Modelování a simulace regulátorů a čidel

Rozměr: px
Začít zobrazení ze stránky:

Download "Modelování a simulace regulátorů a čidel"

Transkript

1 Modeloání a simulace regulátorů a čidel. Modeloání a simulace PI regulátoru Přenos PI regulátoru je yjádřen následujícím ztahem F( p) = ( + p ) p V Simulinu je tento blo obsažen nihoně prů. Bohužel použití PI regulátorů obodech eletronicých systémů je spojeno drtié ětšině apliací s tím, že regulátor pracuje určitých pásmech na omezení. Protože nestačí pouze omezit ýstupní signál (nitřní integrace by poračoala dále, což by mělo negatiní li na přechodné děje např. při eentuelní změně znaména žádané hodnoty), nelze na tyto apliace standardní blo PI regulátoru z nihony použít. Na obr. je znázorněno možné řešení, dy spolu s omezením ýstupu je proedeno omezení i integrační složy a to tím způsobem, že oamžiu omezení ýstupu celého regulátoru dojde přepnutí stupu integrátoru na nulu, což způsobí, že na jeho ýstupu bude onstantní hodnota (dojde zastaení integroání) a to až do oamžiu, dy omezení na ýstupu celého regulátoru pomine (při snížení regulační odchyly). in_ in_ Sum /r Constant Switch /s Integrator - Sum f(u) r omezeni out_ Gain Fcn Obr.. Simulační model PI regulátoru Přidáním deriační složy bychom jednoduše dostali PID regulátor. Popsaný model předstauje spojitý regulátor, resp. oamžiy ýpočtu jsou dány eliostí rou ýpočtu Simulinu.. Modeloání a simulace PSD regulátoru ento proporcionálně - sumačně - diferenční regulátor, pracující disrétní oblasti, je analogií PID regulátoru pracujícího oblasti spojité. Vstupní eličina: e... regulační odchyla (žádaná - sutečná hodnota) Výstupní eličina: y... ýstup z regulátoru Parametry: R [-] zesílení regulátoru [ms] zoroací perioda RI [ms]... integrační časoá onstanta regulátoru D [ms]... deriační časoá onstanta regulátoru om... absolutní hodnota symetricého omezení ýstupu ( ladné i záporné polaritě)

2 Poznáma: Vhodným zadáním parametrů můžeme PSD regulátor změnit na P, PS nebo PD regulátor. Činnost PSD regulátoru lze popsat diferenční ronicí (pro obdélníoou integraci) y y e e e D [ ] = = R + ei + ( ) RI i= de e, e - je regulační odchyla -tém a (-)-ém rou Na obr.. je ýojoý diagram blou PSD regulátoru. Jedná se o ideální regulátor s nuloou dobou ýpočtu (ýstup z blou je dispozici čase načtení stupu). Součástí blou je zoroač na stupu a taroač nultého řádu na ýstupu. Algoritmus blou roněž obsahuje omezoač obou polaritách. Poud ýstupní hodnota z blou dosáhne úroně omezení, ýstup se omezí a odpojí se stup do sumační složy regulátoru. Z t = suma = e = t = round t e - = e e = e y ( ) D = R e + e e + suma y om y = om sign(y ) suma = suma + e / RI Obr.. Výojoý diagram PSD regulátoru

3 Uáza simulace PS a PSD regulátoru Simulační model simuloaného PSD, resp. PS regulátoru je na obr. 3. Samotný blo PSD regulátoru odpoídající ýojoému diagramu na obr.. je obsažen e ytořeném m-file. Byla simuloána odeza PS, resp. PSD regulátoru na stupní signál dle obr. 4. Obr. 5. PS regulátor s parametry: R =,5, = ms, RI =5 ms, D = ms, om=. Obr. 6. PSD regulátor s parametry: R =,5, = ms, RI =5 ms, D =5 ms, om=. Obr. 7. PSD regulátor s parametry: R =,5, = ms, RI = ms, D = ms, om=. Cloc.5 r 5 ri Repeating Sequence omezení 5 MALAB Function PSD regulátor fpsd ystup stup PSD o Worspace d Obr. 3. Simulační model PSD regulátoru Obr. 4. Průběh stupního signálu Obr. 5. Odeza PS regulátoru Obr. 6. Odeza PSD regulátoru Obr. 7. Odeza PSD regulátoru (ětší RI, D ) 3

