podmínk: Ed 0, (6.46),Rd Ed je návrhová hodnota tlakové síl;,rd návrhová vpěrná
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova
Prostý beton Pedagogická činnost Výuka bakalářských a magisterský předmětů Nosné konstrukce II
Prostý beton http://www.klok.cvut.cz Pedagogická činnost Výuka bakalářských a magisterský předmětů Nosné konstrukce II - Uplatnění prostého betonu -Ukázky staveb - Charakteristické pevnosti -Mezní únosnost
Průvodní zpráva ke statickému výpočtu
Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství
Atic, s.r.o. a Ing. arch. Libor Žák
Atic, s.r.o. a Ing. arch. Libor Žák Riegrova, 62 00 Brno Sdružení tel. 2 286, 60 323 6 email: zak.apk@arch.cz Investor : Stavba : Objekt : Jihomoravský kraj Brno, Žerotínovo nám. 3/, PSČ 60 82 KOMPETENČNÍ
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky
13. Zděné konstrukce Navrhování zděných konstrukcí Zděné konstrukce mají široké uplatnění v nejrůznějších oblastech stavebnictví. Mají dobrou pevnost, menší objemová hmotnost, dobrá tepelně izolační schopnost
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVENÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES SPORTOVNÍ HALA EXHIBITION
Betonové konstrukce (S)
Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy
Předběžný Statický výpočet
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra konstrukcí pozemních staveb Předběžný Statický výpočet Stomatologická klinika s bytovou částí v Praze 5 Bakalářská práce Jan Karban Praha,
Navrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Část 5.7 Částečně obetonovaný spřažený ocelobetonový nosník
Část 5.7 Částečně obetonovaný spřažený oelobetonový nosník P. Shaumann T. Trautmann University o Hannover J. Žižka České vysoké učení tehniké v Prae ZADÁNÍ Řešený příklad ukauje posouení spřaženého nosníku
Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem
Stavba: Stavební úpravy skladovací haly v areálu firmy Strana: 1 Obsah: PROSTAB 1. Technická zpráva ke statickému výpočtu 2 2. Seznam použité literatury 2 3. Návrh a posouzení monolitického věnce nad okenním
Řešený příklad: Požární odolnost částečně obetonovaného spřaženého sloupu
Dokument: SX039a-CZ-EU Strana 1 z 8 ázev Vypracovali P Schaumann & T Trautmann Daum Leden 006 Kontroloval J Chica & F Morente, Labein Datum Leden 006 Řešený příklad: Požární odolnost částečně obetonovaného
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku.
PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku Skladba stropu: Podlaha, tl.60mm, ρ=400kg/m 3 Vlastní žb deska, tl.dle návrhu,
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)
Jednotný programový dokument pro cíl regionu (NUTS2) hl. m. Praha (JPD) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován Evropským
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ABSTRACT BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES TROJLODNÍ
IVC Nošovice sportoviště II etapa Cvičná ocelová věž pro hasičský záchranný zbor STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ TECHNICKÁ ZPRÁVA A STATICKÉ POSOUZENÍ
IVC Nošovice sportoviště II etapa Cvičná ocelová věž pro hasičský áchranný bor 36-8/13 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ TECHNICKÁ ZPRÁVA A STATICKÉ POSOUZENÍ vpracoval: ing. Robin Kulhánek kontroloval: ing.
Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavebních konstrukcí
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavebních konstrukcí 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
2. Interakce namáhání. Členěné pruty. Ocelobetonové nosníky a sloupy.
. Interakce namáhání. Členěné pruty. Ocelobetonové nosníky a sloupy. Interakce namáhání pro prostou a stabilitní únosnost. Interakce smyku a momentu. Členěné pruty s příhradovými a rámovými spojkami. Ocelobetonové
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Zastřešení dvojlodního hypermarketu STATICKÝ VÝPOČET. Ondřej Hruška
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Zastřešení dvojlodního hypermarketu STATICKÝ VÝPOČET Ondřej Hruška Praha 2017 Statický výpočet Obsah 1. Zatížení... 2 1.1. Zatížení sněhem. 2 1.2.
Ztráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
Řešený příklad: Požární návrh chráněného sloupu průřezu HEB vystaveného normové teplotní křivce
VÝPOČET Dokument: SX044a-E-EU Strana 0 Vracoval Z. Sokol Datum Leden 006 Kontroloval F. Wald Datum Leden 006 Řešený říklad: Požární návrh chráněného slouu růřeu HEB vstaveného normové telotní křivce V
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
Spoje se styčníkovými deskami s prolisovanými trny. Ing. Milan Pilgr, Ph.D. DŘEVĚNÉ KONSTR.
Spoje se styčníkovými deskami s prolisovanými trny JMÉNO PŘEDMĚT Ing. Milan Pilgr, Ph.D. DŘEVĚNÉ KONSTR. TŘÍDA 3. ročník ROK 28 Bibliografická citace: PILGR, M. Dřevěné konstrukce. Spoje se styčníkovými
POSOUZENÍ DŮLNÍ OCELOVÉ VÝZTUŽE PODLE ČSN EN EUROKÓD 3
POSOUZEÍ DŮLÍ OCELOVÉ VÝZTUŽE PODLE ČS E 993-- EUROKÓD 3 ÚVOD V lednu 2009 přestala platit předběžná evropská ocelářská norma ČS P EV 993-- a v dubnu 200 bla ukončena platnost souběžné platné české ocelářské
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
BO002 PRVKY KOVOVÝCH KONSTRUKCÍ
BO00 PRVKY KOVOVÝCH KOSTRUKCÍ PODKLADY DO CVIČEÍ VYPRACOVAL: Ing. ARTI HORÁČEK, Ph.D. AKADEICKÝ ROK: 07/08 Podklad do cvičení předmětu BO00 Prvk kovových konstrukcí Vpracoval: Ing. artin Horáček, Ph.D.
NCCI: Obecná metoda pro posouzení příčné stability rámů
CCI: Obecná metoda pro posouzení příčné stability rámů S032a-CZ-EU CCI: Obecná metoda pro posouzení příčné stability rámů Tento CCI dokument vysvětluje obecnou metodu presentovanou v 6.3.4 z E1993-1-1
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce Návrh
Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce
133 BK4K BETONOVÉ KONSTRUKCE 4K Betonové konstrukce BK4K Program výuky Přednáška Týden Datum Téma 1 40 4.10.2011 2 43 25.10.2011 3 44 12.12.2011 4 45 15.12.2011 Skořepinové konstrukce úvod Úvod do problematiky
Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.
Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+
ŔᶑPř. 10 Ohyb nosníku se ztrátou stability. studentská kopie
Navrhněe sropní průvla průřeu IPE oceli S35, aížený podle obráu reacemi e sropnic. Nosní je ajišěn proi ráě příčné a orní sabili (lopení) v podporách a v působiších osamělých břemen. haraerisicá hodnoa
6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I
6.3 Moment setrvačnosti a deviační moment rovinných obraců Statické moment rovinného obrace -k ose xiální moment setrvačnosti rovinného obrace -k ose -k ose Pon.: 1), > 0 S d d d. S d -k ose [m 3 ] [m
ČSN EN OPRAVA 1
ČESKÁ TECHNICKÁ NORMA ICS 13.220.50; 91.010.30; 91.080.40 Říjen 2009 Eurokód 2: Navrhování betonových konstrukcí Část 1-2: Obecná pravidla Navrhování konstrukcí na účinky požáru ČSN EN 1992-1-2 OPRAVA
Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015
2015 STAVBA STUPEŇ Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem DSP STATICKÝ POSUDEK srpen 2015 ZODP. OSOBA Ing. Jiří Surovec POČET STRAN 8 Ing. Jiří Surovec istruct Trabantská 673/18, 190