Neustálené proudění v otevřených korytech. K141 HY3V (VM) Neustálené proudění v korytech 0
|
|
- Radomír Bárta
- před 6 lety
- Počet zobrazení:
Transkript
1 Neustálené proudění v otevřených kortech K4 HY3V (VM) Neustálené proudění v kortech 0
2 DRUHY PROUDĚNÍ V KORYTECH Přehled: Proudění neustálené ustálené nerovnoměrné rovnoměrné průtok Q f(t,x) Q konst. Q konst. průřezová v f(t,x) v f(x) v konst. rchlost Poznámka vln v kortě neprizmatické korto prizmatické korto Leenda: Q... objemový průtok kortem, v... střední (průřezová) rchlost v příčném profilu korta, t... čas, x... vzdálenost podél délk korta Prizmatické korto: tvar průřezu, drsnost omočeného obvodu a sklon dna konstantní, tj. neměnné po délce korta. K4 HY3V (VM) Neustálené proudění v kortech
3 ŘÍDÍCÍ ROVNICE D POPISU Předpoklad: malé zakřivení proudnic, pomalu se měnící parametr proudění, sklon dna malý, tření jako při rovnoměrném proudění. Pro obdélníkový kanál: V Zákon zachování hmot (rce kontinuit): V 0 Zákon zachování hbnosti: (Bilance sil tíh, tření, tlaku, setrvačnosti) Odvodil de Saint Venant již r. 87. Sstém dvou parciálních diferenciálních rovnic prvního řádu pro dvě neznámé funkce V(x, t) a (x, t). V t V V t i E i 0 K4 HY3V (VM) Neustálené proudění v kortech
4 ŘÍDÍCÍ ROVNICE D POPISU možná zjednodušení pohbové rovnice: V V V ie i0 t KV DIFV DYNV KV kinematická vlna: řešení neumožňuje zahrnout vliv šíření informace proti proudu, proto vhodná spíše pro bstřinné proudění. DIFV difúzní vlna: téměř stejně přesná jako plný tvar, lokální složk zrchlení (člen ) bývají zanedbatelné. Řešení jednodušší než pro DYNV. DYNV dnamická vlna: plný tvar pohbové rovnice. Nelineární nemá analtické řešení. K4 HY3V (VM) Neustálené proudění v kortech 3
5 NUMERICKÉ ŘEŠENÍ Co za nás dělá počítač: Co k tomu potřebuje zadat: -eometrii korta -počáteční podmínku -okrajové podmínk řeší řídící rovnice obvkle metodou sítí. (počítá hloubk a rchlosti v čase a prostoru) K4 HY3V (VM) Neustálené proudění v kortech 4
6 VÝSTUPY ŘEŠENÍ U nás nejpoužívanější software pro D proudění HEC-RAS. Proč? Protože je zadarmo. K4 HY3V (VM) Neustálené proudění v kortech 5
7 METODA CHARAKTERISTIK De Saint Venantov rce: V V 0 t V t V Lineární kombinací lze získat rovnice, které jsou (na rozdíl od původní soustav) navzájem nezávislé a popisují transport nových veličin: transport kladné charakteristik W t W V i E i 0 transport záporné charakteristik W ( V ) W W ( V, ) W, W t W ( V ) ( i0 i E ) ( ) V ( i0 i E ) Jakou rchlostí se charakteristik transportují vzhledem ke břehu? A jakou vzhledem k pohbující se vodě? Při bstřinném proudění platí: V > K4 HY3V (VM) Neustálené proudění v kortech 6
8 RÁZOVÉ VLNY -vznikají při rchle se měnícím proudění -Vzhledem k vodě se pohbují větší rchlostí, než je rchlost šíření charakteristik -lze je chápat jako analoii rázových vln, které vznikají ve vzduchu při překročení rchlosti zvuku (sonický třesk) -na rozdíl od pomalu se měnícího proudění vzniká nespojitost hladin (pohblivý vodní skok) -k popisu nelze použít de Saint Venantov rovnice K4 HY3V (VM) Neustálené proudění v kortech 7
9 RÁZOVÉ VLNY Rchle se měnící neustálené proudění, pohbující se vodní skok. Příbojová vlna šířící se od moře proti proudu řek Petitcodiac river, near Moncton (Ba of Fund, Canada). K4 HY3V (VM) Neustálené proudění v kortech 8
10 RÁZOVÉ VLNY Rchle se měnící neustálené proudění, pohbující se vodní skok. Příbojová vlna na řece Qiantan River, poblíž Hanzhou v Číně.... viz. též videa na YouTube K4 HY3V (VM) Neustálené proudění v kortech 9
