Příklady k přednášce 26 Nelineární systémy a řízení
|
|
- Milada Urbanová
- před 9 lety
- Počet zobrazení:
Transkript
1 Příklady k přednášce 6 Nelineární systémy a řízení Michael Šebek Automatické řízení
2 DC motor s omezením - odezva na rampu, sinus a součet rampa+sinus nefunguje superpozice ne-věrnost frekvence hůř sleduje Příklad: Nelineární systém s lineární ZV reference vystup po saturaci před saturací
3 Příklad: Nelineární stabilizace integrátoru Porovnejte lineární stabilizaci integrátoru = u } = x u = x s nelineární stabilizací = u x ( ) ( sign x) x u sign x x = = typu spojitý deadbeat Vhodná Lyapunovova funkce je V( x) = x V ( x) = x sign x x < x ( ) IntegratorNonlinear.mdl x x u u 3
4 Příklad: Nelineární stabilizace integrátoru Jiná nelineární stabilizace je IntegratorNonlinear_JF.mdl u = u = = x 3 3 x x 4
5 Příklad: Únik v konečném čase rovnice = x s počátečním stavem má řešení x () = 1 xt () 1 = 1 t Pro srovnání: výstup lineárního systému roste nejvýše exponenciálně, a do nekonečna se dostane až v nekonečném čase 5
6 Příklad: Více izolovaných ekvilibrií Systém je v ekvilibriu, když jsou všechny stavové proměnné konstantní ekvilibrium je dáno konstantními vektory takovými, že e e = f( x, u ) = e e e z této rovnice ho vypočteme, nejčastěji pro LTI má většinou jediný ustálený stav v nule x, u (výjimečně podprostor ustálených stavů pro A singulární) Nelineární systém může mít více izolovaných ekvilibrií = sin( x) = sin( x ) e u e = x = kπ, k =, ± 1, e 6
7 Srovnání: Lineární a nelineární oscilátor Lineární oscilátor x+ x= může oscilovat (když má póly na imaginární ose), ale oscilace jsou nestabilní (póly jsou na mezi stability) a jejich amplituda závisí na počátečních podmínkách Nelineární oscilátor x+ x+ 3( x 1) = jen nelineární systém může mít stabilní oscilace s pevnou amplitudou a frekvencí nezávisle na poč. stavu, tzv. limitní cykly např. van der Polova rovnice (model stahů srdce, nerv. pulsů, stahů svalů v jícnu a střevech, další známé oscilátory: Raleigh: klarinet, housle, Voltera: populace 7
8 Příklad: Špatné vlastnosti lineárního oscilátor LTI může oscilovat (když má póly na imaginární ose), ale jejich amplituda závisí na počátečních podmínkách x+ x= >> sys=ss(1/(s^+1));initial(sys,[1,],), hold >>initial(sys,[,],),initial(sys,[.5,],) a oscilace jsou nestabilní (póly na mezi stability) Uvažme perturbovaný oscilátor x+ ε + (1 + ε ) x= 1 ε 4+ 4ε 1 ε1 λ1, = ± i ε < 4+ 4ε 1 >> eps1=;eps=1;sys=ss(1/(s^+eps1*s+1+eps)); >> initial(sys,[1,],3),hold >> eps1=.1;eps=1; // atd. 8
9 Co ještě může nastat u nelineárních systémů? řešení neexistuje: Např. rovnice, kde 1 x = sign( x), x() = sign( x) = 1 x < nemá žádné řešení (= žádná spojitě dif. fce ji nesplňuje), i když není zas tak nesmyslná: je to zjednodušený model termostatu řešení není jednoznačné: Např. rovnice = x x = 3 3, () 3 je řešitelná každou funkcí ( t a) t a x s libovolným a a = t < a bifurkace (kvalitativní rysy se mění se změnou parametrů) synchronizace (vázané oscilátory se synchronizují) složité dynamické chování (turbulence, chaos, ) 9
10 Příklad: Fázový portrét tlumeného kyvadla Pohybová rovnice v tečném směru ml ϕ = mg sinϕ kl ϕ x = ϕ, x = ϕ Pro stavové proměnné dostaneme nelineární stavový model 1 = x k g = x sin( x1) m l 1 demoph Fázový portrét je na obr. Vidíme např. stabilní a nestabilní ekvilibria 1
11 Příklad: Jiný portrét netlumeného kyvadla mgl 1 g 1 θ = sinθ + Mkot θ = sinθ + J J l ml M kot J = ml θ l r Fg = mg M kot 11
12 Příklad: vliv saturace v aktuátoru Řízení motoru otáčejícím anténou se saturací v aktuátoru = výkonovém zesilovači Zesilovač má zesílení 1, ale také saturaci ± 5 V úhlová rychlost antény v rad/s bez saturace se saturací Efekt saturace v zesilovači je podle očekávání: saturace pouze zmenší skokový signál na vstupu a tomu odpovídá výstup 1
