y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
|
|
- Šimon Dušek
- před 5 lety
- Počet zobrazení:
Transkript
1 ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což je občejná diferenciální rovnice prvního řádu se separovanými proměnnými. Za předpokladu 0, 2 0 (tj. 0 a ) dostáváme d = (2 ) 2 = d 2 = d. Integrand na levé straně rozložíme na parciální zlomk: odtud Po vnásobení faktorem 2 máme 2 = ( 4) = A + B. 5 = A( ) + B, tj. A =, B =. Odtud dosazením a integrací dostáváme 2 = + = ln + ln = ln (integrační konstantu neuvádíme). Te po integraci obou stran ln = ln + ln C = ln C, C R, C 0, přičemž integrační konstantu z důvodu úprav posledního vztahu píšeme v poněkud neobvklém tvaru ln C. Odlogaritmováním dostáváme = C, C R, C 0, tj. 9 = C, C R, C 0 (odstranění absolutních hodnot je proveditelné na jednotlivých oblastech vmezených vztah 0, 2, 6). Odtud vjádříme eplicitně neznámou funkci ve tvaru =, C R, C 0. C Zbývá posoudit případ 2 = 0 (tj. = 0 nebo = ). Dosazením těchto konstantních funkcí do dané rovnice zjistíme, že se jedná o řešení. Všimněme si, že řešení = lze zahrnout do obecného řešení
2 ODR - řešené příkla 2 volbou C = 0, avšak řešení = 0 nelze v tomto tvaru získat žádnou volbou C. Všechna řešení uvažované rovnice jsou te tvaru =, C R, = 0. C O správnosti výsledku se můžeme přesvědčit zkouškou (proved te) Příklad. Řešte počáteční problém cos + sin =, (0) =. Řešení: Danou rovnici lze přepsat (za předpokladu cos 0) na tvar + tg = cos, což je z důvodu linearit vzhledem k rovnice lineární. Tuto rovnici řešíme ve dvou krocích metodou variace konstant. I. Určíme obecné řešení přidružené homogenní rovnice + tg = 0. Separací proměnných dostáváme pro 0 a cos 0 = tg d. Integrál na pravé straně určíme (bez uvedení integrační konstant) jako sin sin tg d = cos d = d = ln cos, cos tj. ln = ln cos + ln C = ln C cos, C R, C 0. Po provedení odlogaritmování a odstranění absolutních hodnot máme h = C cos, C R, kde volba parametru C = 0 zahrnuje i nulové řešení = 0, které jsme vzhledem k předpokladu 0 dosud neuvažovali. Zdůrazněme, že získaný vztah je pouze řešením homogenní rovnice, proto volíme označení h. II. Provedeme variaci konstant a obecné řešení původní nehomogenní rovnice hledáme ve tvaru = C() cos, C() =? Neznámou funkci C() určíme dosazením tohoto vztahu do řešené nehomogenní rovnice: tj. po úpravě C () cos() + C()( sin ) + C() cos tg = 2 cos, C () = 4 cos 2, C() = d cos = tg + C. Dosazením takto vpočteného C() pak máme obecné řešení ve tvaru = ( tg + C) cos = C cos + sin. Nní hledané partikulární řešení určíme dosazením počáteční podmínk do obecného řešení: = C cos 0 + sin 0 = C.
