22. Mechanické a elektromagnetické kmity
|
|
- Dušan Soukup
- před 9 lety
- Počet zobrazení:
Transkript
1 . Mechanicé a eletroagneticé ity. Mechanicé ity Oscilátor tleso, teré je schoné itat, (itání zsobuje síla ružnosti, nebo tíhová síla, i itání se eriodicy ní otenciální energie oscilátoru v energii ineticou a naoa). Pojy související s itavý ohybe: - oažitá výchyla y - alituda výchyly y - rychlost v - zrychlení a - rajní oloha v /s, y y, a ax. - rovnovážná oloha v - ax., y, a s - - doba itu erioda (doba, za terou ejde oscilátor z jedné rajní olohy do druhé a zt) - doba yvu t - frevence f (oet it za asovou jednotu), [f] s - Hz - úhlová frevence π ω πf, [ ω ] s - A. Kineatia haronicého itavého ohybu: v ω y a y M: ω ϕ ωt (fáze it. ohybu) a a sinϕ a - a sinωt a - ω y A: (rovnovážná oloha) B: (rajní oloha) ϕ π ϕ (-zdrazuje oanou orientaci výchyly y a vetoru a ) v cosϕ v v cosωt v ω y cosωt v y y sin y y sin π y ax. a ω y s a ω y ax. π v ωy cos ω y ax. v ω y cos s
2 Haronicý itavý ohyb je taový ohyb, u terého zrychlení je ío úrné oažité výchylce a vetor zrychlení suje vždy do rovnovážné olohy (je oan orientovaný než výchyla) graf závislosti oažité výchyly y na ase t je sinusoida áze itavého ohybu: ϕ - oátení fáze (odovídá úhlu, terý á osán rvodi oscilátoru v ase t s ) oud oscilátor nerochází v ase t s rovnovážnou olohou latí: y y sin( ω t + ϕ ) a y ω sin( ωt + ϕ ) v ω y cos( ωt + ϕ ) raficé znázornní haron. it. ohybu: ) asový diagra - graf y f (t) ) fázorový diagra (fázor ~ vetor) Sládání itavých ohyb:. IZOCHRONNÍ... y y sin( ω t + ϕ) y y sin( ω t + ϕ ) - stejná, f - stejná, ω - stejná a) asový diagra: b) fázorový diagra: Pro aždý asový oaži je oažitá výchyla výsledného ohybu rovna algebraicéu soutu dílích oažitých výchyle. ýsledný ohyb je haronicý a jeho erioda a frevence je stejná jao u ohyb sládaných. y y sin( ω t + ϕ ), de y y + y. NIZOCHRONNÍ složité na.
3 B. Dynaia haronicého itavého ohybu: leso o hotnosti zavšené na ružin o tuhosti : N N g l + g ( l + y) y a Haronicé itání echanicého oscilátoru je zsobeno silou, jejíž veliost je ío úrná výchylce y a á v aždé oažiu sr do rovnovážné olohy: y, de je tuhost ružiny, terá je charateristicou vlastností ružiny oscilátoru, [ ] N lastní itání oscilátoru itání echanicého oscilátoru, i nž je oscilátoru dodaná energie jen v oátení oažiu a dále robíhá eriodicá ena závisí ouze na araetrech oscilátoru je vždy tluené Mateaticé yvadlo: erioda vlastních it ružinového oscilátoru: frevence vlastních it ružinového oscilátoru: erioda vlastních it yvadla: frevence vlastních it yvadla: f π f π π l g π g l nezáleží na hotnosti zavšeného tlesa