13 Příklad: Vliv pásma necitlivosti pásmo necitlivosti dead zone na výstupní hřídeli vstupní signály v pásmu od - V do + V nemají efekt na výstup (neotočí hřídelí) úhlová výchylka antény v rad bez dead zone s dead zone dobře se projeví při sinusovém vstupním signálu hřídel reaguje teprve až vstupní signál překročí práh necitlivosti výsledkem je menší amplituda 13
14 Příklad: Vliv mrtvého chodu mrtvý chod - backlash vůle v ložiscích šířka pásma necitlivosti.15 úhlová výchylka antény v rad s backlash bez backlash dobře se projeví při sinusovém vstupním signálu po změně směru rotace motoru zůstane výstupní hřídel na chvilku v klidu dokud ložiska nezaberou opačně 14
15 Příklad: Hammersteinův model lidského svalu Lýtkové svaly: triceps surae = Gastrocnemius + Soleus Jejich reakci na elektrickou stimulaci popisuje Hammersteinův empirický model: statická nelinearita + lineární dynamika z experimentální impulsní charakteristiky odvodíme tvar nelinearity sval 1-1 a potom ji vyrušíme f f B r r m( z ) 1 Am ( z ) umělou inverzí a z výsledkem je lineární systém Např. řízení momentu pro stabilizaci postoje paraplegika mt () 15
16 Podivný příklad stability Může být ekvilibrium stabilní asymptoticky, ale ne Lyapunovsky? Uvažme systém s ekvilibriem (,) fázový portrét = x x = xx pro x () = má řešení x1 () x1 () t = 1 tx1 () x() t = speciálně pro x1() = 1, x() = má řešení 1 x1 () t = 1 t x () t = modré trajektorie konvergují k a co zelená? také tato trajektorie asymptoticky konverguje k ekvilibriu, ale podivně: přes v čase t =1 x x 1 x () t 1 t 16
17 Kdy je lineární systém Lyapunovsky stabilní? = Zvláštním případem nelineárního systému je systém lineární: U lineárního systému je stabilita ekvilibria globální = stabilitě systému U lineárního systému asymptotická stabilita implikuje Lyapunovskou Kdy ještě je lineární systém Lyapunovsky stabilní? (není-li asymptoticky) Role vlastních čísel na mezi stability: Jednonásobná vlastní čísla na mezi neporuší Lyapunovskou stabilitu Ale co vícenásobná? Neporuší ji taková vícenásobné vl. č. na mezi, pro která platí, že násobnost vl. č. = počet jeho lineárně nezávislých vlastních vektorů Alternativně: násobnost vl. č. = počet jeho Jordanových bloků Paralelní spojení Kaskáda integrátorů 1 integrátorů je A = není A = Lyapunovsky stabilní Lyapunovsky stabilní Ax 17
18 Příklad: Stabilní a nestabilní ekvilibrium stabilní 3 Uvažme dva nelineární systémy: x= x a = x oba mají ekvilibrium v počátku a oba mají v jeho okolí x = nestabilní stejnou linearizaci x = tj. A =, která má pól v s = všechny pp. jdou k» syms x» sol=dsolve('dx=-x^3','x()=x') sol = [ -1/(*t+1/x^)^(1/)] [ 1/(*t+1/x^)^(1/)] odmocnina z hyperboly posunuté do 1 x znaménko podle znaménka počáteční podmínky jen kladné pp. jdou k» sol=dsolve('dx=-x^','x()=x') sol = 1/(t+1/x)» sol=dsolve('dx=-x^','x()=-1') sol = 1/(t-1) hyperbola posunutá do 1 x tj. pro x < druhá větev! Pozor: lim v nehraje roli 18
19 Jak zkoumat stabilitu - motivace Určeme stabilitu ekvilibria v počátku pro systém. řádu zkoumáním vzdálenosti jeho řešení od počátku d () t = x1() t + x() t sledujme její změnu jako funkce času podél tohoto řešení Nejprve 3 1 = x x1 3 pro systém je = x1 x d ( x1() t + x() t ) dt = x11 + x dosazením rovnic systému dostaneme ( 1 ) 1( 1 ) ( 1 ) ( 1 + ) d x () t + x () t dt = x x x + x x x = x x t dokud nejsou x 1 a x současně, čtverec vzdálenosti klesá k a řešení blíží k nule ekvilibrium je lokálně asymptoticky stabilní Naopak 3 1 = x + x1 3 pro systém je = x1+ x 3 3 d( x1() t + x() t ) dt = x1( x + x1 ) + x( x1+ x 1 = x ) 4 4 = x1 = ( x1 + x) t tedy vzdálenost roste bez omezení ekvilibrium je nestabilní Mimochodem: Oba systémy mají stejnou linearizaci s vlastními čísly ± j stabilitu z ní nepoznáme. 19
20 Příklad: Lyapunova funkce Polohová ZV, Fe5 Ex 9.16, s Ts ZV od polohy + nelinearita nelinearita v aktuátoru (saturace apod.) statická nelinearita s grafem procházejícím 1. a 3. kvadrantem a s rovnicí u = f() e takovou, že e f () e de > a f() e = e= celkový systém je popsán rovnicemi e = x, = x T + f() e T, T > Zkusme Lyapunovovu funkci ve tvaru potenciální + kinetická energie T e V = x + f( σ) dσ Zřejmě je V = x = e= a Zbývá ověřit 3. podmínku r e u y 1 s V > x + e