4 ČIDLA Pro běžné simulace obyle nahrazujeme čidla setračným členem s parametry: zesílením a časoou onstantou: F( p) = + p Zesílení je dáno poměrem ýstupního nízoúroňoého signálu e stupní, sutečné hodnotě snímané eličiny (yjádřené e fyziálních jednotách). Časoá onstanta je dána onrétním způsobem snímání dané eličiny (parazitní či filtrační časoá onstanta, li zoroání u číslicoých systémů atd.). Poud chceme model čidla zpřesnit, musíme řešení přistupoat dle sutečné, onrétní situace. V dalším textu je uáza řešení inrementálního čidla s uažoáním sutečného způsobu zoroání signálu. 3. Modeloání a simulace inrementálního čidla Blo slouží zísání informací o poloze a rychlosti, ta ja jsou yhodnoceny z inrementálního čidla. Vstupní eličina: θ m [rad]...mechanicý úhel natočení rotoru Výstupní eličiny: θ mic [rad nebo inr]...signál úměrný mechanicému úhlu natočení na ýstupu z inrementálního čidla Ω mic [rad/s nebo inr/s]...signál úměrný úhloé rychlosti na ýstupu z inrementálního čidla Parametry: I [imp/ot]... počet impulzů inrementálního čidla na otáču. Má-li např. samotné čidlo 4 imp/ot a táto hodnota se dále eletricy násobí čtyřmi, bude I = 496. IC [-]... zesílení blou: poud IC =, pa θ mic [rad], resp. Ω mic [rad/s] poud IC =I /(π), pa θ mic [inr], resp. Ω mic [inr/s] [ms]... zoroací perioda, tj. hodnota, s jaou se zoruje sta čítače. Výstupní signál o úhlu natočení θ mic zísáme tím, že stupní spojitý signál úhlu natočení θ m projde antoačem. ím zísáme údaj θ m o stau čítače (při IC =I /(π) - iz obr. 8. a) čítajícího impulzy z inrementálního čidla. ento signál se pa zoruje se zoroací periodou. Signál ze zoroače je pa taroán taroačem nultého řádu -iz obr. 9. a ýojoý diagram na obr.. Úhloou rychlost Ω mic zísáme dle obr. 9., tj. z atuálního a předchozího stau čítače a eliosti zoroací periody. 4

5 θ m θ m 4 8π/I 3 6π/I 4π/I π/i π 3π 5π 7π I I I I θ m π 3π 5π 7π I I I I θ m a) pro IC =I /(π) b) pro IC = Obr. 8. antoání signálu inrementálním čidle θ m θ m VVAČ VZOROVAČ VAROVAČ θ mic θ θ mic( ) mic( ) V VAROVAČ Ω mic Obr. 9. Vytoření ýstupních signálů z inrementálního čidla Z θ = I m π Iθ round I π t = round t θ - = θ θ = θ θ mic = θ Ω mic = (θ -θ - ) / Obr.. Výojoý diagram pro určení ýstupních eličin z inrementálního čidla 5

6 Poznáma: θ mic a Ω mic jsou modelu globální proměnné, taže až do přepsání zůstáají na půodní hodnotě. Uáza simulace inrementálního čidla Simulační model simuloaného inrementálního čidla je na obr.. Samotný blo inrementálního čidla odpoídající ýojoému diagramu na obr.. je obsažen e ytořeném m-file atioaném blou MALAB function. Byla simuloána odeza inrementálního čidla na stupní signál s onstantním úhloým zrychlením. Průběhy sutečných otáče, resp. polohy jsou na obr.., resp. 4., jím odpoídající signály z inrementálního čidla pa na obr. 3., resp. 5. Parametry inrementálního čidla: I =496 imp/ot, IC =, = ms. Pro zdůraznění charateru působení inrementálního čidla byl zolen elice rátý čas simulace ms. Cloc -zrychlení.5 Product sut. poloha sut. otacy Cloc3 incidlo Gain 496 I ic Cloc MALAB Function Inr. čidlo fincidlo Demux Demux poloha IC otacy IC o Worspace Obr.. Simulační model inrementálního čidla Obr.. Sutečné otáčy Ω m [rad/s] Obr. 3. Otáčy z inr. čidla Ω mic [rad/s] 6