4 C. nergie haronicého itavého ohybu: - ZZ: Pi haron. it. ohybu dochází en v a naoa a to ta, že celový souet obou energií je v aždé oažiu onstantní. C + C y Chcee-li, aby oscilátor ital netluen, usíe dodávat energii. Oscilátor netluených it rezonátor. Psobení vnjší eriodicé síly na oscilátor vzniá nucené itání oscilátoru. Jeho erioda odovídá eriod vnjšího sobení na oscilátor. Alituda oscilátoru je i aždé frevenci itání jiná. Nejvtší alitudu á i rezonanci. Rezonance jev rudého zvýšení alitudy výchyly rezonátoru v oažiu, dy se frevence dodáve energie shodne s frevencí vlastních it rezonátoru. Užití rezonance: - zesilování it zesílení zvuu hudebních nástroj (rezonanní síy) v eletroausticých zaízeních - ladní anál (rozhlas, televize) ω ω rezonance atro se - šodlivý vliv rezonance stroje v továrn: stroje odlahy že roadnout rozitání autoobilu vlive nerovnosti vozovy ed oste velitel velí rot zrušit ro Potlaení nežádoucí rezonance: - zna frevence vlastního itání - dolnní echanizu tluii it - zvtšení tení echanizu
5 . letroagneticé ity letroagneticý oscilátor eletricý obvod, terý itá a je zdroje stídavého natí otebné frevence (nejjednodušší je oscilaní obvod tvoen cívou o indunosti L a ondenzátore o aacit C) záladní rve ro velé nožství zaízení (na. ro sdlovací techniu, souást aždého vysílae) eriodicy euje energii eletricého ole v energii agneticého ole a naoa (ouze v alé, oezené rostoru oscilátoru v raxi je oteba dostat el od zdroje e sotebii) v raxi dochází e ztrátá energie elg. ity jsou tluené Pro zísání netluených it je nezbytné dodávat v ravidelných intervalech energii (nabíjet ondenzátor ze zdroje stídavého natí), oužívají se tou další eletronicé obvody celé zaízení se nazývá generátor netlueného itání. Nucené itání elg. oscilátoru ity, terýi je dodána energie ω - nitelná frevence vlastní ity oscilaního obvodu: π LC f π LC využití sdlovací ω LC technia 3. Analogie ezi echanicý a elg. oscilátore analogicé veliiny: ech. elg. v y el g L I Q C U
22. Mechanické a elektromagnetické kmity
. Mechanicé a eletromagneticé mity. Mechanicé mity Mechanicé mitání je jev, při terém se periodicy mění fyziální veličiny popisující mitavý pohyb. Oscilátor těleso, teré je schopné mitat, (mitání způsobuje
FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m
Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it
MECHANICKÉ KMITÁNÍ NETLUMENÉ
MECHANICKÉ KMITÁNÍ NETLUMENÉ Kitání je PERIODICKÝ pohyb hotného bodu (tělesa). Pohybuje se z jedné rajní polohy KP do druhé rajní polohy KP a zpět. Jaýoliv itající objet se nazývá OSCILÁTOR. A je aplituda
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
3.1.8 Přeměny energie v mechanickém oscilátoru
3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci
e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016
e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu
3.1.6 Dynamika kmitavého pohybu, závaží na pružině
3..6 Dynaia itavého pohybu, závaží na pružině Předpolady: 303 Pedagogicá poznáa: Na příští hodinu by si všichni ěli do dvojice přinést etrový prováze (nebo silnější nit) a stopy. Poůcy: pružina, stojan,
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
= T = 2π ω = 2π 12 s. =0,52s. =1,9Hz.
