MODELOVÁNÍ SEISMICKÉHO ZDROJE JAKO REÁLNÁ TESTOVACÍ ÚLOHA PRO NELINEÁRNÍ INVERSNÍ ALGORITMUS

Rozměr: px
Začít zobrazení ze stránky:

Download "MODELOVÁNÍ SEISMICKÉHO ZDROJE JAKO REÁLNÁ TESTOVACÍ ÚLOHA PRO NELINEÁRNÍ INVERSNÍ ALGORITMUS"

Transkript

1 MODELOVÁNÍ SEISMICKÉHO ZDROJE JAKO REÁLNÁ TESTOVACÍ ÚLOHA PRO NELINEÁRNÍ INVERSNÍ ALGORITMUS P. Kolář, B. Růžek, P. Adamová Geofyzkální ústav AV ČR, Praha Abstrakt Pro vyvíjený nelneární nversní algortmus ANNIT se jako vhodná testovací reálná úloha ukazuje modelování sesmckého zdroje v aproxmac sesmckého momentového tenzoru druhého řádu. V článku je úloha stručně popsána a jsou uvedeny výsledky nverse pro syntetcká data. 1 Motvace Jako v řadě jných oborů, tak př studu zemětřesného zdroje se v soudobé sesmolog dostáváme do stuace, kdy př numerckém modelovaní studovaných jevů jž nevystačíme s lneárním aproxmacem a je nutno používat popsy nelneární. Tento trend má několkero příčn, jak subjektvních (zpřesnění a zesubtlnění předmětů studa, tj. vznk vysoce detalních modelů, detalní modelovaní nestaconárních stavů etc.), tak objektvních: rozvoj příslušných nelneárních numerckých nástrojů jakož nárůst běžně dostupné dostatečné výpočetní kapacty. V duchu těchto současných trendů je v sesmckém oddělení Geofyzkálního ústavu vyvíjen nelneární nversní algortmus ANNIT (www3). Po jeho (úspěšném) otestování na soustavě nelneárních rovnc jsme hledal nějakou vhodnou reálnou úlohu, která by dále umožnla důkladné testování metody a její případná vylepšení. Volba padla na modelování sesmckého zdroje. Jak ukázaly provedené testy, jedná se o pro tento účel velm vhodnou úlohu, úspěšná aplkace vyvíjeného algortmu by pak znamenala přínos pro řešení reálných v současnost studovaných problémů. 2 Stručný úvod k matematcké aproxmac zemětřesného zdroje Př numerckém modelování sesmckého zdroje (zdroje zemětřesení) se v řadě případů používá bodová aproxmace. Př této aproxmac odhlédneme od reálných konečných rozměrů studovaného sesmckého zdroje, respektve tato aproxmace je smysluplná, pokud je pozorovatel od zdroje vzdálen tak, aby se mu s dostatečnou přesností jevl jako efektvně bodový v prax se jako krtérum platnost této aproxmace požaduje splnění podmínky d >> r, kde d je vzdálenost od zdroje a r je jeho charakterstcký rozměr. Samozřejmě, že reálný zdroj je ve skutečnost konečný a sesmcké vlny generuje nějak jeho každá (porušená) jeho část. Př modelování bodového zdroje lze v prvním přblížení posunutí u (v místě pozorování x) vyjádřt pomocí lneárního vztahu u ( x, = G ( ξ, x, M& ( ) [1] p, q pq t kde G je odezva prostředí (tzv. Greenova funkce), symbol * značí konvoluc a M je sesmcký momentový tensor jedná se o tensor prvního řádu (symetrcká matce 3x3 tj. 6 nezávslých členů). Poznamenejme, že obecný sesmcký momentový tenzor lze dekomponovat. Tato dekompozce je obecně nejednoznačná, respektve závslá na zvoleném způsobu dekompozce. V sesmolog se ustállo používání dekompozce na část objemovou, tahovou a střžnou. Důvodem pro tuto volbu je možná geometrcká nterpretace jednotlvých členů, které po řadě odpovídají explos, respektve mplos, jednoosému tlaku, respektve tahu a čstému smyku popsovaného pomocí dvojtého dpólu (jsté analog např. k elektrckému, č magnetckému dpólu vz obr. 1). Poznamenejme, že naprostá většna přrozených zemětřesení má zcela domnantní právě dpólovou složku, proto se lze v řadě úloh