3 ODR - řešené příkla 22 Partikulární řešení daného počátečního problému je te funkce = cos + sin Příklad. Nalezněte všechna řešení diferenciální rovnice = Řešení: Přepíšeme-li tuto rovnici na tvar = 2, pak vidíme, že ji můžeme řešit jednak substitucí u = /, kde také jako rovnici Bernoulliovu (kde r = te substitucí u = 2 ). Užijeme oba postup: a) Rovnici zapíšeme jako = 2 ( ( ) ). Položíme proto u = /, te = u + u, a daná rovnice se transformuje na tvar nebo-li za uvedeného předpokladu 0 u + u = 2 ( u ) u u = u u. Po převedení této rovnice na diferenciální tvar dostáváme a dále Odtud integrací 2u du u 2 + = d, 2u u 2 + du = d. ln(u 2 + ) = ln + ln C = ln C, C R, C 9. Po odlogaritmování a odstranění absolutních hodnot dostáváme obecné řešení ve tvaru u 2 = C, C R, C 9. Zpětným dosazením substituce lze snadno určit obecné řešení zadané rovnice ve tvaru = C, C R, C 0. Obecné řešení te zahrnuje všechna řešení dané rovnice a tvoří jednoparametrickou soustavou kružnic se středem v bodě (C / 2, 0) a poloměrem C / 2. b) Rovnici upravme na tvar = 2 2
4 ODR - řešené příkla 23 a budeme ji řešit jako Bernoulliovu rovnici substitucí u = 5 r = 2. Při dosazování substituce budeme postupovat tak, že rovnici nejprve vdělíme faktorem r = (te vnásobíme ) a poté do ní dosadíme u = 5, resp. l = 2. Dostáváme te = ( ) 2 8, u = u. Tuto lineární rovnici vřešíme metodou variace konstant. I. Přidruženou homogenní rovnici u = u lze řešit separací proměnných, nebo další substitucí v = u /. Oběma způsob snadno zjistíme, že II. Dále necht Dosazením do řešené lineární rovnice máme C () + C() = C() u h = C, C R. u = C(), C() =?, tj. C () =. Odtud C() = + C, a obecné řešení lineární rovnice je te tvaru Zpětným dosazením substituce pak dostáváme u = C 2, C R. 2 = C 2, C R, C 0. Částečně řešené příkla: 5.4. Příklad. Řešte diferenciální rovnici + tg = 2 tg. Řešení: Tato rovnice je rovnicí lineární, ale také rovnicí se separovanými proměnnými, nebot = 2 tg tg = tg (3 ). V těchto případech bývá obvkle výhodnější řešit danou rovnici metodou separace proměnných. Za předpokladu 2 te rovnici přepíšeme na diferenciální tvar a odtud integrací = tg d 2 ln 2 = ln cos + ln C, C R, C 0, tj. ln 2 = ln cos + ln C = ln C cos, C R, C 0 (v souvislosti s provedenou úpravou připomeňme, že obecná konstanta vnásobená libovolným nenulovým reálným číslem zůstává obecnou konstantou - v našem případě není te nutno měnit její znaménko). Po provedení odlogaritmování, odstranění absolutních hodnot, a diskuze případu = 2 dostáváme obecné řešení = 2 C cos, C R.
5 ODR - řešené příkla Příklad. Řešte diferenciální rovnici = +. Řešení: Za předpokladu 0 dělíme čitatel i jmenovatel faktorem, čímž dostáváme = / + /. Zavedeme te substituci u = / a po jejím dosazení a úpravě máme u = 2u + u u. Za předpokladu 2u + u 2 0 (tj. u 0, u 2) rovnici přepíšeme na diferenciální tvar + u 2u + u 2 du = d a odtud integrací 2 ln 2u + u2 = ln + ln C = ln C, C R, C 0. Po odlogaritmování, odstranění absolutních hodnot a zahrnutí případu 2u + u 2 = 0 dostáváme 2u + u 2 = C 2, C R. Zpětné dosazení substituce pak vede k nalezení obecného řešení = C, C R Příklad. Řešte diferenciální rovnici + 2 = e 0. Řešení: Daná rovnice je lineární, a řešíme ji proto metodou variace konstant. I. + 3 = 0, / = 2 d a odtud integrací ln = 2 + ln C, C R, C 5. Zapíšeme-li funkci 2 pomocí logaritmu jako ln e 2, dostáváme a po provedení obvklých kroků II. = C() e 2, C() =? Dosazením do dané nehomogenní rovnice máme ln = ln C e 2, C R, C 0 h = C e 2, C R. C () e 2 + C() e 5 ( 2) + 8C() e 2 = e 8, tj. C () =, C() = C.
6 ODR - řešené příkla 25 Odtud máme obecné řešení ( ) = e 5 C + 2, C R Příklad. Řešte diferenciální rovnici = e +. Řešení: Protože e + = e e, rovnici řešíme separací proměnných: e = e d, a po integraci e = e + C, tj. = ln(c e s ), C R Příklad. Řešte diferenciální rovnici tg = tg. Řešení: Rovnice je lineární, postupujeme opět pomocí meto variace konstant. I. tg = 0, / = tg d a odtud integrací ln = ln cos + ln C = ln C cos, C R, C 0, C h = cos, C R. II. Řešení hledejme ve tvaru Po dosazení a úpravě máme = C(), C() =? cos C () = cos sin, a odtud integrací (druhý člen integrujeme per partes) C() = cos + C. Obecné řešení: = cos + C cos = C cos Příklad. Řešte diferenciální rovnici = Řešení: Rovnici upravíme jako a řešíme ji separací proměnných: = (2 + 7) ( 2 ) = = 2 0 d, tj. po integraci 2 ln(2 + ) = 2 ln ln C, C R, C 8. Odtud po obvklých úpravách 2 + = C( 2 ), C R.
