ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
|
|
- Radomír Svoboda
- před 6 lety
- Počet zobrazení:
Transkript
1 VYSOKÁ ŠKOLA BÁŇSKÁ ECHNCKÁ UNVERZA OSRAVA FAKULA SROJNÍ ZÁKLAY AUOMACKÉHO ŘÍZENÍ. týden doc. ng. Renata WAGNEROVÁ, Ph.. Ostrava 03 doc. ng. Renata WAGNEROVÁ, Ph.. Vysoá šola báňsá echnicá niverzita Ostrava SBN ento stdijní materiál vznil za finanční odory Evrosého sociálního fond (ESF) a rozočt Česé rebliy v rámci řešení rojet: CZ..07/..00/5.063, MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO
2 OBSAH SYNÉZA REGULAČNÍCH OBVOŮ Úvod.... Ziegler-Nicholsova metoda řechodové charateristiy (.modifiace)....3 Ziegler-Nicholsova metoda riticých arametrů (.modifiace) Přílad. Seřízení reglátorů Ziegler-Nicholsova metoda čtvrtinového tlmení (3.modifiace)... 8 POUŽÁ LERAURA... 0 MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063
3 Syntéza reglačních obvodů 3 SYNÉZA REGULAČNÍCH OBVOŮ OBSAH KAPOLY: efinice syntézy Exerimentální metody syntézy MOVACE: Syntézo reglačních obvodů rozmíme návrh strtry reglačního obvod a jeho arametrů ta, aby obvod slňoval ožadavy ladené na reglační ochod. o syntézy zahrnjeme oze teoreticý návrh reglačního obvod a nioliv i následno volb technicé realizace návrh. Při návrh reglačního obvod vša vycházíme z rovozních odmíne (nař. rozměry a hmotnost zařízení, racovní rostředí, režim rovoz aod.), ladených na reglační obvod CÍL: Po rostdování bdete mět definovat ojem syntéza reglačního obvod. osat čtyři metody syntézy reglačních obvodů (Zieglerovy Nicholsovy metody, metod ožadovaného model). seřídit reglátor metodo riticých arametrů. MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063
4 Syntéza reglačních obvodů. ÚVO Můžeme se setat s těmito výchozími ředolady ro syntéz:. Můžeme libovolně měnit strtr i arametry reglačního obvod a jsme omezeni jen slněním odmíne fyziální realizovatelnosti.. Je zadaná část strtry i část arametrů reglačního obvod. 3. Strtra obvod je lně zadána a jso zadány i něteré arametry reglačního obvod. První říad se v raxi vysytje oze ojediněle, většina reglačních obvodů atří od bod 3. Jso to obvody, teré lze rozdělit na reglovano sostav a reglátor. Úloha syntézy se zde redje oze na rčení stavitelných arametrů reglátor. Vhodnost srávné volby ty reglátor a jeho arametrů můžeme ověřit jedna simlací na matematicém model navrženého reglačního obvod a jedna rovozními zošami reglovaného objet římo v rovoz. Pod. bod atří reglační obvody, terých nelze rovést rozdělení na reglovano sostav a reglátor. Jso to nař. servomechanismy, reglační obvody složící vlečné reglaci olohy a rychlosti. U těchto reglačních obvodů navrhjeme částečně ja jejich strtr, ta i jejich arametry. Při syntéze reglačního obvod otřebjeme znát:. dynamicé vlastnosti reglované sostavy (řenos, diferenciální rovnici, řechodovo charateristi),. ředoládaný růběh řídicí veličiny, 3. ředoládané růběhy orchových veličin a místo jejich vst do reglované sostavy,. omezení ačních veličin (výstní hodnota z reglátor nemůže nabývat libovolně velé hodnoty), 5. ožadavy na valit reglace. Pro zjednodšení výočt važjeme bod a 3 jao vstní veličiny fnce, jejichž matematicé vyjádření je snadné a z odezvy reglačního na tyto fnce můžeme osodit řesnost a valit reglace. Nejčastěji ožívané fnce jso jednotový so, jednotový imls a so rychlosti a zrychlení vstního růběh.. ZEGLER-NCHOLSOVA MEOA PŘECHOOVÉ CHARAKERSKY (.MOFKACE) ato metoda je ožitelná ro lineární sojité i disrétní reglační obvody. Předoladem je aeriodicá reglovaná sostava (ro reglované sostavy, teré nemají řechodovo charateristi s řemitem). Vycházíme z odměřené řechodové charateristiy reglované sostavy, de rčíme tyto arametry: zesílení řenos roorcionální sostavy doba růtah ( doravní zoždění) n doba náběh ( d n časová onstanta reglované sostavy) MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063
5 Syntéza reglačních obvodů 5 y( ) y(t) nflexní bod n t Obráze.9 - Určení arametrů řechodové charateristiy reglované sostavy Následjící tabla nám možní rčit otimální hodnoty stavitelných arametrů. abla.5 - Určení otimálních hodnot stavitelných arametrů reglátor y reglátor P P n n 0,9 3,5 P n, 0,5 P n, 0,5.3 ZEGLER-NCHOLSOVA MEOA KRCKÝCH PARAMERŮ (.MOFKACE) ato metoda je ožitelná rovněž ro lineární sojité i disrétní reglační obvody. Princi této metody sočívá v tom, že řivedeme reglační obvod do tzv. riticého stav, tj. na mitavo mez stability, řičemž reglátor racje oze s roorcionální složo a tedy integrační a derivační jso vyřazeny nastavením 0,. MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063 a.) exerimentální řešení Post ro seřizování reglátor zaojeného do reglačního obvod:. Vyřadíme integrační a derivační slož reglátor. o rovedeme nastavením integrační a derivační onstanty ( 0, ).
6 Syntéza reglačních obvodů 6. Postně zvyšjeme zesílení reglátor, až obvod začne mitat s onstantní amlitdo (dosáhne mitavé meze stability). Hodnot zesílení reglátor, ři terém reglační obvod dosáhne meze stability, označíme jao riticé zesílení. Period mitů, ři teré tom došlo, a nazýváme eriod riticých mitů. y(t) y( ) t Obráze.93 - Určení riticé eriody 3. Konstanty reglátor nastavíme s vyžitím hodnot a, viz tabla.6. abla.6 - Otimální hodnoty stavitelných arametrů sojitého reglátor y reglátor P P P 0,5 0,5 0,83 0, 0,05 P 0,6 0,5 0, V říadě, že se jedná o čistě integrační reglátor, řivedeme reglační obvod do riticého stav tím, že zmenšjeme integrační časovo onstant, až dosáhneme mitavé meze stability. Potom je nejvhodnější nastavení integrační časové onstanty K ro eriodicý tlmený růběh reglačního ochod a ro aeriodicý růběh. b) analyticé řešení Při analyticém řešení msíme vyočítat a, teré charaterizjí mitavo mez stability. Vyžijeme Nyqistovo ritérim stability. Vyřadíme integrační a derivační složy reglátor ( 0, ) a rčíme řenos otevřeného reglačního obvod (s) MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063 K G O