2 omezt na modelování zemětřesení pomocí pouze této střžné složky. Podrobnější nformace o různých aproxmacích sesmckého zdroje lze nalézt např. v Zahradník (1989a), Sten a Wysesson (28) nebo v češtně v Zahradník (1989b) a samozřejmě v mnoha dalších. Obrázek 1: Příklad vyzařovací charakterstky dvojtého dpólu, modře pro P vlny, červeně pro S vlny - vytvořeno programem ANASEIS (www1). Vztah [1] lze použít pro určení sesmckého momentu. Za předpokladu znalost Greenovy funkce, což je ekvvalentní znalost č spíše předpokladu nějakého rychlostního modelu prostředí, lze z napozorovaných ampltud pohybů půdy určt sesmcký moment M. Z matematckého hledska se jedná o standardní řešení soustavy lneárních rovnc, v tomto případě zpravdla soustavy přeurčené (se všem obvyklým perpetem jako je např. určení chyby, vlv šumu, vlv nepřesného modelu, vlv geometrcké uspořádání míst pozorování - to bývá v řadě případů ovlvntelné jen do určté míry nebo spíše vůbec etc.) Výše popsaná aproxmace má samozřejmě své lmty. Jedním z možných směrů zpřesnění modelování je doplnění vztahu [1] o další nelneární členy. Pomocí expanze v Taylorově rozvoj do stupně dvě dostáváme vztah u ( x, = G & & & && (,, ) ( ) (,, ) (, ) (,, ) & ( ) + pq t Gp, ql pq, l ξ t Gp, qlm pq, lm K[2] 2 p, q ξ kde oprot vztahu [1] přbude dalších 14 nezávslých parametrů. Pomocí uvedeného vztahu je možno př formálně bodové aproxmac zdroje modelovat konečnost sesmckého zdroje. Vztah [2] je jakožto testovací úloha vhodná zejména z následujících důvodů: lze separovat lneární část problému, aproxmace [1] vede zpravdla rychle k nalezení jednoznačného řešení, formulace [2] je často multmodální a nalezení (fyzkálně reálného) řešení není vždy automatcky zaručeno a je nutno např. zahrnout další dodatečná fyzkální omezení a v neposlední řadě alespoň část z parametrů má přímou geometrckou nterpretac, což usnadňuje kontrolu správnost nalezeného řešení, respektve fyzkální nterpretac výsledků. 3 Algortmy pro nelneární nverse Algortmy pro nelneární nverse jsou vyvíjeny jž as od 5. let mnulého století od koncepčně as nejjednoduššího Random Search, přes dnes jž pravděpodobně zapomenuté Smulované Žíhání (Smulate Annealng) až po jž klascký Genetcký Algortmus, Dferencální Evoluc (www2) a