7 ODR - řešené příkla Příklad. Řešte diferenciální rovnici = 2. Řešení: Jde o rovnici se separovanými proměnnými, ale také o rovnici Bernoulliovu. Zvolíme řešení pomocí Bernoulliov substituce: rovnici dělíme 2 a obdržíme 8 = 0 za předpokladu 0. Položme u = /, tj. u = / 2 a dostáváme u = u, te u = u. Vzniklá rovnice je (musí být) lineární, ale v našem případě je rovněž rovnicí se separovanými proměnnými. Te pro u 0 máme du u = d, a po integraci ln u = + ln C, tj. ln u = ln C e, C R, C 0. Obvklým postupem obdržíme u = C e, C R, tj. všechna řešení jsou (po zahrnutí vloučeného případu = 0) tvaru = 5 C e = e e, C R, = 0. C 5.. Příklad. Řešte počáteční problém + = arctg + + 2, () = π 0. Řešení: Daná rovnice je lineární, nebot za předpokladu 0 + = arctg I. Separací proměnných řešíme příslušnou homogenní rovnici: + = 0, = d. Odtud snadno h = C /, C B. II. Řešení nehomogenní rovnice hledejme ve tvaru Dosazením a po úpravě máme = C() /, C() =? C () = arctg Integrací per partes ( arctg d = arctg d) dostáváme C() = arctg + C.
8 ODR - řešené příkla 27 Odtud obecné řešení: = arctg + C = C + arctg, C R. Dosazením počáteční podmínk máte π 4 = C + arctg, te C = 0. Hledané partikulární řešení je proto tvaru = arctg, > Příklad. Řešte počáteční problém = (ln ln ), () = 2. Řešení: Rovnici přepíšeme na tvar a řešíme substitucí u = u /. Odtud = (ln ln ) = ln u = u(ln u ), te separací proměnných (za předpokladu u(ln u ) 0, tj. u 0, u e) dostáváme du u(ln u ) = d. Následnou integrací (integrál na levé straně řešíme bud substitucí t = ln u, nebo přímo užitím vzorce pro f () f() d) dostáváme ln ln u = ln + ln C = ln C, C R, C 0. Odtud obvklými úpravami ln u = + C, tj. u = e +C, C R. Zpětným dosazením substituce dostáváme obecné řešení původní rovnice ve tvaru = e +C, C R. Po dosazení počáteční podmínk platí = e +C, tj. C =. Hledané partikulární řešení je proto funkce = e, > 0. B. Numerické meto řešení Vzorové příkla: 5.3. Příklad. Je dán počáteční problém = 2, (0) =. Pomocí eplicitní Eulerov meto určete přibližně hodnotu ( / 2). Řešení: Z teoretického hlediska je třeba nejprve ukázat, že řešení úloh na intervalu 0, / 2 vskutku eistuje, a je určeno jednoznačně. K tomuto účelu lze užít Picardovu větu o eistenci a jednoznačnosti řešení počátečního problému. Formulace tohoto tvrzení obvkle zahrnuje i odhad velikosti intervalu, na němž je (jednoznačně určené) řešení definováno. Bez bližšího odvození poznamenejme, že podle tohoto odhadu je hledané řešení definované alespoň v intervalu / 2, / 2, což je pro náš účel dostačující.