7 Obr. 4. Sutečná poloha θ m [rad] Obr. 5. Poloha z inr. čidla θ mic [rad] 7

Úloha IV.5... vrhač nožů

Úloha IV.5... vrhač nožů Fyziální orespondenční seminář MFF UK Úloha IV5 rhač nožů 4 body; průměr 1,41; řešilo 37 studentů Vrhací nůž opustí ruu e chíli, dy je jeho těžiště e ýšce h a má pouze horizontální složu rychlosti 0 Jaou

Více

Automatizační technika. Regulační obvod. Obsah

Automatizační technika. Regulační obvod. Obsah 30.0.07 Akademický rok 07/08 Připravil: Radim Farana Automatizační technika Regulátory Obsah Analogové konvenční regulátory Regulátor typu PID Regulátor typu PID i Regulátor se dvěma stupni volnosti Omezení

Více

22. Mechanické a elektromagnetické kmity

22. Mechanické a elektromagnetické kmity . Mechanicé a eletromagneticé mity. Mechanicé mity Mechanicé mitání je jev, při terém se periodicy mění fyziální veličiny popisující mitavý pohyb. Oscilátor těleso, teré je schopné mitat, (mitání způsobuje

Více

- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i)

- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i) DSM2 C 8 Problém neratší cesty Ohodnocený orientoaný graf: - Definice: Ohodnoceným orientoaným grafem na množině rcholů V = { 1, 2,, n} nazýáme obet G = V, w, de zobrazení w : V V R { } se nazýá áhoá funce

Více

Obr. 1 Činnost omezovače amplitudy

Obr. 1 Činnost omezovače amplitudy . Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti

Více

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou:

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou: Funční měniče. Zadání: A. Na předloženém aproximačním funčním měniči s operačním zesilovačem realizujícím funci danou tabulou: proveďte: U / V / V a) pomocí oscilosopu měnič nastavte b) změřte na něm jeho

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2018 18-4-18 Automaticé řízení - Kybernetia a robotia Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Student(ka): Písemná část státní závěrečné zkoušky Fyzika (učitelství) červen Bodové hodnocení: Hodnotil(a): Celkové hodnocení testu:

Student(ka): Písemná část státní závěrečné zkoušky Fyzika (učitelství) červen Bodové hodnocení: Hodnotil(a): Celkové hodnocení testu: Spránou odpoěď zaroužujte. Celoé hodnocení testu: Úloha 1 (3 body) Mějme ýtah o hmotnosti m, terý je poěšen na laně přes penou ladu. Za druhý onec lana tahá silou F čloě, terý stojí onom ýtahu. Jeho hmotnost

Více

zpracování signálů - Fourierova transformace, FFT Frekvenční

zpracování signálů - Fourierova transformace, FFT Frekvenční Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier (768-830) Zálady experimentální mechaniy Frevenční analýza Proč se frevenční analýza

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 Technické předměty Ing. Otakar Maixner 1 Spojité

Více

OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU

OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU OPTMALZACE PARAMETRŮ PD REGULÁTORU POMOCÍ GA TOOLBOXU Radomil Matouše, Stanislav Lang Department of Applied Computer Science Faculty of Mechanical Engineering, Brno University of Technology Abstrat Tento

Více

1 U. 33. Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose.

1 U. 33. Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose. 1. V jakých jednotkách se yjadřuje proud ueďte náze a značku jednotky 2. V jakých jednotkách se yjadřuje indukčnost ueďte náze a značku jednotky 3. V jakých jednotkách se yjadřuje kmitočet ueďte náze a

Více

1. Regulace proudu kotvy DC motoru

1. Regulace proudu kotvy DC motoru 1. Regulace proudu kotvy DC motoru Regulace proudu kotvy u stejnosměrných pohonů se užívá ze dvou zásadních důvodů: 1) zajištění časově optimálního průběhu přechodných dějů v regulaci otáček 2) možnost