11 RÁZOVÉ VLNY Tp vln : kladná (vede ke zvýšení hloubk) x záporná, přímá (šíří se ve směru proudění) x zpětná. A. VLNA PLNĚNÍ (vlna zdvihu po proudu kladná přímá vlna) - jev: šíří se kortem při náhlém zvětšení průtoku na horním konci úseku, -příklad: otevření stavidla na začátku úseku korta. B. VLNA VZDUTÍ (vlna zdvihu proti proudu kladná zpětná vlna) -jev: šíří se kortem při náhlém zmenšení průtoku na dolním konci úseku, - příklad: uzavření stavidla na konci úseku korta. K4 HY3V (VM) Neustálené proudění v kortech 0
12 RÁZOVÉ VLNY Tp vln : kladná (vede ke zvýšení hloubk) x záporná, přímá (šíří se ve směru proudění) x zpětná. C. VLNA PRÁZDNĚNÍ (vlna poklesu po proudu záporná přímá vlna) - jev: šíří se kortem při náhlém zmenšení průtoku na horním konci úseku, - efekt: prázdnění korta pod stavidlem, -příklad: přivření stavidla na začátku úseku korta. D. VLNA SNÍŽENÍ (vlna poklesu proti proudu záporná zpětná vlna) -jev: šíří se kortem při náhlém zvětšení průtoku na dolním konci úseku, - efekt: prázdnění nadrženého prostoru nad stavidlem, - příklad: otevření stavidla na konci úseku korta. K4 HY3V (VM) Neustálené proudění v kortech
13 VSUVKA: VODNÍ SKOK (USTÁLENÉ PROUDĚNÍ) Teoretický základ popisu : vodní skok prostý (při ustáleném proudění), pro něho zápis rovnice spojitosti a pohbové rovnice. Rovnice spojitosti v S Q v S S fn( ), S fn( ), kde a jsou vzájemné hloubk. Rovnice pohbová (věta o hbnosti): ( m v) Δ Σ F M M Δt vnejsi F S ρ z T F S ρ z T M ρ Q v M ρ Q v βq S S z T βq S S z T obecná rovnice vodního skoku prostého K4 HY3V (VM) Neustálené proudění v kortech
14 VSUVKA: VODNÍ SKOK (USTÁLENÉ PROUDĚNÍ) Teoretický základ popisu : vodní skok prostý (při ustáleném proudění), pro něho zápis rovnice spojitosti a pohbové rovnice. βq S S z T βq S S z T Zjednodušení pro obdélníkový kanál po úpravách: v Fr rovnice vodního skoku prostého pro prizmatický obdélníkový kanál K4 HY3V (VM) Neustálené proudění v kortech 3
15 RÁZOVÉ VLNY Rázová vlna z pohledu pozorovatele stojícího na břehu pohblivý vodní skok neumíme řešit. Jak se bude vlna jevit pozorovateli, který se pohbuje spolu s ní rchlostí C? Jako klasický vodní skok lze použít právě odvozené vztah, ovšem dosadí se transformované rchlosti. K4 HY3V (VM) Neustálené proudění v kortech 4
16 K4 HY3V (VM) Neustálené proudění v kortech 5 Teoretické odvození rovnice pro postupivosti čela vln : použití rovnic pro vodní skok prostý při zavedení relativní rchlosti, kontrolní objem (pozorovatel) se pohbuje s čelem vln (rchlostí c). RÁZOVÉ VLNY VLNA VZDUTÍ (vlna zdvihu proti proudu kladná zpětná vlna) c v Rovnice pohbová v prizmatickém obdélníkovém kanálu Rovnice spojitosti v prizmatickém obdélníkovém kanálu v ( ) c v v v ) ( ) ( c v c v
17 RÁZOVÉ VLNY Teoretické odvození rovnice pro postupivosti čela vln : použití rovnic pro vodní skok prostý při zavedení relativní rchlosti, kontrolní objem (pozorovatel) se pohbuje s čelem vln (rchlostí c). VLNA PLNĚNÍ (vlna zdvihu po proudu kladná přímá vlna) Rovnice spojitosti v prizmatickém obdélníkovém kanálu v Rovnice pohbová v prizmatickém obdélníkovém kanálu v v ( v c ) ( ) c v ( v c) ( v c) K4 HY3V (VM) Neustálené proudění v kortech 6
Vodní skok, tlumení kinetické energie
Fakulta stavební ČVUT v Praze Katedra a hdraulik a hdrologie og Předmět HYV K4 FSv ČVUT Vodní skok, tlumení kinetické energie Řešení průběhu hladin v otevřených kortech Doc. Ing. Aleš Havlík, CSc., Ing.
Základy hydrauliky vodních toků
Základy hydrauliky vodních toků Jan Unucka, 014 Motivace pro začínajícího hydroinformatika Cesta do pravěku Síly ovlivňující proudění 1. Gravitace. Tření 3. Coriolisova síla 4. Vítr 5. Vztlak (rozdíly
Proudění s volnou hladinou (tj. v otevřených korytech)
(tj. v otevřených korytech) TYPY OTEVŘENÝCH KORYT PŘÍRODNÍ přirozená a upravená KORYTA - přirozená: nepravidelného geometrického průřezu - upravená: zhruba pravidel. průřezu (upravené většinou jen břehy,
(režimy proudění, průběh hladin) Proudění s volnou hladinou II
Proudění s volnou hladinou (režimy proudění, průběh hladin) PROUDĚNÍ KRITICKÉ, ŘÍČNÍ A BYSTŘINNÉ Vztah mezi h (resp. y) a v: Ve žlabu za různých sklonů α a konst. Q: α 1 < α < α 3 => G s1 < G s < G s3
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země
Hladinové (rovňové) plochy Plochy, ve kterých je stálý statický tlak. Při posunu po takové ploše je přírůstek tlaku dp = 0. Hladinová plocha musí být všude kolmá ke směru výsledného zrychlení. Tlak v kapalině,
Vodní skok, tlumení kinetické energie Řešení průběhu hladin v otevřených korytech
Fakulta stavební ČVUT v Praze Katedra draulik a droloie Předmět HYV K4 FSv ČVUT Vodní skok, tlumení kinetické enerie Řešení průběu ladin v otevřenýc kortec Doc. In. Aleš Havlík, CSc., In. Tomáš Picek PD.
Průtoky. Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem za delší čas (den, měsíc, rok)
PRŮTOKY Průtoky Průtok Q (m 3 /s, l/s) objem vody, který proteče daným průtočným V profilem za jednotku doby (s) Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
Tlumení energie 7. PŘEDNÁŠKA. BS053 Rybníky a účelové nádrže
Tlumení energie 7. PŘEDNÁŠKA BS053 Rybníky a účelové nádrže Tlumení energie Rozdělení podle způsobu vývarové (vodní skok, dimenzování) bezvývarové (umělá drsnost koryta) průběžná niveleta (max. 0,5 m převýšení)
(Aplikace pro mosty, propustky) K141 HYAR Hydraulika objektů na vodních tocích
Hydraulika objektů na vodních tocích (Aplikace pro mosty, propustky) 0 Mostní pole provádějící vodní tok pod komunikací (při povodni v srpnu 2002) 14. století hydraulicky špatný návrh úzká pole, široké
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
4. VYTVÁŘENÍ KORYTA RELIÉFU. Vnější síly: pohyb ledovců + tekoucí voda vytváření SEKUNDÁRNÍHO RELIÉFU: VZNIK POVODÍ. Práce vody v tocích: 3.