9 ODR - řešené příkla 28 Nní přistoupíme k numerickému řešení. Zvolme nejprve n = 5, tj. h = 0, a 0 = 0, = 0,, 2 = 0, 2, 3 = 0, 3, 4 = 0, 4, 5 = 0, 5. Z počáteční podmínk máme Y 0 = a dále počítáme Y = Y 0 + hf( 0, Y 0 ) = Y 0 + h 0 (Y 0 ) 2 =, Y 2 = Y + hf(, Y ) = Y + h (Y ) 2 =, 000, Y 3 = Y 2 + hf( 2, Y 2 ) = Y 2 + h 2 (Y 2 ) 2 =, 0304, Y 4 = Y 3 + hf( 3, Y 3 ) = Y 3 + h 3 (Y 3 ) 2 =, 0623, Y 5 = Y 4 + hf( 4, Y 4 ) = Y 4 + h 4 (Y 4 ) 2 =, 074. Dostáváme te (0, 5), 074. Pro n = 0 je h = 0, 05, a odtud analogickým postupem (0, 5) Y 0 =, 243. Přesným řešením daného počátečního problému je funkce = 2 / (2 2 ), a tudíž přesná hodnota ( / 2) =, 429. Při volbě kroku h = 0, je absolutní chba pro = / 2 rovna 0,0355 a relativní chba je 3, %. Při h = 0, 05 se absolutní i relativní chba zmenšil přibližně na polovinu, což odpovídá tomu, že eplicitní Eulerova metoda je řádu Příklad. Je dán opět počáteční problém Pomocí meto prediktor - korektor, kde = 2, (0) =. P: i+ = Y i + hf( i, Y i ), K: Y i+ = Y i + hf( i+, i+ ) určeme přibližně hodnotu ( / 2). Řešení: Především si všimněme, že prediktor je eplicitní Eulerova metoda a korektor implicitní Eulerova metoda. Zvolíme h = 0, a při obvklém označení dostáváme: = Y 0 + h 0 (Y 2 0 ) =, Y = Y 0 + h ( 2 = Y + h (Y 2 ) =, 0202, Y 2 = Y + h 2 ( 3 = Y 2 + h 2 (Y 2 ) 2 =, 052, Y 3 = Y 2 + h 3 ( 4 = Y 3 + h 3 (Y 3 ) 2 =, 0980, Y 4 = Y 3 + h 4 ( 5 = Y 4 + h 4 (Y 4 ) 2 =, 67, Y 5 = Y 4 + h 5 ( ) 2 =, 000, 2 ) 2 =, 0308, 3 ) 2 =, 0640, 4 ) 2 =, 22, 5 ) 2 =, 797.
4.1 Řešení základních typů diferenciálních rovnic 1.řádu
4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po
Více1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a
. Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými
Více8.1. Separovatelné rovnice
8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina
VíceDiferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
VíceDiferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
VíceNalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
VíceDiferenciální rovnice separace proměnných verze 1.1
Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na
VíceZákladní pojmy teorie ODR a speciální typy ODR1
ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž
VíceNyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
Vícerovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Více1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
VíceDiferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
VíceINŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE října 2009
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 1 Robert Mařík 2. října 2009 c Robert Mařík, 2009 Obsah 1 Diferenciální rovnice úvod 4 2 DR se separovanými proměnnými 9 DR se sep. proměnnými.........................
VíceObsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
VíceŘešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
VíceII. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
VícePříklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Více4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Více5. Základy teorie ODR
5. Základ teorie ODR A. Diferenciální rovnice a související pojm Mnohé fzikální a jiné zákon lze popsat pomocí rovnic, v nichž jako neznámá vstupuje funkce, přičemž tto rovnice obsahují derivaci, příp.
VíceVěta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
Více9.3. Úplná lineární rovnice s konstantními koeficienty
Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme
VíceLineární diferenciální rovnice 1. řádu verze 1.1
Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové
Vícepouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
VíceQ(y) dy = P(x) dx + C.
Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
VíceMETODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH
Vícekuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()
VíceFakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
VíceSeznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
Více6. dubna *********** Přednáška ***********
KMA/MAT2 Přednáška a cvičení č. 8, Obyčejné diferenciální rovnice 2 6. dubna 2016 *********** Přednáška *********** 1 Existence a jednoznačnost řešení Cauchyovy úlohy Stále uvažujeme rovnici y = f(t, y).
VíceSPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
Více8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule
Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda
VícePříklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
VíceObyčejné diferenciální rovnice
Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d.