21 vypočteme derivaci dle trajektorie zřejmě platí V takže počátek je Lyapunovsky stabilní ekvilibrium Dále je zřejmě V vždy klesající pro x a k tomu ještě žádná trajektorie kromě nemá počátek je dokonce globálně asymptoticky stabilní a celý systém je asymptoticky stabilní Příklad - pokračování Zopakujme, že nelinearita musí splňovat tyto podmínky: Simulace: 1 f() e V = Tx + f () e e = Tx x + + f () e x = x T T ( ) x = V( x ) = e f () e de > f() e = e= 1
22 Příklad: Lyapunova fce pro lineární systém Speciálně pro LTI = Ax Najdeme vždy Lyapunovovu funkci ve tvaru kvadratické formy T Uvažme V = x Px, P je reálná symetrická matice Derivace podle trajektorie T T T T T T T V = Px + x P = x A Px + x PAx = x A P + PA x ( ) Položíme T A P + PA = Q, což je tzv. Lyapunova maticová rovnice a dostaneme T V = x Qx Prakticky: Volíme positivně definitní Q, vypočteme P a určíme její definitnost Je-li P pozitivně definitní, pak je systém asymptoticky stabilní Není-li, pak je systém nestabilní
23 Příklad: příprava na kruhové kritérium někdy ZV nelineární systém překreslujme do struktury s nelinearitou ve zpětné vazbě rs () Fs () Gs () Fsrs ()() Fs () Gs () F() sgs () Fsrs ()() 3
24 Příklad: Kruhové kritérium Systém s přenosem 1 Ls () = ss ( + 1)( s+ ) má Nyquistův graf, který leží napravo od svislé přímky v -.8 tomu odpovídá kruh s k 1 = a k = 1/.8 = 1.5 systém je tedy stabilní s nelinearitou typu saturace či dead-zone kde směrnice lineární části < 1.5 jiné vhodné kruhy jsou mezi -.5 a -.5, tj. k 1 =.4 a k = mezi -.5 a -.3, tj. k 1 = a k =
Příklady k přednášce 26 Nelineární systémy a řízení
Příklady k přednášce 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 018 9-6-18 Příklad: Nelineární stabilizace integrátoru Porovnejte lineární stabilizaci integrátoru = u } = x u = x s
26 Nelineární systémy a řízení
6 Nelineární systémy a řízení Michael Šebek Automatické řízení 016 18-5-16 Lineární vs. nelineární Reálné systémy jsou většinou (ne vždy) nelineární, při relativně malých signálech (výchylkách) je často
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
Flexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
14 - Moderní frekvenční metody
4 - Moderní frekvenční metody Michael Šebek Automatické řízení 28 4-4-8 Loop shaping: Chování pro nízké frekvence Tvar OL frekvenční charakteristiky L(s)=KD(s)G(s) určuje chování, ustálenou odchylku a
Nelineární systémy. 1 / Úvod
Nelineární systémy 1 / Úvod Web: http://staff.utia.cas.cz/celikovsky/tea.html Skriptum: S. Čelikovský, Nelineární systémy, ČVUT 2006. Letní semestr 2007 Nelineární systémy 1 S. Čelikovský FEL ČVUT 2 Přehled
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
Vlastnosti členů regulačních obvodů Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost
4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně
Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1)
4 Řešení odezev dynamických systémů ve fázové rovině 4.1 Základní pojmy teorie fázové roviny Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice ( ) x+ F x, x = (4.1) kde F(
Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus
Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Michael Šebek Automatické řízení 018 1-3-18 Automatické řízení - Kybernetika a robotika Pro bod na RL platí (pro nějaké K>0) KL( s) = (k
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
1.7.4. Skládání kmitů
.7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát
25.z-6.tr ZS 2015/2016
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí
Numerické metody a programování. Lekce 7
Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno
Opakování z předmětu TES
Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme
Pozorovatel, Stavová zpětná vazba
Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.