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2013 22-4-14 Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou rezistorů/apacitorů v analogové řídicím

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

Návrh vysokofrekvenčních linkových transformátorů

Návrh vysokofrekvenčních linkových transformátorů inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových

Více

Modelování polohových servomechanismů v prostředí Matlab / Simulink

Modelování polohových servomechanismů v prostředí Matlab / Simulink Modelování polohových servomechanismů v prostředí Matlab / Simulink Lachman Martin, Mendřický Radomír Elektrické pohony a servomechanismy 27.11.2013 Struktura programu MATLAB-SIMULINK 27.11.2013 2 SIMULINK

Více

Nejjednodušší, tzv. bang-bang regulace

Nejjednodušší, tzv. bang-bang regulace Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo

Více

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series B The Jan Perner Transport Faculty 5 (1999) ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE Jiří

Více

w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3

w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3 Sestate základní energetickou bilanci plnícího agregátu znětoého motoru LIAZ M638 (D/Z=30/50 mm, 4dobý, 6 álec) přeplňoaného turbodmychadlem K 36 377 V - 5. pulzačním praconím režimu. Proozní režim motoru:

Více

VYŠŠÍ ODBORNÁ ŠKOLA A STŘEDNÍ ŠKOLA SLABOPROUDÉ ELEKTROTECHNIKY Novovysočanská 48/280, Praha 9

VYŠŠÍ ODBORNÁ ŠKOLA A STŘEDNÍ ŠKOLA SLABOPROUDÉ ELEKTROTECHNIKY Novovysočanská 48/280, Praha 9 1. Analogové měřicí přístroje Jsou přístroje, teré slouží měření různých eletricých veličin. Např. měření proudu, napětí a výonu. Pro měření těchto veličin nejčastěji používáme tyto soustavy:magnetoeletricá,

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

VLIV VELIKOSTI VZORKOVACÍ PERIODY NA NÁVRH DISKRÉTNÍHO REGULAČNÍHO OBVODU

VLIV VELIKOSTI VZORKOVACÍ PERIODY NA NÁVRH DISKRÉTNÍHO REGULAČNÍHO OBVODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

Nastavení parametrů PID a PSD regulátorů

Nastavení parametrů PID a PSD regulátorů Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána

Více

Regulační obvody se spojitými regulátory

Regulační obvody se spojitými regulátory Regulační obvody se spojitými regulátory U spojitého regulátoru výstupní veličina je spojitou funkcí vstupní veličiny. Regulovaná veličina neustále ovlivňuje akční veličinu. Ta může dosahovat libovolné

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Základní pojmy z regulace a řízení procesů Účel regulace Základní pojmy Dynamické modely regulačních

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;

Více

Nespojité (dvou- a třípolohové ) regulátory

Nespojité (dvou- a třípolohové ) regulátory Nespojité (dvou- a třípolohové ) regulátory Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Faulta mechatroniy a mezioborových inženýrsých studií ZPŮSOBY FREKVENČNÍHO ŘÍZENÍ ASYNCHRONNÍHO OTORU Z HLEDISKA DYNAIKY AUTOREFERÁT DISERTAČNÍ PRÁCE Liberec 6 Ing. Jiří

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Číselné charateristiy náhodných proměnných Charateristiy náhodných proměnných dělíme nejčastěji na charateristiy polohy a variability. Mezi charateristiy polohy se nejčastěji

Více

23 - Diskrétní systémy

23 - Diskrétní systémy 23 - Disrétní systémy Michael Šebe Automaticé řízení 218 29-4-18 Disrétní čas: z podstaty, z měření či z pohonu Otáčející se radar - měření polohy cíle jednou za otáču radaru motivace v počátcích historie

Více

Napětí indukované v jednom závitu

Napětí indukované v jednom závitu Naětí induoané jednom záitu Naětí induoané jednom záitu = τ m z x x l B l B l B u u u sin sin. Naětí induoané jednom záitu Relatiní rchlost záitu ůči oli: de ω relatiní úhloá rchlost ole zhledem cíce f