XIII Mechanicé itání Příad 1 Těeso itá haronicy s periodou 0,80 s, jeho apituda je 5,0 c a počátečnífáze nuová Napište rovnici itavého pohybu /y = 0,05 sin, 5πt) / Stručné řešení: Patí T = 0,8 s = ω =
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
Obr.1 Princip Magnetoelektrické soustavy
rincipy měřicích soustav: 1. Magnetoeletricá (depreszý) 2. Eletrodynamicá 3. Induční 4. Feromagneticá 1.ANALOGOVÉ MĚŘICÍ ŘÍSTROJE Magnetoeletricá soustava: Založena na působení sil v magneticém poli permanentního
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A
MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující
DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO
DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
23. Mechanické vlnní. Postupné vlnní:
3. Mechanické vlnní Mechanické vlnní je dj, pi které ástice pružného prostedí kitají kole svých rovnovážných poloh a tento kitavý pohyb se penáší postupuje) od jedné ástice k druhé vlnní že vzniknout pouze
Transformátory. Mění napětí, frekvence zůstává
Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0
Kmitání. tuhost pružiny, kmitání vlastní netlumené a tlumené, řazení pružin, ohybové kmitání. asi 1,5 hodiny
Kitání Dynaia I,. přednáša Obsah přednášy : tuhost pružiny, itání vlastní netluené a tluené, řazení pružin, ohybové itání Doba studia : asi,5 hodiny íl přednášy : seznáit studenty se záladníi záonitosti
Mechanické kmitání (oscilace)
Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje
Mechanické kmitání a vlnění
Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický
je amplituda indukovaného dipólového momentu s frekvencí ω
Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové
Příklady kmitavých pohybů. Mechanické kmitání (oscilace)
Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje
10 Lineární kmitání 10.1 Úvod do kmitání bodů a těles
159 1-Lineární itání 1 Lineární itání 1.1 Úvod do itání bodů a těles Reálná tělesa se terýi se setáváe v technicé praxi nejsou doonale tuhá, ale naopa více či éně pružná. Proto reálná tělesa popř. soustavy
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
1.7.4. Skládání kmitů
.7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát
do jednotkového prostorového úhlu ve směru svírajícím úhel ϑ s osou dipólu je dán vztahem (1) a c je rychlost světla.
Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové
2.6.6 Sytá pára. Předpoklady: 2604
.6.6 Sytá ára Předolady: 604 Oaování: aaliny se vyařují za aždé teloty. Nejrychlejší částice uniají z aaliny a stává se z nich ára. Do isy nalijee vodu voda se ostuně vyařuje naonec zůstane isa rázdná,
Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice
Střídavý proud Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Vznik střídavého proudu Výroba střídavého napětí:. indukční - při otáčivé pohybu cívky v agnetické poli
SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE
SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series B The Jan Perner Transport Faculty 5 (1999) ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE Jiří
Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo
TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).
Návrh vysokofrekvenčních linkových transformátorů
inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových
CVIČENÍ Z ELEKTRONIKY
Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
Ž ň ů ň ů ů Í Ň Č Á ů ů ů ň Ž Ž Ž ň ň ň Ž ů Í Š Ž ů ó ů ď ů ů ň ď ů ň ň Í ď Í ů Ž Í Í Ž ň ů ů ů ů Í ň Á Íť ň ů ň Ž ů ť ň Ó Ó ň ů ň ň Í ň Í ň ů ů ň ň Ž ň ň ĚŽÍ Í Í Ž Ž Í ó Ž Š ď Š Č Ž Ž Ž Ž ó Ž Ž ÍŽ ď ď
Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění
Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální
Digitální učební materiál
Číso projeu Název projeu Číso a název šabon íčové aivi Digiání učební aeriá CZ..7/.5./3.8 Zvainění výu prosřednicví ICT III/ Inovace a zvainění výu prosřednicví ICT Příjece podpor Gnáziu, Jevíčo, A. K.
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáša 02 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Náhodné veličiny Záladní definice Nechť je dán pravděpodobnostní prostor
ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK
Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon,
IV. Zatížení stavebních konstrukcí rázem
Jiří Máca - atedra echaniy - B35 - tel. 435 45 aca@fsv.cvt.cz 1. Klasicá teorie ráz. Nedoonale pržný ráz - sostava s 1 SV 3. Doonale nepržný ráz - sostava s 1 SV 4. Sostavy s více stpni volnosti 5. Přílady
FYZIKA 2. ROČNÍK. Příklady na obvody střídavého proudu. A1. Určete induktanci cívky o indukčnosti 500 mh v obvodu střídavého proudu o frekvenci 50 Hz.