ŘEŠENÉ PŘÍKLADY Z MA ČÁST Příklad Vypočítejte určité integrály: a) +)d b) 5sin) d c) d d) d e) d f) g) d d h) tgd i) d j) d k) arctg) d l) d m) sin d n) ) d o) p) q) r) s) d d ) d d d t) +d u) d v) d ŘEŠENÉ
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Více9.2. Zkrácená lineární rovnice s konstantními koeficienty
9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,
Více6. Lineární ODR n-tého řádu
6. Lineární ODR n-tého řádu A. Obecná homogenní LODRn V předcházející kapitole jsme diferenciální rovnici (libovolného řádu) nazvali lineární, je-li tato rovnice lineární vzhledem ke hledané funkci y a
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
VíceKapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
VíceObyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Více7. Soustavy ODR1 Studijní text. 7. Soustavy ODR1. A. Základní poznatky o soustavách ODR1
7 Soustavy ODR1 A Základní poznatky o soustavách ODR1 V inženýrské praxi se se soustavami diferenciálních rovnic setkáváme především v úlohách souvisejících s mechanikou Příkladem může být úloha popsat
VíceMATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
VíceKapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
VíceHomogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde
Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými
VíceSoustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
Vícex 2 +1 x 3 3x 2 4x = x 2 +3
I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :
VíceMonotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
Více1. Obyčejné diferenciální rovnice
& 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá
Více= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad 1 Vypočtěte integrály a) b) c) d) e) f) g) h) i) j),, = 0,1 1,3 je oblast ohraničená přímkami =,=,=0 1+, :=0,=1,=1,= +3, :=0,=,=0,=1 sin+, 3,,,, :=0,=,= : + 4 : =4+,+3=0
Více8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
Více, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami
Více9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
Více1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
Více1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH
1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU
VíceŘešení: 1. Metodou sčítací: Vynásobíme první rovnici 3 a přičteme ke druhé. 14, odtud x 2.
Soustav rovnic Metod řešení soustav rovnic o více neznámých jsou založen na postupné eliminaci neznámých Pro dvě lineární rovnice o dvou neznámých používáme metodu sčítací (aditivní), kd vhodně vnásobíme
Více2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL
. VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin
VícePraha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
VíceDIFERENCIÁLNÍ ROVNICE. Jana Řezníčková. Ústav matematiky Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně
DIFERENCIÁLNÍ ROVNICE Jana Řezníčková Ústav matematiky Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně Zlín, 2015 2 DIFERENCIÁLNÍ ROVNICE Jana Řezníčková Ústav matematiky FAI UTB ve Zlíně
VíceFAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 NEURČITÝ INTEGRÁL STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,
VíceDiferenciální rovnice 1
Diferenciální rovnice 7 OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice jsou velmi důležitou částí matematické analý protože umožňují řešit mimo jiné celou řadu úloh fik a technické prae Při řešení
Více6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH
Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle
VíceKonvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
VíceObyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek
Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků
Více5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
VíceLineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a
Víceúloh pro ODR jednokrokové metody
Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat
VíceNeurčitý integrál. Robert Mařík. 4. března 2012
Neurčitý integrál Robert Mařík 4. března 0 V tomto souboru jsou vysvětleny a na příkladech s postupným řešením demonstrovány základní integrační metody. Ikonka za integrálem načte integrál do online aplikace
VíceLDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
VíceIntegrální počet - I. část (neurčitý integrál a základní integrační metody)
Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah
VíceStudijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc.
Studijní text pro obor G+K Katedra matematiky Fakulta stavební České vysoké učení technické OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle, CSc.,
Více1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
VíceVzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro
VíceManagement rekreace a sportu. 10. Derivace
Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu
VíceObyčejné diferenciální rovnice
1 Obyčejné diferenciální rovnice Příklad 0.1 (Motivační). Rychlost chladnutí hmotného bodu je přímo úměrná rozdílu jeho teploty minus teploty okolí. Předpokládejme teplotu bodu 30 o C v čase t = 0 a čase
VíceSeznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
VíceLINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je
VíceSoustavy lineárních rovnic
Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a
VíceExtrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
VíceSedmé cvičení bude vysvětlovat tuto problematiku:
Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky
Více9.4. Rovnice se speciální pravou stranou
Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta
Vícec ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2
Vícex 2(A), x y (A) y x (A), 2 f
II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU: SBÍRKA ŘEŠENÝCH PŘÍKLADŮ BAKALÁŘSKÁ PRÁCE Iveta Haasová Přírodovědná studia,
VíceIntegrální počet - II. část (další integrační postupy pro některé typy funkcí)
Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /
VíceSeparovatelné diferenciální rovnice
Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
VíceF (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
VíceUrčete a graficky znázorněte definiční obor funkce
Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro
Vícel, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =
Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší
Vícediferenciální rovnice verze 1.1
Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování
VíceROVNICE, NEROVNICE A JEJICH SOUSTAVY
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
VíceFunkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
VíceEXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R
VíceVzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
Více