4. VYTVÁŘENÍ KORYTA Vnitřní horotvorné síly: vulkanické + seismické vytváření PRIMÁRNÍHO ZEMSKÉHO RELIÉFU Vnější síly: pohyb ledovců + tekoucí voda vytváření SEKUNDÁRNÍHO RELIÉFU: VZNIK POVODÍ Práce vody
6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 2.část
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 2.část JEZ CACOVICE - NÁVRH RYBÍHO PŘECHODU A VODÁCKÉ PROPUSTI SO 18.3.2 - TECHNICKÁ ZPRÁVA 1.1. NÁVRH UMÍSTĚNÍ RYBÍHO PŘECHODU...
BR 52 Proudění v systémech říčních koryt
BR 52 Proudění v systémech říčních koryt Přednášející: Ing. Hana Uhmannová, CSc., doc. Ing. Jan Jandora, Ph.D. VUT Brno, Fakulta stavební, Ústav vodních staveb 1 Přednáška Úvod do problematiky Obsah: 1.
HYDRAULICKÉ JEVY NA JEZECH
HYDRAULICKÉ JEVY NA JEZECH Doc. Ing. Aleš Havlík, CSc. ČVUT v Praze, Fakulta stavební Katedra hydrauliky a hydrologie 1. REŽIMY PROUDĚNÍ S VOLNOU HLADINOU Proudění říční, kritické a bystřinné 2. PŘEPADY
MRATÍNSKÝ POTOK ELIMINACE POVODŇOVÝCH PRŮTOKŮ PŘÍRODĚ BLÍZKÝM ZPŮSOBEM
Úsek 08 (staničení 2706-2847 m) Stávající úsek, opevněný betonovými panely, je částečně ve vzdutí dvou stupňů ve dně. Horní stupeň slouží k odběru vody do cukrovarského rybníka. Dolní stupeň, viz foto,
K141 HY3V (VM) Neustálené proudění v potrubích
Neustálené roudění v tlakových otrubích K4 HY3 (M) Neustálené roudění v otrubích 0 ÚOD Ustálené roudění ouze rostorové změny Neustálené roudění nejen rostorové, ale i časové změny vznik ři jakýchkoliv
HYDROTECHNICKÝ VÝPOČET
Výstavba PZS Chrást u Plzně - Stupno v km 17,588, 17,904 a 18,397 SO 5.01.2 Rekonstrukce přejezdová konstrukce v km 17,904 Část objektu: Propustek v km 17,902 Hydrotechnický výpočet HYDROTECHNICKÝ VÝPOČET
141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hdraulik a hdrologie (K141) Přednáškové slid předmětu 141 (Hdraulika) verze: 9/28 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů složených
Stanovení záplavového území řeky Úslavy v úseku Koterov Šťáhlavy
D H I a. s. 6 / 2 0 1 4 Stanovení záplavového území řeky Úslavy v úseku Koterov Šťáhlavy OBSAH: 1 Úvod... 2 1.1 Cíle studie... 2 1.2 Popis zájmové oblasti... 2 2 Datové podklady... 2 2.1 Topografická data...
Výpočet stlačitelného proudění metodou konečných objemů
Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
PUDIS a.s., Nad Vodovodem 2/3258, Praha 10 tel.: , fax: ,
Tento projekt je spolufinancován z Evropského fondu pro regionální rozvoj prostřednictvím Euroregionu NISA EVROPSKÁ UNIE "PŘEKRAČUJEME HRANICE" MĚSTO ŽELEZNÝ BROD Náměstí 3. května 1, PSČ 468 22, IČ 00262633
1141 HYA (Hydraulika)
ČVUT Praze, akulta staební katedra hydrauliky a hydrologie (K4) Přednáškoé slidy předmětu 4 HYA (Hydraulika) erze: 09/008 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pd souborů složených
Hydraulika podzemních vod
Hdraulika podzemníc vod Proudění podzemní vod Přenos tlaku v ornině Terzagi (195) analýza napětí v ornině σ σ e p σ σ e p - celkové napětí v ornině geostatický tlak - efektivní napětí tlak mezi zrn ornin
Proudění vody v potrubí. Martin Šimek
Proudění vody v potrubí Martin Šimek Zadání problému Umělá vlna pro surfing Dosavadní řešení pomocí čerpadel Sestrojení modelu pro přívod vody z řeky Vyčíslení tohoto modelu Zhodnocení výsledků Návrh systému
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Projekt 1 malé vodní nádrže 4. cvičení
4. cvičení Václav David K143 e-mail: vaclav.david@fsv.cvut.cz Konzultační hodiny: viz web Obsah cvičení Účel spodní výpusti Součásti spodní výpusti Typy objektů spodní výpusti Umístění spodní výpusti Napojení
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
I. Morfologie toku s ohledem na bilanci transportu plavenin a splavenin
I. Morfologie toku s ohledem na bilanci transportu plavenin a splavenin I.1. Tvar koryta a jeho vývoj Klima, tvar krajiny, vegetace a geologie povodí určují morfologii vodního toku (neovlivněného antropologickou
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta stavební. Katedra hydrotechniky DIPLOMOVÁ PRÁCE. Simulace dynamických jevů v nádrži Kamýk
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra hydrotechniky DIPLOMOVÁ PRÁCE Simulace dynamických jevů v nádrži Kamýk Dynamic Waves Simulation in the Kamýk Reservoir Vedoucí diplomové práce:
dq/dt+da/dt=q a rovnice o zachování hybnosti dq/dx+d(ß*q*q/a)/dx+gady/dx+gai(f)=gai(b)
2. Hydrotechnické výpočty 2.1.Popis modelu Výpočet průběhu hladin jsme provedli výpočtem nerovnoměrného neustáleného proudění pomocí programu MIKE11, vyvinutým Dánským hydraulickým institutem pro výpočet
Skalár (z lat. scala, stupnice) je veličina (teplota, hustota, energie, objem, čas,...), jejíž hodnota. v y. j k i v z. v x
Základní rovnice pro metodu CFD V kapitole budou odvoen ákladní rovnice v diferenciální formě užívané při numerickém řešení toku tekutin. Vžd předpokládáme spojité prostřední, tj. platnost kontinua. Nejdříve
IDENTIFIKAČNÍ ÚDAJE AKCE...
Obsah 1. IDENTIFIKAČNÍ ÚDAJE AKCE... 2 2. ÚVOD... 2 3. POUŽITÉ PODKLADY... 2 3.1 Geodetické podklady... 2 3.2 Hydrologické podklady... 2 3.2.1 Odhad drsnosti... 3 3.3 Popis lokality... 3 3.4 Popis stavebních
TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
2. Hydrotechnické výpočty
2. Hydrotechnické výpočty 2.1.Popis modelu Výpočet průběhu hladin jsme provedli výpočtem nerovnoměrného neustáleného proudění pomocí programu MIKE11, vyvinutým Dánským hydraulickým institutem pro výpočet
Hydraulika a hydrologie
Hydraulika a hydrologie Cvičení č. 1 - HYDROSTATIKA Příklad č. 1.1 Jaký je tlak v hloubce (5+P) m pod hladinou moře (Obr. 1.1), je-li průměrná hustota mořské vody ρ mv = 1042 kg/m 3 (měrná tíha je tedy
SMA2 Přednáška 09 Desky
SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer
Adonix, spol s r.o. Bratranců Veverkových Pardubice Akce: Labe, Opatovice nad Labem, posouzení dopravních staveb
Adoni, spol s r.o. Bratranců Veverkových 645 530 0 Pardbice Akce: Labe, Opatovice nad Labem, posození dopravních staveb Investor: Povodí Labe, státní podnik Hradec Králové červen 015 výškový sstém Bpv
, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu
7..03, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Úvod do předmětu strana Mechanika tekutin Zabývá se podmínkami rovnováhy kapalin a plynu v klidu, zákonitostmi pohybu kapalin a plynu,
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 2.část
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 2.část KOMÍNSKÝ JEZ - NÁVRH RYBÍHO PŘECHODU A VODÁCKÉ PROPUSTI SO 03.3.2 - TECHNICKÁ ZPRÁVA 1.1. NÁVRH UMÍSTĚNÍ RYBÍHO PŘECHODU...
ZLATÝ POTOK (ř. km 0,000 12,267) stanovení záplavového území Technická zpráva
ZLATÝ POTOK (ř. km 0,000 12,267) stanovení záplavového území Technická zpráva Povodí Labe, státní podnik Hradec Králové srpen 2016 výškový systém Bpv OBSAH 1. Úvod... 3 1.1. Podklady... 3 1.2. Popis zájmového
dq/dt+da/dt=q a rovnice o zachování hybnosti dq/dx+d(ß*q*q/a)/dx+gady/dx+gai(f)=gai(b)
2. Hydrotechnické výpočty 2.1.Popis modelu Výpočet průběhu hladin jsme provedli výpočtem nerovnoměrného neustáleného proudění pomocí programu MIKE11, vyvinutým Dánským hydraulickým institutem pro výpočet
dq/dt+da/dt=q a rovnice o zachování hybnosti dq/dx+d(ß*q*q/a)/dx+gady/dx+gai(f)=gai(b)
2. Hydrotechnické výpočty 2.1.Popis modelu Výpočet průběhu hladin jsme provedli výpočtem nerovnoměrného neustáleného proudění pomocí programu MIKE11, vyvinutým Dánským hydraulickým institutem pro výpočet
Stabilizace Galerkin Least Squares pro
Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav
P R OGR AM P R O NÁVRH VÝVAR U
P R OGR AM P R O NÁVRH VÝVAR U Program Vývar je jednoduchá aplikace řešící problematiku vodního skoku. Zahrnuje interaktivní zadávání dat pro určení dimenze vývaru, tzn. jeho hloubku a délku. V aplikaci
koryta ČVUT v Praze, Katedra hydrauliky a hydrologie 1 Jan Krupička jan.krupicka fsv.cvut.czcz
ČVUT v Praze, Katedra hydrauliky a hydrologie 1 Návrh a výpočet složen eného koryta Jan Krupička jan.krupicka.krupicka@fsv.cvut. fsv.cvut.czcz ČVUT v Praze, Katedra hydrauliky a hydrologie 2 Obsah NÁVRH
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
VODNÍ HOSPODÁŘSTVÍ KRAJINY ZÁSADY REVITALIZACÍ DROBNÝCH VODNÍCH TOKŮ
VODNÍ HOSPODÁŘSTVÍ KRAJINY ZÁSADY REVITALIZACÍ DROBNÝCH VODNÍCH TOKŮ ZÁSADY REVITALIZACÍ DROBNÝCH VODNÍCH TOKŮ LITERATURA Králová, H.: Řeky pro život: Revitalizace řek a péče o nivní biotopy. Veronica,
4. cvičení- vzorové příklady
Příklad 4. cvičení- vzorové příklady ypočítejte kapacitu násosky a posuďte její funkci. Násoska převádí vodu z horní nádrže, která má hladinu na kótě H A = m, přes zvýšené místo a voda vytéká na konci
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek
Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra biotechnických úprav krajiny
Vypracoval: Pavel Šefl ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra biotechnických úprav krajiny Předmět: Ročník / obor Příloha č. Malé vodní toky 3. ročník BEKOL Název přílohy:
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
Pružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
Soustava hmotných bodů
Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět
1.1 Shrnutí základních poznatků
1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i
y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla
Přednáška č. 5: Jednorozměrné ustálené vedení tepla
Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace
Výsledný tvar obecné B rce je ve žlutém rámečku
Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné
KMA/MM. Luděk Sequens V Plzni 2009 Povodně
KMA/MM Luděk Sequens V Plzni 2009 Povodně 1 Obsah Obsah... 2 1. Úvod... 3 2. Rozdělení povodní... 3 2.1. Sezónní rozdělení... 3 2.2. Průtokové vs. ledové povodně... 4 2.2.1. Ledové povodně... 5 3. Vznik
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Přednáška č.7 Ing. Sylvie Riederová
Přednáška č.7 Ing. Sylvie Riederová 1. Aplikace klasifikace nákladů na změnu objemu výroby 2. Modelování nákladů Podstata modelování nákladů Nákladové funkce Stanovení parametrů nákladových funkcí Klasifikační
9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
Vodohospodářské stavby BS001 Hydraulika 1/3
CZ..07/..00/5.046 Posílení kvality bakalářskéo studijnío proramu Stavební Inženýrství Vodoospodářské stavby BS00 Hydraulika /3 Fyzikální vlastnosti kapalin, Hydrostatika a plování těles, Hydrodynamika
Teoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
1 Vedení tepla stacionární úloha
1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický
Proudění podzemní vody
Podpovrchová voda krystalická a strukturní voda vázaná fyzikálně-chemicky adsorpční vázaná molekulárními silami na povrchu částic hygroskopická (pevně vázaná) obalová (volně vázaná) volná voda kapilární
Šířka ve dně. Navazující na přilehlé koryto Sklon svahů MRATÍNSKÝ POTOK ELIMINACE POVODŇOVÝCH PRŮTOKŮ PŘÍRODĚ BLÍZKÝM ZPŮSOBEM
Úsek 02 (staničení 459-732 m) V současnosti je koryto zahloubené, napřímené, opevněné ve dně a březích kamennou dlažbou / rovnaninou. Břehy jsou pokryty travním porostem, v horní části úseku se nacházejí
Vodní cesty a plavba Doc. Ing. Aleš Havlík, CSc.