FYZKA. OČNÍK Příklady na obvody střídavého proudu A. rčete induktanci cívky o indukčnosti 500 H v obvodu střídavého proudu o frekvenci 50 Hz. = 500 0 3 H =?. = ω = π f = 57 Ω ívka á induktanci o velikosti
3.1.3 Rychlost a zrychlení harmonického pohybu
3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf
DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory
DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory. Datum (období) vytvoření:
MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování
2 HODINY. ? Na kolik trojúhelník Ti úhlopíka rozdlí AC lichobžník ABCD? Na dva trojúhelníky ABC, ACD
K O N S T R U K E L I H O B Ž N Í K U 2 HOINY Než istouíš samotným onstrucím, zoauj si nejdíve vše, co víš o lichobžnících co to vlastn lichobžní je, záladní druhy lichobžní a jejich vlastnosti. ále si
KLASICKÉ EXPERIMENTY Z MECHANIKY S NEKLASICKÝM MĚŘENÍM Zdeněk BOCHNÍČEK
Moderní trendy v říravě učitelů fyziy 8 KLASICKÉ EXPERIMENTY Z MECHANIKY S NEKLASICKÝM MĚŘENÍM Zdeně BOCHNÍČEK Abstrat V řísěvu jsou uázány řílady využití eletronicého ěření ve fyziální vzdělávání. První
FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
3.1.2 Harmonický pohyb
3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických
zpracování signálů - Fourierova transformace, FFT Frekvenční
Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier (768-830) Zálady experimentální mechaniy Frevenční analýza Proč se frevenční analýza
Praktikum I Mechanika a molekulová fyzika
Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:
ení na modelu vedení nn (Distribuce Elektrické Energie - BDEE)
FAKULTA ELEKTROTECHNIKY A KOMUNIKANÍCH TECHNOLOGIÍ VYSOKÉ UENÍ TECHNICKÉ V BRN ení na modelu vedení nn (Dstrbuce Elektrcké Energe - BDEE) Autor textu: Ing. Martn Paar, Ph.D. Ing. Jan Varmuža Kvten 2013
7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno
7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY MĚŘENÍ HMOTNOSTNÍCH PARAMETRŮ VOZIDEL
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ÚSTAV SOUDNÍHO INŽENÝRSTVÍ INSTITUTE OF FORENSIC ENGINEERING MĚŘENÍ HMOTNOSTNÍCH PARAMETRŮ VOZIDEL MEASUREMENT OF THE WEIGHT PARAMETERS OF VEHICLES
Příklady k přednášce 1. Úvod
Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 08 9-6-8 Kyvadlo řízené momentem Atomatické řízení - Kybernetika a robotika Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ M ro moment setrvačnosti
Příklady k přednášce 1. Úvod. Michael Šebek Automatické řízení 2019
Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 09 08.0.09 Kyvadlo řízené momentem Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ = M ro moment setrvačnosti J = ml = M Flsinϕ c = M mgl sinϕ
9.7. Vybrané aplikace
Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž
Harmonický pohyb tělesa na pružině
EVROPSKÝ SOCIÁLNÍ FOND Harmonický pohyb tělesa na pružině PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky Posílení vazby teoretických
Kmitání. Obsah přednášky : tuhost pružiny, kmitání vlastní netlumené a tlumené, řazení pružin, ohybové kmitání vynucené kmitání
Kitání Obsah přednášy : tuhost pružiny, itání vlastní netluené a tluené, řazení pružin, ohybové itání vynucené itání Kitání S itavý pohybe se setáváe doslova na aždé rou. Koná jej struna hudebního nástroje,
LEMOVÁNÍ I ZADÁNÍ: VUT - FSI, ÚST Odbor technologie tváení kov a plast
Cviení. Jméno/skupina Speciální technologie tváení ZADÁNÍ: Vypoítejte energosilové parametry vyskytující se pi tváení souástí z plechu metodou lemování. Pro tváení souástí byl v pípad lemování otvor použit
Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou:
Funční měniče. Zadání: A. Na předloženém aproximačním funčním měniči s operačním zesilovačem realizujícím funci danou tabulou: proveďte: U / V / V a) pomocí oscilosopu měnič nastavte b) změřte na něm jeho
Optické vlastnosti látek
Opticé vlastnosti láte Isaac Newton 64 77 Jan Marcus Marci z Kronlandu 595 677 Světlo je eletromagneticé vlnění James Cler Maxwell 83 879 Maxwellovy rovnice E, B B E, t B j E t Energie eletromagneticých
MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 6. 2013 Název zpracovaného celku: MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Kmitavý pohyb Je periodický pohyb
SVRKA. 1. Výpoet velikosti šroubu. Zadáno: - pítlaná síla F = 1000 N. Voleno: vyberte jednu z navržených variant a zdvodnte pro
SVRKA Navrhnte rozmry hlavních ástí svrky. o obrázku zakreslete tyy namáhání jednotlivých souástí svrky, která vznikají vlivem zatžující síly F. Provete rozbor úlohy. Šroub je namáhán v zatíženém stavu
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
7.3.9 Směrnicový tvar rovnice přímky
7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:
Základy elektrotechniky
Základy elektrotechniky 3. přednáška Řešení obvodů napájených haronický napětí v ustálené stavu ZÁKADNÍ POJMY Časový průběh haronického napětí: kde: U u U. sin( t ϕ ) - axiální hodnota [V] - úhlový kitočet
Fyzikální praktikum č.: 1
Datum: 5.5.2005 Fyziální pratium č.: 1 ypracoval: Tomáš Henych Název: Studium činnosti fotonásobiče Úol: 1. Stanovte závislost oeficientu seundární emise na napětí mezi dynodami. yneste do grafu závislost
8.6 Dynamika kmitavého pohybu, pružinový oscilátor
8.6 Dynamika kmitavého pohybu, pružinový oscilátor a) dynamika zkoumá příčiny pohybu b) velikost síly vyvolávající harmonický kmitavý pohyb F = ma = mω 2 y pohybová rovnice (II. N. z. a = ω 2 y m sin ωt
Základy elektrotechniky
Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný
Příloha: Elektrická práce, příkon, výkon. Příklad: 2 varianta: Př. 2 var: BEZ CHYBY
ax = 20 A 0 = 1800 W 0 = 1200 W 0 = 20 W 0 = 1650 W =? A Je-li spotřebič o příonu připojen napětí, pochází jí poud =, neboť =. Spotřebiče jsou připojeny e zdoji paalelně. oud potéající jističe bude tedy
1 stupeň volnosti vynucené kmitání. Iva Petríková
Kmitání mechnicých soustv 1 stueň volnosti vynucené mitání Iv Petríová Ktedr mechniy, ružnosti evnosti Obsh Soustv s jedním stuněm volnosti vynucené mitání Vynucené mitání netlumené Vynucené mitání tlumené
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Kmity a mechanické vlnění. neperiodický periodický
rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost
Mocnost bodu ke kružnici
3..0 ocnost bodu e ružnici Předpolady: 309 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p,. Průsečíy sečny p,. Změř potřebné vzdálenosti a spočti
6 5 = 0, = 0, = 0, = 0, 0032
III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii
Konstrukční úlohy metodická řada pro konstrukci trojúhelníku Irena Budínová Pedagogická fakulta MU
Konstruční úlohy metodicá řada ro onstruci trojúhelníu Irena udínová Pedagogicá faulta MU irena.budinova@seznam.cz Konstruční úlohy tvoří jednu z důležitých součástí geometrie, neboť obsahují mnoho rozvíjejících
Viz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice.
5.1 Stavová rovnice 5.1.1 Stavová rovnice ideálního plynu Stavová rovnice pro sěs ideálních plynů 5.1.2 Stavová rovnice reálného plynu Stavové rovnice se dvěa onstantai Viriální rovnice Stavové rovnice
7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů
Mocnost bodu ke kružnici
3.. ocnost bodu e ružnici Předpolady: 03009 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p s ružnicí označ A, B. Průsečíy sečny p s ružnicí označ
ž ú Ď ň ň ú Á É ž Ý Ě É ň Ě É É ž Ť Ť Ť ú Ň ŤŤ Ť ó Á ú ú Ť ň ú ň ž É Š Š ž ó ó Ť É Ť Ě Ť ň Ťň Ť ž ňž Ť Ó Ť ú ž Ť ú ž Ť ó ž ž Ť Ť ž Ě Š ú ž ž ň Č ž ž ž ž Ť Ť Ť Č Ň Á Ť Ý ú Ť ž ň ž Ť Ý Ť Ť ž ň Ťň Š ž ú ž
1.5.6 Zákon zachování mechanické energie I
56 Záon zacoání mecanicé energie I Předolady: 505 Oaoání: Síla ůsobící na dráze oná ráci W = Fs cosα Předmět, terý se oybuje ryclostí má ineticou energii E = m Předmět, terý se nacází e ýšce nad ladinou
Geometrická optika. Omezení paprskových svazků v optické soustavě OII. C aperturní. clona C C 1. η 3. σ k. π π π p p
Geometricá otia Omezení arsových svazů v oticé soustavě erturní clona - omezuje nejvíce svaze arsů z osového bodu ředmětu Vstuní uila π - je obrazem aerturní clony vytvořeným částí O I Výstuní uila π -
Rezonanční jevy na LC oscilátoru a závaží na pružině
Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na
Modelování a simulace regulátorů a čidel
Modeloání a simulace regulátorů a čidel. Modeloání a simulace PI regulátoru Přenos PI regulátoru je yjádřen následujícím ztahem F( p) = ( + p ) p V Simulinu je tento blo obsažen nihoně prů. Bohužel použití
Derivace goniometrických funkcí
Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí
Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky
Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící
16.1 KMITÁNÍ 16.2 HARMONICKÝ POHYB 410 KAPITOLA 16 KMITY
16 Kmity Stalo se to v roce 1989, v dobï, dy se v oolì San Francisa p ipravovalo zah jenì t etì Ë sti SvÏtov ch her. Oblast byla zasaûena seizmic mi vlnami ze 100 m vzd lenèho ohnisa zemït esenì poblìû
Podívejte se na časový průběh harmonického napětí
Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být
Regulátor NQR pro nelineární oscilátor s analýzou stability
Rulátor NQR ro liárí osilátor s aalýzou stability Pavl Stibaur Mihal Valáš Abstrat: V řísěvu j stručě shruta a řdvší aliováa todoloi ávrhu liárího zětovazbího stavového rulátoru NQR a bhar liárího osilátoru
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
Elektromechanický oscilátor
- 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou
VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze
1. Úol měření Úolem měření na rotorové (Müllerově) odparce je sestavit energeticou a látovou bilanci celého zařízení a stanovit součinitele prostupu tepla odpary a ondenzátoru brýdových par.. Popis zařízení
KMS cvičení 6. Ondřej Marek
KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m
KMITÁNÍ MECHANICKÉHO OSCILÁTORU
KMITÁNÍ MECHANICKÉHO OSCILÁTORU 1. Periodický pohb, kineaika haronického kiání pohb příočarý, po kružnici, a a zpě vibrace, kiání, osciace kiání ůže bý nepravidené, se ae budee zabýva jen pravidený kiání,
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Název: Dynamická měření tuhosti pružiny a torzní tuhosti nylonového vlákna
Název: Dynamicá měření tuhosti pružiny a torzní tuhosti nylonového vlána Autor: Doc. RNDr. Milan Rojo, CSc. Název šoly: Gymnázium Jana Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: fyzia,