3 mnohé jné další. Každý z nversních algortmů má své vlastnost, své klady a zápory; rozhodně neexstuje jeden jednoznačně nejlepší a použtí toho kterého konkrétního spíše závsí na typu řešené úlohy, na konkrétních výpočetních možnostech, které jsou k dspozc a v neposlední řadě jstě na tradc a předchozích zkušenostech pracovště. Nelneární nversní algortmy lze různě fenomenologcky klasfkovat, jednou z možností je klasfkace dle způsobu jakým porovnávají navrhovaný model s daty. Řada algortmů kvantfkuje míru shody modelu a dat pomocí jedno čísla - skaláru zpravdla normy L2. Tímto způsobem však přcházíme o část nformace (např. není rozdíl mez všeobecnou drobnou nehodou dat a modelu a většnovou shodou s několka málo výraznějším odchylkam). Proto byly vyvnuty algortmy, které shodu dat modelu popsují pomocí vektoru rozdílu dat a modelu. Příkladem takových algortmů je Isometrcká metoda (Málek et al.27), nebo námy vyvíjený algortmus ANNIT (www3). Prncp algortmus ANNIT je náznakově popsán níže, další podrobnost možno nalézt na www stránkách projektu (www3), č ve specálním článku v tomto sborníku. Zde lze říc, že tento algortmus kombnuje stochastcký a determnstcký přístup př hledání modelu vyhovujícího datům. Populace potenconálně uvažovaných hodnot parametrů a jm odpovídajících modelů se vyvíjí determnstcky, pokud se však touto cestou nedaří dosáhnout přměřeného zlepšení, provede se stochastcká rekonfgurace populace uvažovaných hodnot parametrů. Tento postup se opakuje až do nalezení uspokojvého řešení, respektve do naplnění dalších krtérí pro skončení programu. Z hledska praktckého provádění nverse doplňme, že program ANNIT povnně vyžaduje zadání rozsahu hledaných parametrů a umožňuje zadání jejch startovací hodnoty, případně jejch fxac. 4 Provedené testy Aby se testování co nejvíce blížlo zamýšleným budoucím aplkacím, jako testovací úloha byla zvolena konfgurace stanc a zemětřesného zlomu v Anatol v Turecku (obr. 2). Aby prováděné testy nebyly ovlvněny šumem, nepřesnostm v modelu prostředí a také aby jednoznačně mohla být ohodnoceny výsledky nverze, byla použta syntetcká data; jným slovy: známe přesné zadání úlohy. Tato syntetcká testovací data byla spočtena pro konečný zdroj (samozřejmě o známé orentac a velkos za předpokladu obdélníkového modelu zdroje (Burjánek, 28). Zopakujme na tomto místě, že naše formulace problému, popsaná vztahem [2] není přesným popsem tohoto syntetckého modelu, jedná se o bodovou aproxmac sesmckého momentu druhého řádu a očekávané výsledky, respektve jejch geometrcké nterpretace, by se měly blížt charakterstce modelu. N [km] YEN 4 PSK OVA YAG 2 HER KIZ -2 GEM HAC OFL SDL SUK YAK KUR AKA UMU HEN BAL GOK CAM SAR E [km] Obrázek 2: Mapa oblast s epcentrem (hvězdčka) a stancem, vše v relatvních kartézských souřadncích; podle J. Burjánka. Přpomeňme, že v našem případě řešíme úlohu pro 6 parametrů momentového tenzoru prvního řádu (dále jen MT1) a pro 14 parametrů momentového tenzoru druhého řádu (dále jen MT2) tedy celkem 2 nezávslých parametrů. Zatímco číselný rozsah parametrů MT2 se pohybuje v rozsahu

4 prvních desítek, pro MT1 mohou parametry dosahovat hodnot až +/ I když se používaný algortmus ANNIT umí s takovýmto rozdíly vypořádat, numercké pokusy ukázaly, že je vhodné úlohu rozdělt do dvou kroků: nejprve nvertovat pro MT1 a spočtené výsledky pak použít v nvers pro MT2. Tento krok ostatně koresponduje s flosofí popsu naší úlohy, kdy první aproxmac pomocí MT1 rozšřujeme o opravu druhého řadu MT2 a lze tedy očekávat, že vlv této opravy bude pouze doplňující. To potvrzují výsledky nverse uvedené na obrázku 3. Př nvers bylo potřeba věnovat pozornost datům není možnoť přímo použt celé sesmogramy, neboť jejch velkost představuje v našem případě cca 5 bodů, což je za hrancí obsadtelné pamět př provádění výpočtu. Navíc by to pravděpodobně nebylo an přílš žádoucí, neboť takto slné přeurčení řešeného problému by bylo prot flosof použtého algortmu. Po několka pokusech byla jako vstupní data použty převzorkované sesmogramy každý sesmogram je ovzorkován stejným počtem vzorků (zvoleno 1), vzorkovací krok tedy není konstantní, je však dostatečně hustý pro postžení charakterstky sesmogramu v ntervalu uvažovaných frekvencí. Jak algortmus ANNIT, tak přímá úloha (výpočet sesmogramů pro potenconálně navrhovanou sadu nvertovaných parametrů MT1 a MT2) byly napsány v prostředí MATLAB Obrázek 3: Porovnání nvertovaných sesmogramu (faktcky vstupních da a sesmogramů odpovídajících parametrům modelu nalezeného pomocí algortmu ANNIT. Vlevo je řešení pro aproxmac [1], vpravo řešení dle [2], data jsou vykreslena černou barvou, nalezená řešení červeně, respektve falově, stopy odpovídají záznamům z jednotlvých stanc dle obr. 1. Aby bylo možno kontrolovat prác testovaného programu jsou použta syntetcká data, uspořádaní expermentu však odpovídá reálné stuac na Anatolském zlomu (Turecko) a zemětřesení o síle M=6. Je patrná lepší shoda druhého řešení, zároveň však změna není dramatcká, jak lze očekávat od členů rozvoje druhého řádu. 5 Závěr Reálná geofyzkální úloha nalezení sesmckého momentového tenzoru druhého řádu se ukázala jako vhodná testovací úloha pro vyvíjený algortmus nelneární nverse ANNIT. Provedené testy ukázaly, že testovací úloha je netrvální a multmodální do té míry, že se ukazuje relevantní uvažovat o zavedení nějakých doplňkových podmínek plynoucích z fyzkálních omezení uvažovaného problému (vz např. McGure et al., 22). Takovéto rozšíření by z hledska řešené úlohy mělo vést k zefektvnění výpočtu a z hledska funkčnost algortmu ANNIT k rozšíření třídy problémů, které je tento algortmus schopen úspěšně řešt.

5 Reference Burjánek, J., 28, Syntetcké odezvy konečného zlomu testovací případ Anatole, nterní zpráva Málek J., Růžek B. and Kolář P., 27: Isometrc method: Effcent tool for solvng non-lnear nverse problems. Stud. Geophys. Geod., 51, McGure, J. J., Zhao, L. and Jordan T. H.,: 22: Predomnance of Unlateral Rupture for a Global Catalog of Large Earthquakes, Bull. Sesm. Soc. Am., 92, pp Sten, S. and Wysesson, M., 28:An ntroducton to sesmology, eartquakes, and Earth structure, Blackwell Publshng, www1: zde možno stáhnout zdrojový kód pro vykreslení vyzařovací charakterstky sesmckého zdroje typu dvojtého dpólu (kód pro prostředí MATLAB) www2: stránky věnované Dferencální evoluc www3: stránky projektu vývoje programu ANNIT Zahradník, J., 1989a: Generaton of Sesmc Waves by Earthquake Sources (Lecture Notes), Sesmologcal Department, Uppsala Unversty, Sweden. Zahradník, J., 1989b: Fyzka zemětřesení (předběžná verze učebního textu), KGM MFF UK, Praha Poděkování Práce vznkla v rámc grantů: IAA31285 a IAA21271 GAAV ČR Kontakt P. Kolář: kolar@g.cas.cz

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ HUDEBÍ EFEKT DISTORTIO VYUŽÍVAJÍCÍ ZPRACOVÁÍ PŘÍRŮSTKŮ SIGÁLŮ ČASOVĚ VARIATÍM SYSTÉMEM Ing. Jaromír Mačák Ústav telekomunkací, FEKT VUT, Purkyňova 118, Brno Emal: xmacak04@stud.feec.vutbr.cz Hudební efekt