Více

Fyzikální praktikum č.: 1

Fyzikální praktikum č.: 1 Datum: 5.5.2005 Fyziální pratium č.: 1 ypracoval: Tomáš Henych Název: Studium činnosti fotonásobiče Úol: 1. Stanovte závislost oeficientu seundární emise na napětí mezi dynodami. yneste do grafu závislost

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu

Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu 5. Obvody pro číslicové zpracování signálů 1 Číslicový systém počítač v reálném prostředí Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu Binární data

Více

NAVRHOVÁNÍ A REALIZACE REGULÁTORŮ

NAVRHOVÁNÍ A REALIZACE REGULÁTORŮ Vysoá šola báňsá echnicá univerzita Ostrava NAVRHOVÁNÍ A REALIZACE REGULÁORŮ učební text Štěpán Ožana Ostrava 202 Recenze: prof. Dr. Ing. Miroslav Poorný Ing. Aleš Oujezdsý, Ph.D. Název: Navrhování a realizace

Více

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č. Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

Úvod do Kalmanova filtru

Úvod do Kalmanova filtru Kalmanův filtr = odhadovač stavu systému Úvod do Kalmanova filtru KF dává dohromady model systému a měření. Model systému použije tomu, aby odhadl, ja bude stav vypadat a poté stav porovná se sutečným

Více

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky IDENTIFIKACE A REGULACE SOUSTAVY HUMUSOFT CE 151. Michal Semonský

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky IDENTIFIKACE A REGULACE SOUSTAVY HUMUSOFT CE 151. Michal Semonský UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky IDENTIFIKACE A REGULACE SOUSTAVY HUMUSOFT CE 151 Michal Semonský Bakalářská práce 2016 Prohlášení Prohlašuji: Tuto práci jsem vypracoval samostatně.

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

6 Impedanční přizpůsobení

6 Impedanční přizpůsobení 6 Impedanční přizpůsobení edení optimálně přenáší eletromagneticou energii, je-li zatěžovací impedance rovna charateristicé impedanci. Říáme, že zátěž je impedančně přizpůsobená. e stavu impedančního přizpůsobení

Více

Zásady regulace - proudová, rychlostní, polohová smyčka

Zásady regulace - proudová, rychlostní, polohová smyčka Zásady regulace - proudová, rychlostní, polohová smyčka 23.4.2014 Schématické znázornění Posuvová osa s rotačním motorem 3 regulační smyčky Proudová smyčka Rychlostní smyčka Polohová smyčka Blokové schéma

Více

KZPE semestrální projekt Zadání č. 1

KZPE semestrální projekt Zadání č. 1 Zadání č. 1 Navrhněte schéma zdroje napětí pro vstupní napětí 230V AC, který bude disponovat výstupními větvemi s napětím ±12V a 5V, kde každá větev musí být schopna dodat maximální proud 1A. Zdroj je

Více

K Mechanika styku kolo vozovka

K Mechanika styku kolo vozovka Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li

Více

Regulace. Dvoustavová regulace

Regulace. Dvoustavová regulace Regulace Dvoustavová regulace Využívá se pro méně náročné aplikace. Z principu není možné dosáhnout nenulové regulační odchylky. Měřená hodnota charakteristickým způsobem kmitá kolem žádané hodnoty. Regulační

Více

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005 Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme

Více

Systé my, procesy a signály I - sbírka příkladů

Systé my, procesy a signály I - sbírka příkladů Systé my, procesy a signály I - sbíra příladů Ř EŠEÉPŘ ÍKLADY r 6 Urč ete amplitudu, opaovací periodu, opaovací mitoč et a počáteč ní fázi disrétních harmonicých signálů a) s( ) = cos π, b) s ( ) 6 = π

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Nastavení a ovládání Real-Time Toolboxu (v. 4.0.1) při práci s laboratorními úlohami Návod na cvičení Lukáš Hubka

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Knihovna pro modelování procesů TXV čtvrté vydání září 2012 změny vyhrazeny

Knihovna pro modelování procesů TXV čtvrté vydání září 2012 změny vyhrazeny Knihovna pro modelování procesů TXV 003 44.01 čtvrté vydání září 2012 změny vyhrazeny 1 TXV 003 44.01 Historie změn Datum Vydání Popis změn červen 2008 1 První verze říjen 2008 2 Vygenerována nápověda

Více

DIPLOMOVÁ PRÁCE 2008 Jiří Chuman

DIPLOMOVÁ PRÁCE 2008 Jiří Chuman ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ DIPLOMOVÁ PRÁCE 8 Jiří Chuman ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDÍCÍ TECHNIKY DIPLOMOVÁ PRÁCE Apliace

Více

7 Optická difrakce jako přenos lineárním systémem

7 Optická difrakce jako přenos lineárním systémem 113 7 Opticá difrace jao přenos lineárním systémem 7.1 Impulsová odezva pro Fresnelovu difraci 7. Přenosová funce pro Fresnelovu difraci jao Fourierova transformace impulsové odezvy 7.3 Fourierovsý rozlad

Více

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu 4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační

Více

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování

Více

Obr.1 Princip Magnetoelektrické soustavy

Obr.1 Princip Magnetoelektrické soustavy rincipy měřicích soustav: 1. Magnetoeletricá (depreszý) 2. Eletrodynamicá 3. Induční 4. Feromagneticá 1.ANALOGOVÉ MĚŘICÍ ŘÍSTROJE Magnetoeletricá soustava: Založena na působení sil v magneticém poli permanentního

Více

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček Návrh a simulace zkušební stolice olejového čerpadla Autor: Vedoucí diplomové práce: Martin Krajíček Prof. Michael Valášek 1 Cíle práce 1. Vytvoření specifikace zařízení 2. Návrh zařízení včetně hydraulického

Více

Řízení modelu letadla pomocí PLC Mitsubishi

Řízení modelu letadla pomocí PLC Mitsubishi Řízení modelu letadla pomocí PLC Mitsubishi Jakub Nosek TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Typové příklady zapojení frekvenčních měničů TECO INVERTER 7300 CV. Verze: duben 2006

Typové příklady zapojení frekvenčních měničů TECO INVERTER 7300 CV. Verze: duben 2006 RELL, s.r.o., Centrum 7/, Tel./Fax/Zázn.: + SK-08 Dubnica nad áhom, Mobil: + 90 6 866 prevádzka: Strážovská 97/8, SK-08 ová Dubnica E-mail: prell@prell.sk www.prell.sk Typové příklady zapojení frekvenčních

Více

Difuze v procesu hoření

Difuze v procesu hoření Difuze v procesu hoření Fyziální podmíny hoření Záladní podmínou nepřetržitého průběhu spalovací reace je přívod reagentů (paliva a vzduchu) do ohniště a zároveň odvod produtů hoření (spalin). Pro dosažení

Více

VÝKONNOST, ROBUSTNOST A IMPLEMENTACE REGULÁTORŮ PRO PRŮMYSLOVÉ ŘÍZENÍ

VÝKONNOST, ROBUSTNOST A IMPLEMENTACE REGULÁTORŮ PRO PRŮMYSLOVÉ ŘÍZENÍ VYSOKÉ UČENÍ ECHNICKÉ V BRNĚ BRNO UNIVERSIY OF ECHNOLOGY FAKULA ELEKROECHNIKY A KOMUNIKAČNÍCH ECHNOLOGIÍ ÚSAV AUOMAIZACE A MĚŘICÍ ECHNIKY FACULY OF ELECRICAL ENGINEERING AND COMMUNICAION DEPARMEN OF CONROL

Více

i β i α ERP struktury s asynchronními motory

i β i α ERP struktury s asynchronními motory 1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Porovnání diskrétního spojitého regulátoru při přímovazební a zpětnovazební regulaci

Porovnání diskrétního spojitého regulátoru při přímovazební a zpětnovazební regulaci Porovnání disrétního spojitého regulátoru při přímovazební a zpětnovazební regulaci Comparison of discrete-time and continuous-time controller at feedforward and feedbac control Miroslav Kirchner Baalářsá

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

Pavel Seidl 1, Ivan Taufer 2

Pavel Seidl 1, Ivan Taufer 2 UMĚLÉ NEURONOVÉ SÍTĚ JAKO PROSTŘEDEK PRO MODELOVÁNÍ DYNAMICKÉHO CHOVÁNÍ HYDRAULICKO-PNEUMATICKÉ SOUSTAVY USING OF ARTIFICIAL NEURAL NETWORK FOR THE IDENTIFICATION OF DYNAMIC PROPERTIES OF HYDRAULIC-PNEUMATIC

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Sestavte model real-time řízení v prostředí Matlab Simulink. 1.1. Zapojení motoru Začněte rozběhem motoru. Jeho otáčky se řídí

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Přenosové linky. Obr. 1: Náhradní obvod jednofázového vedení s rozprostřenými parametry

Přenosové linky. Obr. 1: Náhradní obvod jednofázového vedení s rozprostřenými parametry Přenosoé linky Na obr. je znázorněno náhradní schéma jednofázoého edení s rozprostřenými parametry o délce l (R označuje podélný odpor, X podélnou reaktanci, G příčnou konduktanci a B příčnou susceptanci,

Více

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P.

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P. 756 Tečny ružnic II Předpolady: 45, 454 Pedagogicá poznáma: Tato hodina patří na gymnázium mezi početně nejnáročnější Ačoliv jsou přílady optimalizované na co nejmenší početní obtížnost, všichni studenti

Více

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá.

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá. Přílad 1. Řešte v R rovnici x 4x + x 4 0. Výslede vypočtěte s přesností alespoň 0,07. 1) Reálné ořeny rovnice budou ležet v intervalu ( 5,5), protože největší z oeficientů polynomu bez ohledu na znaméno

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

Model helikoptéry H1

Model helikoptéry H1 Model helikoptéry H Jan Nedvěd nedvej@fel.cvut.cz Hodnoty a rovnice, které jsou zde uvedeny, byly naměřeny a odvozeny pro model vrtulníku H umístěného v laboratoři č. 26 v budově Elektrotechnické fakulty

Více

Ě Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í

Více

25.z-6.tr ZS 2015/2016

25.z-6.tr ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí

Více

Mechatronické systémy se spínanými reluktančními motory

Mechatronické systémy se spínanými reluktančními motory Mechatronické systémy se spínanými reluktančními motory 1. SRM Mechatronické systémy se spínaným reluktančním motorem (Switched Reluctance Motor = SRM) mají několik předností ve srovnání s jinými typy

Více

Regulátor tlaku G1/8, NW 2,5. Katalogový list 5.96.002-1CZ 241

Regulátor tlaku G1/8, NW 2,5. Katalogový list 5.96.002-1CZ 241 AP5D00GY0X Technické změny vyhrazeny. eličiny podle DI 9 Údaje o tlaku přetlak Konstrukce membránový regulátor tlaku s PIEZO pilotním signálem a pneumatickou a elektronickou zpětnou vazbou Směr průtoku

Více

2. STAVBA PARTPROGRAMU

2. STAVBA PARTPROGRAMU Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy

Více

Číslicový Voltmetr s ICL7107

Číslicový Voltmetr s ICL7107 České vysoké učení technické v Praze Fakulta elektrotechnická Analogové předzpracování signálu a jeho digitalizace Číslicový Voltmetr s ICL7107 Ondřej Tomíška Petr Česák Petr Ornst 2002/2003 ZADÁNÍ: 1)

Více

Postup stanovení cen za přepravu plynu. + CBK pi. + FG pi. ) + SD pi

Postup stanovení cen za přepravu plynu. + CBK pi. + FG pi. ) + SD pi Postup stanoení cen za přeprau plynu Příloha č. 10 k yhlášce č. 150/2007 Sb. Poolené celkoé tržby PT pi Kč proozoatele přepraní soustay jsou stanoeny ztahem PT pi = PV Upi + NCP pi (PZT pi + FG pi ) +

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

POŽADAVKY NA REGULACI

POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V RAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Základy řízení systémů cvičení 5 OŽADAVKY NA REGULACI etr Hušek (husek@control.felk.cvut.cz) Základními požadavky

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra.

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra. @091 7. Reciproá funce Reciproou funci znáte ze záladní šoly pod označením nepřímá úměra. Definice: Reciproá funce je dána předpisem ( 0 je reálné číslo) f : y R \ {0} A) Definiční obor funce: Je třeba

Více