Obsah. Matematika. Obsah. Ljapunovova metoda. Volba LF
Regulace a řízení II Stabilita nelineárních systémů Regulace a řízení II Stabilita nelineárních systémů - str. 1/27 Obsah Obsah Regulace a řízení II Stabilita nelineárních systémů - str. 2/27 Obsah přednášky
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
IX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz @iba.muni.cz,, Kamenice 3, 4. patro, dv.č.44.44 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz XI. STABILITA
MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování
Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou
1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Obr. 1 Činnost omezovače amplitudy
. Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti
Přechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3
atum narození Otázka. Kolik z následujících matic je singulární? 4 A. B... 3 6 4 4 4 3 Otázka. Pro která reálná čísla a jsou vektory u = (,, 3), v = (3, a, ) a w = (,, ) lineárně závislé? A. a = 5 B. a
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
15 - Stavové metody. Michael Šebek Automatické řízení
15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [
Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,
5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu
6 Algebra blokových schémat
6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,
12 - Frekvenční metody
12 - Frekvenční metody Michael Šebek Automatické řízení 218 28-3-18 Proč frekvenční metody? Řídicích systémy se posuzují z časových odezev na určité vstupní signály Naopak v komunikačních systémech častěji
Příklady k přednášce 5 - Identifikace
Příklady k přednášce 5 - Identifikace Michael Šebek Automatické řízení 07 5-3-7 Jiná metoda pro. řád bez nul kmitavý Hledáme ωn Gs () k s + ζωn s + ωn Aplikujeme u( ) us () s. Změříme y( ), A, A, Td y(
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte
Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
teorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
Matematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
Aplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
Předmět A3B31TES/Př. 13
Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 203 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
Nelineární systémy. Fázové portréty Hezké příklady nelineárních systémů
Nelineární systémy Fázové portréty Hezké příklady nelineárních systémů Numerická konstrukce fázových portrétů Pro numerické řešení obyčejných diferenciálních rovnic existuje mnoho programů Můžeme je použít
Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému
Módy systému Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 8 Reference Úvod Řešení stavových rovnic Předpokládejme stavový popis spojitého, respektive diskrétního systému ẋ(t)=ax(t)+bu(t)
Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení
Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 6. 9. Obsah přednášky Literatura Derivace vyšších
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
filtry FIR zpracování signálů FIR & IIR Tomáš Novák
filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Příklady k přednášce 14 - Moderní frekvenční metody
Příklady k přednášce 4 - Moderní frekvenční metody Michael Šebek Automatické řízení 28 4-4-8 Přenosy ve ZV systému Opakování: Přenosy v uzavřené smyčce ys () = Tsrs ()() + Ssds () () Tsns ()() us () =
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Předmět A3B31TES/Př. 7
Předmět A3B31TES/Př. 7 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 7: Bodeho a Nyquistovy frekvenční charakteristiky PS Předmět A3B31TES/Př. 7 březen 2015 1 / 65 Obsah 1 Historie 2
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
Fourierova transformace
Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen
Příklady k přednášce 1. Úvod. Michael Šebek Automatické řízení 2019
Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 09 08.0.09 Kyvadlo řízené momentem Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ = M ro moment setrvačnosti J = ml = M Flsinϕ c = M mgl sinϕ
Příklady k přednášce 13 - Návrh frekvenčními metodami
Příklady k přednášce 13 - Návrh frekvenčními metodami Michael Šebek Automatické řízení 2015 30-3-15 Nastavení šířky pásma uzavřené smyčky Na přechodové frekvenci v otevřené smyčce je (z definice) Hodnota
Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení
Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 3. 9. 6 Obsah přednášky Literatura Derivace
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Teoretický úvod: [%] (1)
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Úvod do analytické mechaniky
Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.
Funkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
Kapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
Operační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost
Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš
Mechanické kmitání Vojtěch Beneš Výstup RVP: Klíčová slova: žák užívá základní kinematické vztahy při řešení problémů a úloh o pohybech mechanické kmitání, kinematika, harmonický oscilátor Sexta Příprava
Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu
Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu Radomír Mendřický Elektrické pohony a servomechanismy 12.8.2015 Obsah prezentace Požadavky na pohony Hlavní parametry pro posuzování
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Přednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
Modelov an ı syst em u a proces
Modelování systémů a procesů 13. března 2012 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +
Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou