Příklady k přednášce 14 - Moderní frekvenční metody

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady k přednášce 14 - Moderní frekvenční metody"

Transkript

1 Příklady k přednášce 4 - Moderní frekvenční metody Michael Šebek Automatické řízení

2 Přenosy ve ZV systému Opakování: Přenosy v uzavřené smyčce ys () = Tsrs ()() + Ssds () () Tsns ()() us () = KsSsrs () ()() KsSsds () () () KsSsns () ()() es () = rs () ys () = Ssrs ()() Ssds () () + Tsns ()() u Ks () Gs () Např. vliv poruchy bude malý pro malé S, vliv šumu pro malé T Současně malé S i T bohužel nelze, neboť Ss () + Ts () = Důkaz Ls () + Ls () Ss () + Ts () = + = = + Ls () + Ls () + Ls () To je vážné omezení pro návrh regulátoru, platí i po dosazení s=jω, a to pro každé jednotlivé ω S( jω) + T( jω) = (pozor jsou to komplexní čísla) Proto je návrh kompromisem: musíme zvolit priority pro jednotlivé frekvenční rozsahy Tomu se říká tvarování frekvenční charakteristiky (loop shaping) 2

3 V klasické verzi loop shaping je tvarování OL frekvenční charakteristiky, přesto že cílem je tvar CL frekvenční charakteristiky (navrhujeme ZV systém) v některých frekvenčních pásmech totiž stačí tvarovat L(jω), protože z tvaru L(jω) tam jednoznačně (a jednoduše) plyne tvar S(jω) a T(jω), přesné vztahy přibližné vztahy obvykle pro nízké frekvence: obvykle pro vysoké frekvence Opakování - Loop Shaping - klasická verze S( jω) = + L( jω) L( jω ) >> L( jω ) << L( jω) T( jω) = + L( jω) S( jω) S( jω ) = L( jω) v okolí přechodové frekvence ωc (tam kde L není ani velké ani malé) ze tvaru L(jω) jednoduše tvar S(jω), T(jω) neplyne, protože záleží také na fázi Např. S(jω), T(jω) mohou mít velké špičky když je L(jω) ~ - T( jω ) = T( jω) = L( jω) 3

4 Bode Gain-Phase Relation Pro stabilní minimálně-fázový systém (= nemá nestabilní póly a nuly) s přenosem Gs () je mezi zesílením G( jω ) a fází G( jω) jednoznačný vztah Přibližně, v log-log Bodeho grafu: Má-li G( jω) po celou dekádu frekvencí konstantní sklon n, pak tam je G( jω) n 9 Tedy pokud má v přechodovém pásmu (kde L( jω) ) amplituda lokálně charakter: žádný přechod není! s n= s n G jω PM 2 s n G j PM Jednoduché pravidlo: Navrhni regulátor tak, aby v přechodové oblasti měla L( jω) sklon I = -, tj. -2dB/dek Michael Šebek ARI = ( ) 9 9 = 2 ( ω) 8

5 Bode Gain-Phase Relation Kdyby to někoho zajímalo, tak přesně je Bodeho vztah mezi zesílením a fází G j ν ( ω) = ln cotgh d 2 ω ν = ln ω π d ln L( je ) ν ν dν Michael Šebek ARI

6 Vztahy mezi PM, M S a M T Např. nebo M = 2 GM 2, PM 29 S M = 2 GM.5, PM 29 T Je tedy jednodušší používat ve specifikacích MS nebo MT Třeba graficky PM [ ] rad PM 2arcsin PM 2arcsin [rad] M M 2 S S [rad] M M 2 T T GM GM + M T GM GM M S M S M S MT M T M S Michael Šebek ARI

7 Příklad váha vstupního signálu jednotková ZV má mít odchylku menší než.5 pro všechny sinusovky s amplitudou o frekvenci pod Hz pomocí váhové frekvenční funkce chování formulujeme tyto požadavky takto: spektrum referenčních signálů je = pro ω 2π 2 protože e b =.5, tak je hledanou funkcí obdélník o výšce /.5 = 2 na daným frekvenčním rozsahem výsledný graf 2 2π

8 Příklad: porovnání s klasickým požadavkem Ustálená odchylka na skok je Klasický požadavek pro ustálenou odchylku na skok můžeme tedy napsat jako e estep,ss = = lim Ss ( ) = S() + lim Ls ( ) s tento požadavek jsme teď rozšířili na frekvenční pásmo jako ω [, ω ] : S( jω) W ( ω) SW s = S() = S() W step,ss eb eb protože je W mimo tento frekvenční rozsah nulové, platí tento vztah vlastně pro všechny frekvence e step,ss ω [, ω ] [, ] S j W ω : ( ω) ( ω) e e b step,ss e b 8

9 Požadavek na chování jako funkce L vztah formulující požadavky na řízení SW ω: S( jω) W( ω) můžeme také přibližně vyjádřit pomocí přenosu otevřené smyčky protože ve frekvenčním rozsahu (malé frekvence), kde požadujeme malou odchylku, je velké zesílení, tak tam přibližně platí potom přibližně S( jω) = + L( jω) L( jω) SW W L L W L( jω) nebo podrobněji [ ] ω, ω : L( jω) W ( ω) Hranice ustálené odchylky ω c 9

10 Příklad: Nyquistův graf neurčité soustavy () s = 2 [ ω j ] G( jω) = G ( jω) + W ( ) ( ω), ( jω), G ( ) 2. 5, jω + W ω = s + jω + db g=2.5/(2.5*s+); w=(4*s+.2)/(*s+);a=2*pi; for m=:/:,for alfa=:a/:a, delta=m*exp(-j*alfa); bode(tf(g)*(+tf(w)*delta),'b'), hold on, end,end bode(tf(g),'r') bode(tf(w),'g') abs g=2.5/((s+)^3); k=rdf();w=rdf(.5); omega=:.:2; ball(,k,w,,j*omega); Michael Šebek ARI-4-22

11 Příklad: Nyquistův a Bodeho graf neurčitého systému systém s multiplikativní neurčitostí 2.5 G( s) =, W 3 2( s) =.5 ( s + ) nominální frekvenční charakteristika G ( jω ) celková frekvenční charakteristika G( jω) = G( jω) [ ] G( jω) = G ( jω) + W ( ω) ( jω), ( jω) 2 g=2.5/((s+)^3); k=rdf();w=rdf(.5); omega=:.:2; ball(g,k,w,,j*omega);

12 Neurčitost způsobená zanedbáním dynamiky Uvažme soustavu s přenosem Gs () = G() s f() s kde G (s) je pevně dáno a budeme s ním počítat jako s nominálním, ale f (s) chceme zanedbat a nahradit multiplikativní neurčitostí. Velikost relativní neurčitosti způsobené zanedbáním f (s) je zřejmě G( jω) G ( jω) l ω = = f jω I ( ) max max ( ) G( s) G ( ) ( jω ) f s Probereme podrobněji 2 případy: zanedbání členu s dopravním zpožděním s f( s) = e θ, θ θ zanedbání členu prvního řádu f( s) = ( τ s+ ), τ τ p Michael Šebek ARI p max max

13 Zanedbané dopravní zpoždění uvažme Gs () = G() s f() s, kde s f( s) = e θ, θ θ max max pro maximální zpoždění je odchylka l ( ) j I ω = e ωθ nakreslena na obrázku (pro θ max = 2) dosahuje pro ω = θmax maxima (=2) pro ω= πθ max pak osciluje mezi a 2 2 pro jiná θ je to podobné je tedy li ( ω) = 2 jωθ max e, ω< πθ ω πθ max max náhrada racionální funkcí řádu a 3 omega=.:.:;plot(omega,abs(-exp(-2*j.*omega))), hold on w=(2*j.*omega)./(j*omega+);plot(omega,abs(w),'r--') w3=((2/2.363)^2.*omega.^2+2*.838*2/2.363*j.*omega+)./... ((2/2.363)^2.*omega.^2+2*.4*2/2.363*j.*omega+); θ πθ max max w2=w.*w3;plot(omega,abs(w2),'g--') 3

14 Zanedbané dopravní zpoždění W ( jω) = W ( jω) 2,2 2, 2 2 s + 2.s+ s +.4s+ s = j ω W 2, ( jω) = 4s +.2 s + s = j ω k θ s e τ s + G () s k, τθ, {2, 2.5,3} 4

15 Zanedbané zpoždění.řádu Uvažme Gs () G() s f() s, kde f( s) = ( τ s+ ), τ τ = p p max Odchylka li ( ω) = ( τ s+ ) max nakreslena na obrázku pro τ max = 2 červeně a pro menší τ modře reprezentujeme ji racionální váhovou funkcí w ( jω) = l ( ω) I I τ maxs wi ( jω ) = = τ s+ τ s+ max max omega=.:.:;taumax=2; for tau=.:.:taumax,plot(omega,abs(-./(+tau.*j.*omega))) hold on,end plot(omega,abs(-./(+taumax.*j.*omega)),'r--') 5

16 Předpokládejme, že je nominální návrh hotov a CL je nominálně stabilní, Nyquistův graf L (s)=d(s)g (s) tedy splňuje Nyquistovo kritérium stability Dále speciálně nominální CL nemá pól na mezi stability + L () s nemá nulu na mezi stability + L ( jω), ω Aby byla CL stabilní i robustně, nesmí mít ani + Ls () nulu na mezi stability, a to pro žádné ω a žádné + L( jω) ω, ( jω) nominální stabilita Podmínka robustní stability - důkaz + L ( jω) + L ( jω) W ( ω) ( jω) ω, ( jω) 2 + L ( jω) + L( jω) + L( jω) W2( ω) ( jω) ω, ( jω) + L ( jω) ( )( ) + L( jω) + T( jω) W2( ω) ( jω) ω, ( jω) ω ( ) + T ( jω) W ( ω) ( jω) ω, ( jω) 2 T ( jω) W ( ω) ( jω) ω, ( jω) 2 T ( jω) W ( ω) < ω 2 6

17 Příklad: VLT ESO European Southern Observatory: čtyři 8 m teleskopy (~6 m), Atacama v Chile přesné nasměrování a potlačení poruchy (vliv větru) metodami robustního řízení projekt katedry, Z. Hurák: popularizační článek AUTOMA /5 video 7

18 Příklad: VLT ESO první málo tlumené módy konstrukce model řádu 6 (metodou konečných prvků) poryvy větru redukce řádu modelu redukovaný model řádu 24 8

19 Sci Fi Aktivní a adaptivní optika plán 25: OWL Teleskop, zrcadlo m, deformovatelné segmenty 5. akčních členů návrh? numerické metody? VIDEO OWL.mpeg 9

20 Příklad: Efekt vodní postele I 4 Pro L( jω ) = s jedním nestabilním pólem ( s+ 2)( s ) je S stabilní ale S( jω ) = ln S( jω) dω = π 2 + s+ s s+ s z Bodeho diagramu vidíme, že dokonce S( jω) > ω to je celkem pochopitelné, protože za stabilizaci musíme něco zaplatit 2 S( jω ) = 2 + s+ s s+ s 2 2

21 Efekt vodní postele I - obecněji Podmínku na relativní řád lze vypustit. Pak platí obecnější vztah n ln ( ) p π S jω dω = π Re p unstable, i lim sl( s) 2 s Michael Šebek ARI

22 Příklad: Efekt vodní postele II. Porovnejme neminimálně fázový přenos s L( jω ) = + s + s s jeho minimálně fázovým protějškem Lm L=(-s)/(+s)^2;Lm=/(+s); ( jω ) = + s t=:2*pi/:2*pi;fill(sin(t)-,cos(t),'r') nyquist(ss(l),'b',ss(lm),'g') S > L vidíme, že další fázové zpoždění způsobené nestabilní nulou vytlačí graf do červeného kruhu L m 22

23 Příklad: Efekt vodní postele II. Uvažme neminimálně fázovou soustavu 2 s () a regulátor k Gs = tj. 2 + s s k 2 s Ls () = s 2 + s Nakreslíme Bodeho diagram citlivosti S pro k =.,.5,. a 2. vidíme, že s rostoucím zesílením roste vliv nestabilní nuly a tím i špička citlivosti až pro k = 2 do nekonečna protože ZV systém přestává být stabilní G=(2-s)/(2+s);L=(./s)*G;L5=(.5/s)*G; L=(./s)*G;L2=(2./s)*G; S=/(+L);S5=/(+L5);S=/(+L);S2=/(+L2); bode(ss(s),ss(s5),ss(s),ss(s2),.:.:5) 23

14 - Moderní frekvenční metody

14 - Moderní frekvenční metody 4 - Moderní frekvenční metody Michael Šebek Automatické řízení 28 4-4-8 Loop shaping: Chování pro nízké frekvence Tvar OL frekvenční charakteristiky L(s)=KD(s)G(s) určuje chování, ustálenou odchylku a

Více

12 - Frekvenční metody

12 - Frekvenční metody 12 - Frekvenční metody Michael Šebek Automatické řízení 218 28-3-18 Proč frekvenční metody? Řídicích systémy se posuzují z časových odezev na určité vstupní signály Naopak v komunikačních systémech častěji

Více

Příklady k přednášce 13 - Návrh frekvenčními metodami

Příklady k přednášce 13 - Návrh frekvenčními metodami Příklady k přednášce 13 - Návrh frekvenčními metodami Michael Šebek Automatické řízení 2015 30-3-15 Nastavení šířky pásma uzavřené smyčky Na přechodové frekvenci v otevřené smyčce je (z definice) Hodnota

Více

13 - Návrh frekvenčními metodami

13 - Návrh frekvenčními metodami 3 - Návrh frekvenčními metodami Michael Šebek Automatické říení 208 28-3-8 Návrh pomocí Bodeho grafu Automatické říení - Kybernetika a robotika Návrh probíhá v OL s konečným cílem lepšit stabilitu a chování

Více

26 Nelineární systémy a řízení

26 Nelineární systémy a řízení 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 016 18-5-16 Lineární vs. nelineární Reálné systémy jsou většinou (ne vždy) nelineární, při relativně malých signálech (výchylkách) je často

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k přednášce 5 - Identifikace Michael Šebek Automatické řízení 07 5-3-7 Jiná metoda pro. řád bez nul kmitavý Hledáme ωn Gs () k s + ζωn s + ωn Aplikujeme u( ) us () s. Změříme y( ), A, A, Td y(

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

Fakulta elektrotechnická. Podpora výuky řídicí techniky

Fakulta elektrotechnická. Podpora výuky řídicí techniky České vysoké učení technické v Praze Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE Podpora výuky řídicí techniky Praha, 28 Autor: Miroslav Pech Prohlášení Prohlašuji, že jsem svou bakalářskou práci vypracoval

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

Předmět A3B31TES/Př. 7

Předmět A3B31TES/Př. 7 Předmět A3B31TES/Př. 7 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 7: Bodeho a Nyquistovy frekvenční charakteristiky PS Předmět A3B31TES/Př. 7 březen 2015 1 / 65 Obsah 1 Historie 2

Více

Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus

Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Michael Šebek Automatické řízení 018 1-3-18 Automatické řízení - Kybernetika a robotika Pro bod na RL platí (pro nějaké K>0) KL( s) = (k

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDICÍ TECHNIKY BAKALÁŘSKÁ PRÁCE. Návrh PID regulátorů frekvenčními metodami

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDICÍ TECHNIKY BAKALÁŘSKÁ PRÁCE. Návrh PID regulátorů frekvenčními metodami ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDICÍ TECHNIKY BAKALÁŘSKÁ PRÁCE Návrh PID regulátorů frekvenčními metodami Praha, 28 Petr BUBLA i Poděkování Dovoluji si na tomto

Více

Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky

Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky Doplňky k přednášce 3 Dikrétní ytémy Dikrétní frekvenční charakteritiky Michael Šebek Automatické řízení 011-1-11 Automatické řízení - Kybernetika a robotika e jω Matematika: Komplexní exponenciála = coω+

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Klasické pokročilé techniky automatického řízení

Klasické pokročilé techniky automatického řízení Klasické pokročilé techniky automatického řízení Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3 atum narození Otázka. Kolik z následujících matic je singulární? 4 A. B... 3 6 4 4 4 3 Otázka. Pro která reálná čísla a jsou vektory u = (,, 3), v = (3, a, ) a w = (,, ) lineárně závislé? A. a = 5 B. a

Více

Zásady regulace - proudová, rychlostní, polohová smyčka

Zásady regulace - proudová, rychlostní, polohová smyčka Zásady regulace - proudová, rychlostní, polohová smyčka 23.4.2014 Schématické znázornění Posuvová osa s rotačním motorem 3 regulační smyčky Proudová smyčka Rychlostní smyčka Polohová smyčka Blokové schéma

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Dvoustupňový Operační Zesilovač

Dvoustupňový Operační Zesilovač Dvoustupňový Operační Zesilovač Blokové schéma: Kompenzační obvody Diferenční stupeň Zesilovací stupeň Výstupní Buffer Proudové reference Neinvertující napěťový zesilovač Invertující napěťový zesilovač

Více

NÁVRH REGULÁTORU PRO VLT TELESKOP POMOCÍ MATLABU 1. Zdeněk Hurák, Michael Šebek

NÁVRH REGULÁTORU PRO VLT TELESKOP POMOCÍ MATLABU 1. Zdeněk Hurák, Michael Šebek NÁVRH REGULÁTORU PRO VLT TELESKOP POMOCÍ MATLABU 1 Zdeněk Hurák, Michael Šebek Ústav teorie informace a automatizace Akademie věd České republiky, Praha e-mail: hurak@utia.cas.cz, msebek@utia.cas.cz Abstrakt:

Více

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt

Více

Statická analýza fyziologických systémů

Statická analýza fyziologických systémů Statická analýza fyziologických systémů Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control Systems Chapter 3 Static Analysis of Physiological Systems Statická analýzy

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy 7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový

Více

15 - Stavové metody. Michael Šebek Automatické řízení

15 - Stavové metody. Michael Šebek Automatické řízení 15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [

Více

27 Systémy s více vstupy a výstupy

27 Systémy s více vstupy a výstupy 7 Systémy s více vstupy a výstupy Mchael Šebek Automatcké řízení 017 4-5-17 Stavový model MIMO systému Automatcké řízení - Kybernetka a robotka Má obecně m vstupů p výstupů x () t = Ax() t + Bu() t y()

Více

Nespojité (dvou- a třípolohové ) regulátory

Nespojité (dvou- a třípolohové ) regulátory Nespojité (dvou- a třípolohové ) regulátory Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Nastavení parametrů PID a PSD regulátorů

Nastavení parametrů PID a PSD regulátorů Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

Ṡystémy a řízení. Helikoptéra Petr Česák

Ṡystémy a řízení. Helikoptéra Petr Česák Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Fakulta elektrotechnická. GUI pro návrh PID regulátorů

Fakulta elektrotechnická. GUI pro návrh PID regulátorů České vysoké učení technické v Praze Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE GUI pro návrh PID regulátorů Praha, 2008 Autor: Karel Jonáš Prohlášení Prohlašuji, že jsem svou bakalářskou práci vypracoval

Více

Fakulta elektrotechnická Katedra řídicí techniky. Optimální nastavení PID regulátoru

Fakulta elektrotechnická Katedra řídicí techniky. Optimální nastavení PID regulátoru České vysoké učení technické v Praze Fakulta elektrotechnická Katedra řídicí techniky BAKALÁŘSKÁ PRÁCE Optimální nastavení PID regulátoru Praha, 2009 Autor: Tomáš Jindra Prohlášení Prohlašuji, že jsem

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722 Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická

Více

Grafické zobrazení frekvenčních závislostí

Grafické zobrazení frekvenčních závislostí Grafické zobrazení frekvenčních závislostí Z minulých přednášek již víme, že impedance / admitance kapacitoru a induktoru jsou frekvenčně závislé Nyní se budeme zabývat tím, jak tato frekvenční závislost

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

filtry FIR zpracování signálů FIR & IIR Tomáš Novák filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 203 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) Oscilátory Oscilátory Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) mechanicky laditelní elektricky laditelné VCO (Voltage Control Oscillator) Typy oscilátorů RC většinou neharmonické

Více

25.z-6.tr ZS 2015/2016

25.z-6.tr ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

23 - Diskrétní systémy

23 - Diskrétní systémy 23 - Disrétní systémy Michael Šebe Automaticé řízení 218 29-4-18 Disrétní čas: z podstaty, z měření či z pohonu Otáčející se radar - měření polohy cíle jednou za otáču radaru motivace v počátcích historie

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDICÍ TECHNIKY Návrh PI a PD regulátorů frekvenčními metodami Bakalářská práce 2008 Radim Procházka ČVUT Praha Abstrakt Cílem této

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

Vypracoval: Miloslav Krajl

Vypracoval: Miloslav Krajl Vypracoval: Miloslav Krajl Kvadraticky optimální (LQ) regulátor, algebraická Riccatiho rovnice a její řešení Kvadraticky optimální sledování Prediktivní a zpětnovazební strategie řízení, prediktivní regulátor

Více

Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu

Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu Radomír Mendřický Elektrické pohony a servomechanismy 12.8.2015 Obsah prezentace Požadavky na pohony Hlavní parametry pro posuzování

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Automatizační technika. Regulační obvod. Obsah

Automatizační technika. Regulační obvod. Obsah 30.0.07 Akademický rok 07/08 Připravil: Radim Farana Automatizační technika Regulátory Obsah Analogové konvenční regulátory Regulátor typu PID Regulátor typu PID i Regulátor se dvěma stupni volnosti Omezení

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava KYBERNETIKA Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava 28 . ÚVOD DO TECHNICKÉ KYBERNETIKY... 5 Co je to kybernetika... 5 Řídicí systémy... 6 Základní pojmy z teorie

Více

Regulační obvody se spojitými regulátory

Regulační obvody se spojitými regulátory Regulační obvody se spojitými regulátory U spojitého regulátoru výstupní veličina je spojitou funkcí vstupní veličiny. Regulovaná veličina neustále ovlivňuje akční veličinu. Ta může dosahovat libovolné

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Číslicové a analogové obvody

Číslicové a analogové obvody Číslicové a analogové obvody doprovodný text k přednáškám předmětu BI-CAO Číslicové a analogové obvody 5. svazek z osmisvazkové edice napsal: Doc. Dr. Ing. Jan Kyncl, katedra elektroenergetiky Fakulta

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

Příklady k přednášce 26 Nelineární systémy a řízení

Příklady k přednášce 26 Nelineární systémy a řízení Příklady k přednášce 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 018 9-6-18 Příklad: Nelineární stabilizace integrátoru Porovnejte lineární stabilizaci integrátoru = u } = x u = x s

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Příklady k přednášce 15 - Stavové metody

Příklady k přednášce 15 - Stavové metody Příklady k přednášce 5 - Stavové metody Michael Šebek Automatické řízení 8 9-4-8 Příklad: Naivní návrh stavové ZV Naivní přístup je schůdný jen pro jednoduché případy, obvykle. řádu Uvažme soustavu (kyvadlo

Více

Fakulta biomedic ınsk eho inˇzen yrstv ı Elektronick e obvody 2016 prof. Ing. Jan Uhl ıˇr, CSc. 1

Fakulta biomedic ınsk eho inˇzen yrstv ı Elektronick e obvody 2016 prof. Ing. Jan Uhl ıˇr, CSc. 1 Fakulta biomedicínského inženýrství Elektronické obvody 2016 prof. Ing. Jan Uhlíř, CSc. 1 Obsah předmětu Elektronické obvody 1. Zesilovače analogových signálů 2. Napájení elektronických systémů 3. Nelineární

Více

Příklady k přednášce 26 Nelineární systémy a řízení

Příklady k přednášce 26 Nelineární systémy a řízení Příklady k přednášce 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 14 18-5-15 DC motor s omezením - odezva na rampu, sinus a součet rampa+sinus nefunguje superpozice ne-věrnost frekvence

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika cvičení č.1 Hluk v vzduchotechnice vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika cvičení č.1 Hluk v vzduchotechnice vypracoval: Adamovský Daniel Úvod Legislativa: Nařízení vlády č. 502/2000 Sb o ochraně zdraví před nepříznivými účinky hluku a vibrací + novelizace nařízením vlády č. 88/2004 Sb. ze dne 21. ledna 2004. a) hlukem je každý zvuk, který

Více

Identifikace systémů

Identifikace systémů Identifikace systémů Přednáška 2 Osvald Modrlák, Lukáš Hubka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory Jiří Petržela všepropustné fázovací články, kmitočtové korektory zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

23 - Diskrétní systémy

23 - Diskrétní systémy 23 - Diskrétní systémy Michael Šebek Automatické řízení 215 3-5-15 Vzorkování dané metodou měření Automatické řízení - Kybernetika a robotika Systémy používající radar měření polohy cíle jednou za otáčku

Více

19 - Polynomiální metody

19 - Polynomiální metody 19 - Polynomiální metody Automatické řízení 218 16-4-18 Opakování - Vlastnosti polynomů Polynomy netvoří těleso, ale okruh - obecně jimi nelze dělit beze zbytku! Proto existuje: dělitel, násobek, společný

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky DIPLOMOVÁ PRÁCE

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky DIPLOMOVÁ PRÁCE Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky DIPLOMOVÁ PRÁCE PLZEŇ 2017 MICHAEL HRABĚ Abstrakt Cílem této diplomové práce je vytvoření metody, podle které bude nalezena množina

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k předášce 5 - Idetifikace Michael Šebek Automatické řízeí 05 3-3-5 Automatické řízeí - Kyberetika a robotika Jiá metoda pro. řád bez ul kmitavý Hledáme ω Gs () k s + ζω s + ω Aplikujeme u( )

Více

Fakulta elektrotechnická Katedra řídicí techniky. Metody návrhu adaptivních PID regulátorů

Fakulta elektrotechnická Katedra řídicí techniky. Metody návrhu adaptivních PID regulátorů České vysoké učení technické v Praze Fakulta elektrotechnická Katedra řídicí techniky DIPLOMOVÁ PRÁCE Metody návrhu adaptivních PID regulátorů Praha, 2011 Autor: Bc. Tomáš Jindra i Poděkování Na tomto

Více

Měření na nízkofrekvenčním zesilovači. Schéma zapojení:

Měření na nízkofrekvenčním zesilovači. Schéma zapojení: Číslo úlohy: Název úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Měření na nízkofrekvenčním zesilovači Spolupracovali ve skupině Zadání úlohy: Na zadaném Nf zesilovači proveďte následující měření

Více

Fakulta elektrotechnická

Fakulta elektrotechnická České vysoké učení technické v Praze Fakulta elektrotechnická DIPLOMOVÁ PRÁCE Řízení vícerozměrných systémů pomocí PID regulátorů Autor: Bc. Radek Losos Praha, 211 Vedoucí práce: Ing. Petr Hušek, Ph.D.

Více

Robustnost regulátorů PI a PID

Robustnost regulátorů PI a PID Proceedings of International Scientific Conference of FME Session 4: Automation Control and Applied Informatics Paper 45 Robustnost regulátorů PI a PID VÍTEČKOVÁ, Miluše Doc. Ing., CSc., katedra ATŘ, FS

Více

Hlavní parametry rádiových přijímačů

Hlavní parametry rádiových přijímačů Hlavní parametry rádiových přijímačů Zpracoval: Ing. Jiří Sehnal Pro posouzení základních vlastností rádiových přijímačů jsou zavedena normalizovaná kritéria parametry, podle kterých se rádiové přijímače

Více

I. Současná analogová technika

I. Současná analogová technika IAS 2010/11 1 I. Současná analogová technika Analogové obvody v moderních komunikačních systémech. Vývoj informatických technologií v poslední dekádě minulého století digitalizace, zvýšení objemu přenášených

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

Ý Ť Ť ť Ž Í Ž Ť Ť Ť Ť š Ž Ť š š Ť Ť Ž Ť Ý Ť š Ť š š š Ť š Ťš Ť Í š š š š Ž Ť Ť š š š Ť š š Ť š š Ť š Ť ď Ť Í Š Ť š Ť Ó Ť š Ť š Ť Š š š šť š Ť š š Ť Í ď š š š Ť š Í Ú š Š š š š š ř š š Ťš Ť š ť š š Š Ť

Více

Fourierova transformace

Fourierova transformace Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen

Více

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran

Více

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník

Více

Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci.

Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci. Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci. 10.12.2014 Obsah prezentace Chyby interpolace Chyby při lineární interpolaci Vlivem nestejných polohových zesílení interpolujících

Více

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným

Více

Zesilovače. Ing. M. Bešta

Zesilovače. Ing. M. Bešta ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného

Více

24 - Diskrétní řízení

24 - Diskrétní řízení 24 - Diskrétní řízení Michael Šebek Automatické řízení 213 13-5-14 Metody návrhu diskrétního řízení Automatické řízení - Kybernetika a robotika Návrh pro čistě diskrétní systémy Mnohé metody jsou analogické

Více

PSK1-5. Frekvenční modulace. Úvod. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. Název školy: Vzdělávací oblast:

PSK1-5. Frekvenční modulace. Úvod. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. Název školy: Vzdělávací oblast: PSK1-5 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Vyšší odborná škola a Střední průmyslová škola, Božetěchova

Více

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs 1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti

Více