Více

Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička

Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady Mlan Růžčka mechanka.fs.cvut.cz mlan.ruzcka@fs.cvut.cz Analýza dynamckých zatížení Harmoncké zatížení x(t) přes soubor

Více

Řešení radiační soustavy rovnic

Řešení radiační soustavy rovnic Řešení radační soustavy rovnc 1996-2016 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ RadSoluton 2016 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca 1 / 23 Soustava lneárních

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Řešení radiační soustavy rovnic

Řešení radiační soustavy rovnic Řešení radační soustavy rovnc 1996-2008 Josef Pelkán KSVI MFF UK Praha e-mal: Josef.Pelkan@mff.cun.cz WWW: http://cgg.ms.mff.cun.cz/~pepca/ NPGR010, radsoluton.pdf 2008 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca

Více

Umělé neuronové sítě a Support Vector Machines. Petr Schwraz

Umělé neuronové sítě a Support Vector Machines. Petr Schwraz Umělé neuronové sítě a Support Vector Machnes Petr Schraz scharzp@ft.vutbr.cz Perceptron ( neuron) x x x N f() y y N f ( x + b) x vstupy neuronu váhy jednotlvých vstupů b aktvační práh f() nelneární funkce

Více

Dopravní plánování a modelování (11 DOPM )

Dopravní plánování a modelování (11 DOPM ) Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

8a.Objektové metody viditelnosti. Robertsův algoritmus

8a.Objektové metody viditelnosti. Robertsův algoritmus 8a. OBJEKOVÉ MEODY VIDIELNOSI Cíl Po prostudování této kaptoly budete znát metody vdtelnost 3D objektů na základě prostorových vlastností těchto objektů tvořt algortmy pro určování vdtelnost hran a stěn

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T.

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T. 7.4.0 Úvod - Přehled Sdílení tepla Sdílení tepla mez termodynamckou soustavou a okolím je podmíněno rozdílností teplot soustavy T s a okolí T o. Teplo mez soustavou a okolím se sdílí třem základním způsoby:

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

Implementace bioplynové stanice do tepelné sítě

Implementace bioplynové stanice do tepelné sítě Energe z bomasy XVII, 13. 15. 9. 2015 Lednce, Česká republka Implementace boplynové stance do tepelné sítě Pavel MILČÁK 1, Jaroslav KONVIČKA 1, Markéta JASENSKÁ 1 1 VÍTKOVICE ÚAM a.s., Ruská 2887/101,

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

Aplikace simulačních metod ve spolehlivosti

Aplikace simulačních metod ve spolehlivosti XXVI. ASR '2001 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 2001 Paper 40 Aplkace smulačních metod ve spolehlvost MARTINEK, Vlastml Ing., Ústav automatzace a nformatky, FSI VUT v Brně, Techncká

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta Katedra fyziky. Bakalářská práce

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta Katedra fyziky. Bakalářská práce Jhočeská unverzta v Českých Budějovcích Pedagogcká fakulta Katedra fyzky Bakalářská práce České Budějovce 007 Tomáš Bürger Jhočeská unverzta v Českých Budějovcích Pedagogcká fakulta Katedra fyzky Generování

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU ŘÍZENÍ OTÁČEK AYNCHONNÍHO MOTOU BEZ POUŽITÍ MECHANICKÉHO ČIDLA YCHLOTI Petr Kadaník ČVUT FEL Praha, Techncká 2, Praha 6 Katedra elektrckých pohonů a trakce e-mal: kadank@feld.cvut.cz ANOTACE V tomto příspěvku

Více

4 Parametry jízdy kolejových vozidel

4 Parametry jízdy kolejových vozidel 4 Parametry jízdy kolejových vozdel Př zkoumání jízdy železnčních vozdel zjšťujeme většnou tř základní charakterstcké parametry jejch pohybu. Těmto charakterstkam jsou: a) průběh rychlost vozdel - tachogram,

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits Techncká 4, 66 07 Praha 6 MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electrc Parameter Measurement n PWM Powered Crcuts Martn Novák, Marek Čambál, Jaroslav Novák Abstrakt: V

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt ALGORITMUS DIFERENCIÁLNÍ EVOLUCE A JEHO UŽITÍ PRO IDENTIFIKACI NUL A PÓLŮ PŘE- NOSOVÉ FUNKCE FILTRU Přemysl Žška, Pravoslav Martnek Katedra teore obvodů, ČVUT Praha, Česká republka Abstrakt V příspěvku

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

L8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007

L8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007 L8 Asmlace dat II Oddělení numercké předpověd počasí ČHMÚ 007 Plán přednášky Úvod do analýzy Optmální odhad v meteorolog D případ: demonstrace metod; mult-dmensonální případ; Zavedení předběžného pole;

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]

Více

Q N v místě r. Zobecnění Coulombova zákona Q 3 Q 4 Q 1 Q 2

Q N v místě r. Zobecnění Coulombova zákona Q 3 Q 4 Q 1 Q 2 Zobecnění Coulombova zákona Uvažme nyní, jaké elektostatcké pole vytvoří ne jeden centální) bodový náboj, ale více nábojů, tzv. soustava bodových) nábojů : echť je náboj v místě v místě.... v místě Pak

Více

PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D.

PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D. PODKLADY PRO PRAKTICKÝ SEMIÁŘ PRO ČITELE VOŠ Logartmcké velčny používané pro pops přenosových řetězců Ing. Bc. Ivan Pravda, Ph.D. ATOR Ivan Pravda ÁZEV DÍLA Logartmcké velčny používané pro pops přenosových

Více

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1 VÝVOJ SOFWARU NA PLÁNOVÁNÍ PŘESNOSI PROSOROVÝCH SÍÍ PRECISPLANNER 3D DEVELOPMEN OF HE MEASUREMEN ACCURACY PLANNING OF HE 3D GEODEIC NES PRECISPLANNER 3D Martn Štroner 1 Abstract A software for modellng

Více

11 Tachogram jízdy kolejových vozidel

11 Tachogram jízdy kolejových vozidel Tachogram jízdy kolejových vozdel Tachogram představuje znázornění závslost rychlost vozdel na nezávslém parametru. Tímto nezávslým parametrem může být ujetá dráha, pak V = f() dráhový tachogram, nebo

Více

Mechanické vlastnosti materiálů.

Mechanické vlastnosti materiálů. Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Jiří Militký KTM, Technická universita v Liberci, LIBEREC, Česká Republika Milan Meloun, KACH, Universita Pardubice, Česká Republika

Jiří Militký KTM, Technická universita v Liberci, LIBEREC, Česká Republika Milan Meloun, KACH, Universita Pardubice, Česká Republika Různé pohled na kalbrační úloh Jří Mltký KTM, Techncká unversta v Lberc, 46 7 LIBEREC, Česká Republka Mlan Meloun, KACH, Unversta Pardubce, Česká Republka Abstrakt Cílem této práce je ukázat některé problém

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta stavební. Obor geodézie a kartografie DIPLOMOVÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta stavební. Obor geodézie a kartografie DIPLOMOVÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Fakulta stavební Obor geodéze a kartografe DIPLOMOVÁ PRÁCE Zajšťovací mkrosíť geodetcko-geotechnckého vrtu V1 prosnec 5 Jan Vavroch Zajšťovací mkrosíť geodetcko-geotechnckého

Více

Statistická energetická analýza (SEA)

Statistická energetická analýza (SEA) Hladna akustckého tlaku buzení harmonckou slou [db] Statstcká energetcká analýza (SA) V současné době exstue řada způsobů, ak řešt vbroakustcké problémy. odobně ako v ných odvětvích nženýrství, také ve

Více

Úvod Terminologie Dělení Princip ID3 C4.5 CART Shrnutí. Obsah přednášky

Úvod Terminologie Dělení Princip ID3 C4.5 CART Shrnutí. Obsah přednášky Obsah přednášky. Úvod. Termnologe 3. Základní dělení 4. Prncp tvorby, prořezávání a použtí RS 5. Algortmus ID3 6. C4.5 7. CART 8. Shrnutí A L G O RI T M Y T E O R I E Stromové struktury a RS Obsah knhy

Více

9 PŘEDNÁŠKA 9: Heisenbergovy relace neurčitosti, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku.

9 PŘEDNÁŠKA 9: Heisenbergovy relace neurčitosti, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku. 9 PŘEDNÁŠKA 9: Hesenbergovy relace neurčtost, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku. Hesenbergovy relace neurčtost(tnqu.5., SKM) Jednoduchý pohled na věc: Vždy exstuje určtá

Více

Hodnocení kvality sumarizátorů textů

Hodnocení kvality sumarizátorů textů Hodnocení kvalty sumarzátorů textů Josef Stenberger 1, Karel Ježek 1 1 Katedra nformatky a výpočetní technky, FAV, ZČU Západočeská Unverzta v Plzn, Unverztní, 306 14 Plzeň {jsten, jezek_ka}@kv.zcu.cz Abstrakt.

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

POROVNÁNÍ MEZI SKUPINAMI

POROVNÁNÍ MEZI SKUPINAMI POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí Odraz a lom rovnné monochromatcké vlny na rovnném rozhraní dvou zotropních prostředí Doplňující předpoklady: prostředí č.1, ze kterého vlna dopadá na rozhraní neabsorbuje (má r r reálný ndex lomu), obě

Více

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211 10..15 Úlohy na hledání etrémů Předpoklady: 1011 Pedagogcká poznámka: Kromě příkladů a není pro studenty problém vypočítat dervace funkcí. Problémem je hlavně nalezení těchto funkčních závslostí, tam postupujeme

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Porovnání GUM a metody Monte Carlo

Porovnání GUM a metody Monte Carlo Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum Zpracování fyzkálních měření Studjní text pro fyzkální praktkum Mlan Červenka, katedra fyzky FEL-ČVUT mlan.cervenka@fel.cvut.cz 3. ledna 03 ObrázeknattulnístraněpocházízknhyogeometraměřeníodJacobaKöbela(460

Více

Metody zvýšení rozlišovací obrazů

Metody zvýšení rozlišovací obrazů XXVI. ASR '21 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 21 Paper 7 Metody zvýšení rozlšovací obrazů BRADÁČ, Frantšek Ing., Ústav výrobních strojů, systémů a robotky, Vysoké učení techncké v

Více

Vkládání pomocí Viterbiho algoritmu

Vkládání pomocí Viterbiho algoritmu Vkládání pomocí Vterbho algortmu Andrew Kozlk KA MFF UK C Vkládání pomocí Vterbho algortmu Cíl: Využít teor konvolučních kódů. Motvace: Vterbho dekodér je soft-decson dekodér. Každému prvku nosče přřadíme

Více

Posuzování výkonnosti projektů a projektového řízení

Posuzování výkonnosti projektů a projektového řízení Posuzování výkonnost projektů a projektového řízení Ing. Jarmla Ircngová Západočeská unverzta v Plzn, Fakulta ekonomcká, Katedra managementu, novací a projektů jrcngo@kp.zcu.cz Abstrakt V současnost je

Více

Neparametrické metody

Neparametrické metody Neparametrcké metody Přestože parametrcké metody zaujímají klíčovou úlohu ve statstcké analýze dat, je možné některé problémy řešt př neparametrckém přístupu. V této přednášce uvedeme neparametrcké odhady

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

DOBA DOZVUKU V MÍSTNOSTI

DOBA DOZVUKU V MÍSTNOSTI DOBA DOZVUKU V MÍSTNOSTI 1. Úvod Po zapnutí zdroje zvuku v místnost trvá jstou krátkou dobu (řádově vteřny až zlomky vteřn), než dojde k ustálení zvukového pole. Často je v takových případech možné skutečné