Vodní cesty a plavba Doc. Ing. Aleš Havlík, CSc. Vnitrozemská vodní doprava Výhody : Nejméně energeticky náročná. Velké ložné plochy, velká nosnost. Malý poměr hmotnosti lodi k hmotnosti nákladu. Malý
MATEMATIKA V MEDICÍNĚ
MATEMATIKA V MEDICÍNĚ Tomáš Oberhuber Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Matematika pro život TOMÁŠ OBERHUBER (FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ MATEMATIKA
Diferenciální rovnice kolem nás
Diferenciální rovnice kolem nás Petr Kaplický Den otevřených dveří MFF UK 2012 Praha, 29. 11. 2012 Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 1 / 24 Plán 1 Let Felixe B. 2 Pád (s odporem
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398
Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:
Studie proveditelnosti Protipovod ových opat ení na ece Úhlav v P ešticích
Pöyry Environment a.s. SRPEN 2011 Studie proveditelnosti Protipovod ových opat ení na ece Úhlav v P ešticích D. VODOHOSPODÁ SKÉ EŠENÍ Objednatel: Protipovod ová opat ení na ece Úhlav v P ešticích O B S
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek
OBSAH: SEZNAM OBRÁZKŮ SEZNAM TABULEK
OBSAH: 1 Úvod... 2 1.1 Cíle studie... 2 1.2 Popis zájmové oblasti... 2 2 Datové podklady... 2 2.1 Topografická data... 2 2.2 Hydrologická data... 3 3 Matematický model... 4 3.1 Použitý software... 4 3.2
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1
Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní
Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2
Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
TECHNICKÁ ZAŘÍZENÍ BUDOV 1
TECHNICKÁ ZAŘÍZENÍ BUDOV 1 HYDRAULIKA POTRUBÍ, ZÁSOBOVÁNÍ OBJEKTŮ VODOU, VNITŘNÍ VODOVOD, POTŘEBA VODY Ing. Stanislav Frolík, Ph.D. - katedra technických zařízení budov - 1 Učební texty, legislativa normy:
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA
Revitalizace povodí. Co je revitalizace?
Revitalizace povodí Co je revitalizace? Revitalizace: obnova, oživení něčeho nefunkčního popř. zchátralého; uvádění něčeho opět do takového stavu, aby to přinášelo užitek (Všeobecná encyklopedie Diderot,
HYDROLOGICKÉ VYHODNOCENÍ PRŮBĚHU POVODNÍ
HYDROLOGICKÉ VYHODNOCENÍ PRŮBĚHU POVODNÍ Příloha - Vhodnocení kulminačních průtoků povodně z května 00 s vužitím hdraulických výpočetních postupů Zhotovitel: Spolupracovníci: Doc. Ing. Aleš Havlík, CSc.
Hydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
Výpustná zařízení technická řešení, výpočty
Výpustná zařízení technická řešení, výpočty VRÁNA Karel, DAVID Václav Katedra hydromeliorací a krajinného inženýrství Fakulta stavební ČVUT vrana@fsv.cvut.cz vaclav.david@fsv.cvut.cz Účel výpustných zařízení