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

Bořka Leitla Bolometrie na tokamaku GOLEM

Bořka Leitla Bolometrie na tokamaku GOLEM Posudek vedoucího bakalářské práce Bořka Letla Bolometre na tokamaku GOLEM Vedoucí práce: Ing. Vojtěch Svoboda, CSc Bořek Letl vpracoval svoj bakalářskou prác na tokamaku GOLEM, jehož rozvoj je závslý

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody Měření základních materálových charakterstk propustnost řetězového fltru Mgr Radek Melch Př pozorování Slunce pomocí dvojlomných fltrů se většnou používá fltrů pevně naladěných na určtou zajímavou spektrální

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Ivana Lnkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE Abstrakt Příspěvek prezentuje B-splne křvku a Coonsovu, Bézerovu a Fergusonovu kubku jako specální případy

Více

Účinnost spalovacích zařízení

Účinnost spalovacích zařízení Účnnost spalovacích zařízení Účnnost je ukazatelem míry dokonalost transformace energe v zařízení. Jedná se o techncko-ekonomcký parametr. Vyjadřuje poměr mez energí využtou a energí přvedenou do zařízení,

Více

INŽ ENÝ RSKÁ MECHANIKA 2002

INŽ ENÝ RSKÁ MECHANIKA 2002 Ná dní konference s mezná dní účastí INŽ ENÝ RSÁ MECHANIA 00 1. 16. 5. 00, Svratka, Č eská republka PODRITICÝ RŮ ST TRHLINY VE SVAROVÉ M SPOJI OMORY PŘ EHŘÍVÁ U Jan ouš, Ondřej Belak 1 Abstrakt: V důsledku

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

Šroubové kompresory. Řada MSL 2,2-15 kw. Jednoduché a kompletní řešení pro Vaší potřebu stlačeného vzduchu

Šroubové kompresory. Řada MSL 2,2-15 kw. Jednoduché a kompletní řešení pro Vaší potřebu stlačeného vzduchu Šroubové kompresory Řada MSL 2,2-15 kw Jednoduché a kompletní řešení pro Vaší potřebu stlačeného vzduchu CHYTRÉ TECHNICKÉ ŘEŠENÍ Nžší náklady na údržbu a prodloužené servsní ntervaly Velce jednoduchá konstrukce

Více

DUM č. 16 v sadě. 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia

DUM č. 16 v sadě. 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia projekt GML Brno Docens DUM č. 16 v sadě 11. Fy-2 Učební materály do fyzky pro 3. ročník gymnáza Autor: Vojtěch Beneš Datum: 3.3.214 Ročník: 2A, 2C Anotace DUMu: Nestaconární magnetcké pole Materály jsou

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy STROJNICKÁ PŘÍRUČKA čá s t 4, d íl 3, k a p to la 3, str. 1 díl 3, Statka 4/3.3 ROVNOVÁHA TĚLESA Procházejí-l po uvolnění tělesa všechny síly jedním bodem v rovně (tvoří rovnný svazek sl), jsou vždy splněny

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ RAKC POPTÁVKY DOMÁCNOTÍ PO NRGII NA ZVYŠOVÁNÍ NRGTICKÉ ÚČINNOTI: TORI A JJÍ DŮLDKY PRO KONTRUKCI MPIRICKY OVĚŘITLNÝCH MODLŮ tela Rubínová, Unverzta Karlova v Praze, Centrum pro otázky žvotního prostředí,

Více

Numerická integrace konstitučních vztahů

Numerická integrace konstitučních vztahů Numercká ntegrace konsttučních vztahů Po výočtu neznámých deformačních uzlových arametrů v každé terac NR metody je nutné stanovt naětí a deformace na rvcích. Nař. Jednoosý tah (vz obr. vravo) Pro nterval

Více

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více