7 Syntéza reglačních obvodů 7 M o Go Gs. GR. (.58) N o Určíme reálno a imaginární část mitočtového řenos otevřeného reglačního obvod. maginární část oložíme rovn 0 a rčíme riticý mitočet { G ( jω) } 0 ω m 0. (.59) Kriticý mitočet dosadíme do reálné části a ta msí být rovna hodnotě - a rčíme riticé zesílení. { G ( j )} Re 0 ω. (.60) Period riticých mitů rčíme z riticého mitočt dle vztah π ω. (.6) Pro výočet doorčeného seřízení říslšného reglátor ožijeme vztahy, teré obsahje tabla.6. Přílad.. Seřízení reglátorů. Pro reglovano sostav osano řenosem G S (s) seřiďte P reglátor, ožijte metod riticých arametrů. G S 3 ( s + )..3. Přílad. Seřízení reglátorů Pro reglovano sostav osano řenosem G S (s) seřiďte P reglátor, ožijte metod riticých arametrů. G S 3 ( s + ) Řešení: Nejdříve msíme vyřadit integrační a derivační slož reglátor, 0 G. eď rčíme řenos otevřeného reglačního obvod G0 GR GS 3 3 ( s + ) s + 3s + 3s + R a vyočítáme mitočtový řenos otevřeného reglačního obvod a rčíme jeho reálno a imaginární část G ( jω) 0 jω 3ω + 3 jω + ( 3ω ) + jω( ω 3) ( 3ω ) + ω ( ω 3) G0 s jω, 3 MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063
8 Syntéza reglačních obvodů 8 Re { G0 ( jω) },m{ G0 ( jω) } ( 3ω ) ( 3ω ) + ω ( ω 3) ( 3ω ) eď rčíme riticý mitočet, eriod riticých mitů a riticé zesílení: m { G ( jω )} 0 ω( ω 3) 0 ω 3, 0 ( 3.3) Re ( 3.3) + 3(3 3) { G ( jω )} 0, ω( ω 3) + ω ( ω 3). π π 3. ω 3 Na záladě tably.6 můžeme rčit hodnoty stavitelných arametrů reglátor: 0,6 0,5 0,5,,8 0,3. ZEGLER-NCHOLSOVA MEOA ČVRNOVÉHO LUMENÍ (3.MOFKACE) ato metoda je ožitelná ro lineární sojité i disrétní reglační obvody. Řeší oze exerimentálně, analyticy by se dala jen stěží vyžít. Požívá se v říadě, že nelze ožít rozmitání na mitavo mez stability. Oět odstraníme integrační i derivační složy reglátor ( 0, ) a hodnot zvyšjeme ta dloho, až růběh výstní (reglované) veličiny bde ve tvar A A 3 de A, A3 -amlitda,, (.6) čili dojde e čtvrtinovém tlmení, tzn. dvě o sobě jdocí amlitdy v oměr :. MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063
9 Syntéza reglačních obvodů 9 y(t) / A 3 y( ) A t Obráze.95 - Určení eriody tlmených mitů Z růběh reglované veličiny se stanoví hodnota čtvrtinové eriody ze stnice reglátor čtvrtinové zesílení hodnoty jeho stavitelných arametrů, viz. tabla.7. abla.7 - Otimální hodnoty stavitelných arametrů reglátor., viz obráze.95, a. Pro zvolený ty reglátor se rčí otimální y reglátor P P 0,9 P, 0,5 MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063
10 Požitá literatra 0 POUŽÁ LERAURA [] BALÁĚ, J AUOMACKÉ ŘÍZENÍ. PRAHA: NAKLAAELSVÍ BEN, 003, 65 S. SBN [] BOLON, W. 99. CONROL ENGNEERNG. NEW YORK: LONGMAN SCENFC & ECHNCAL, S. SBN [3] ORF, R. C. & BSHOP, R. H MOERN CONROL SYSEMS. ASON-WESLEY : HARLOW ENGLAN 998. SNB [] ŠVARC,. 00. AUOMAZACE/AUOMACKÉ ŘÍZENÍ. BRNO: NAKLAAELSVÍ CERM, 00, SBN [5] VÍEČKOVÁ, M. & POLOKOVÁ, J. 989.Logaritmicé mitočtové charateristiy. Ostrava: VŠB-UO, s. olňový čební text [6] VÍEČKOVÁ, M. VÍEČEK, A ZÁKLAY AUOMACKÉ REGULACE. OSRAVA: VŠB-U OSRAVA S. SBN MOERNZACE VÝUKOVÝCH MAERÁLŮ A AKCKÝCH MEO CZ..07/..00/5.063
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 10. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Laboratorní úloha Seřízení PI regulátoru
Laboratorní úloha Seřízení PI reglátor 1. Stanovení optimálních parametrů (r 0 (zesílení), I (časová integrační konstanta)) reglátor PI pro reglaci sostavy tří nádrží vyžitím přechodové odezvy reglované
zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.
Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Základy elektrotechniky
Zálady eletrotechniy Přednáša Zesilovače s tranzistory, operační zesilovače Stpeň se společným emitorem (SE) Pracovní bod tranzistor je vázán: jeho charateristiami podle b h (i b, ) i h (i b, ) a rovnicí
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 203 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI AKULTA ELEKTROTECHNICKÁ Katedra eletromechaniy a výonové eletroniy BAKALÁŘSKÁ PRÁCE Vývoj aliace ro výuu regulační techniy Václav Šeta 06 Vývoj aliace ro výuu regulační
Směrová kalibrace pětiotvorové kuželové sondy
Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The
Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky
Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Systémové struktury - základní formy spojování systémů
Systémové struktury - základní formy sojování systémů Základní informace Při řešení ať již analytických nebo syntetických úloh se zravidla setkáváme s komlikovanými systémovými strukturami. Tato lekce
Studentská tvůrčí a odborná činnost STOČ 2015
Stdentská tvůrčí a odborná činnost STOČ 215 MATEMATICKÉ MODELY ZAVĚŠENÍ AUTOMOBILU Jan MACHÁČEK Vysoká škola báňská Technická niverzita Ostrava 17. listopad 15/2172 78 33 Ostrava-Porba 23. dbna 215 FAI
5. Servopohony se synchronními motory s permanentními magnety
5. Servoohony se synchronními motory s ermanentními magnety V sočasné obě nabývají stále více na význam stříavé reglační ohony se synchronními motory, nichž je bicí vintí nahrazeno ermanentními magnety.
7 Usazování. I Základní vztahy a definice. Lenka Schreiberová, Pavlína Basařová
7 Usazování Lenka Schreiberová, Pavlína Basařová I Základní vztahy a definice Usazování neboli sedimentace složí k oddělování částic od tektiny v gravitačním oli. Hstota částic se roto msí lišit od hstoty
Laplaceova transformace.
Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci
definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu
. PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu
Příklady k přednášce 1. Úvod. Michael Šebek Automatické řízení 2019
Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 09 08.0.09 Kyvadlo řízené momentem Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ = M ro moment setrvačnosti J = ml = M Flsinϕ c = M mgl sinϕ
Příklady k přednášce 1. Úvod
Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 08 9-6-8 Kyvadlo řízené momentem Atomatické řízení - Kybernetika a robotika Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ M ro moment setrvačnosti
BH059 Tepelná technika budov Konzultace č. 2
Vysoké učení technické v Brně Fakulta stavební Ústav ozemního stavitelství BH059 Teelná technika budov Konzultace č. 2 Zadání P6 zadáno na 2 konzultaci, P7 bude zadáno Průběh telot v konstrukci Kondenzace
Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou:
Funční měniče. Zadání: A. Na předloženém aproximačním funčním měniči s operačním zesilovačem realizujícím funci danou tabulou: proveďte: U / V / V a) pomocí oscilosopu měnič nastavte b) změřte na něm jeho
Konstrukční úlohy metodická řada pro konstrukci trojúhelníku Irena Budínová Pedagogická fakulta MU
Konstruční úlohy metodicá řada ro onstruci trojúhelníu Irena udínová Pedagogicá faulta MU irena.budinova@seznam.cz Konstruční úlohy tvoří jednu z důležitých součástí geometrie, neboť obsahují mnoho rozvíjejících
7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno
7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje
Základy elektrických pohonů, oteplování,ochlazování motorů
Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon
7.3.2 Parametrické vyjádření přímky II
7.. Parametriké vyjádření římky II Předoklady 701 Př. 1 Jso dány body [ ;] a [ ; 1]. Najdi arametriké vyjádření římky. Urči sořadnie bod C [ 1;? ] tak, aby ležel na říme. Na které části římky bod C leží?
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.
Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé
Nelineární model tepelné soustavy a GPC regulátor
Nelineární model tepelné sostavy a GP reglátor Ing Jan Mareš Školitel: oc Ing František šek, c Univerzita Pardbice Faklta chemicko-technologická Katedra řízení procesů Obsah 1 Popis tepelné sostavy 2 Požadavky
PZP (2011/2012) 3/1 Stanislav Beroun
PZP (0/0) 3/ tanislav Beroun Výměna tela mezi nální válce a stěnami, telotní zatížení vybraných dílů PM elo, které se odvádí z nálně válce, se ředává stěnám ve válci řevážně řestuem, u vznětových motorů
7. VÝROBNÍ ČINNOST PODNIKU
7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která
Metodický postup měření rychlosti přenosu dat v mobilních sítích dle standardu LTE. Návrh: verze 2013 03 28
Metodicý ostu měření rchlosti řenosu dat v mobilních sítích dle standardu LTE Návrh: verze 2013 03 28 Metodicý ostu měření rchlosti řenosu dat v mobilních sítích dle standardu LTE 1 Účel doumentu Tento
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita
20 - Číslicové a diskrétní řízení
20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2018 18-4-18 Automaticé řízení - Kybernetia a robotia Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou
k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor
METODICKÝ LIST k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor Téma DUM: spojitá regulace test 1 Anotace: Digitální učební materiál DUM - slouží k výuce regulátorů
7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.
7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta
Anodové obvody elektronkových zesilovačů pro VKV a UKV
Anodové obvody eletronových zesilovačů ro VKV a UKV Ing.Tomáš Kavalír, OK1GTH avalir.t@seznam.cz, htt://o1gth.nagano.cz Cílem tohoto rátého ovídání je sumarizovat záladní oznaty z dané oblasti a říadného
ednáška Fakulta informačních technologií
7. přednp ednáška Doc. Ing. Kaeřina niová,, CSc. Kaedra číslicového návrhn Fakla informačních echnologií Ceské vsoké čení echnické v Praze 2011 1 7. Nespojié regláor PODLE ČINNOSTI PODLE PŘÍVODU P ENERGIE
Robustnost regulátorů PI a PID
Proceedings of International Scientific Conference of FME Session 4: Automation Control and Applied Informatics Paper 45 Robustnost regulátorů PI a PID VÍTEČKOVÁ, Miluše Doc. Ing., CSc., katedra ATŘ, FS
Ý Ž Š Š Š Ť ů ú ý ž ý ž ý Š ý ú Ž ů ý ů Ž Ž š Ú š ř ý Ž ř ů Ú ů ý ý ž ý ú ů ů Ó ý ř Ó ýš Í ú Ý Ž Š Š Š Š ú ů ý ž ý Ž ý ý ú Ž ů ý ú Ž Ž š ú š ř ý Ž ř ů Í Ú ů š ý ž ó ý ž ý ý ý ř ý ó Ř Ý ř ů ú ý ž ý ž Š
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava
Výpočet svislé únosnosti osamělé piloty
Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro
Ṡystémy a řízení. Helikoptéra Petr Česák
Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné
Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie
Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího
Výpočet svislé únosnosti osamělé piloty
Inženýrský manuál č. 13 Aktualizace: 06/2018 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro
Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.
říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním
Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE
ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly
Reproduktor elektroakustický měnič převádějící elektrický signál na akustický signál, převážně zvukový
Měření reroduktorů Reroduktor elektroakustický měnič řevádějící elektrický signál na akustický signál, řevážně zvukový i w u Reroduktor reroduktor jako dvoubran y( t) h( t)* x( t) Y ( ω ) H ( ω ). X X
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní
Předpjatý beton Přednáška 6
Předjatý beton Přednáška 6 Obsah Změny ředětí Okamžitým ružným řetvořením betonu Relaxací ředínací výztuže Přetvořením oěrného zařízení Rozdílem telot ředínací výztuže a oěrného zařízení Otlačením betonu
VLIV ELEKTROMAGNETICKÉ KOMPATIBILITY NA BEZPEČNOST LETOVÉHO PROVOZU INFLUENCE OF THE ELECTROMAGNETIC COMPATIBILITY ON THE AIR TRAFFIC SAFETY
348 roceedings o the Conerence "Modern Saety Technologies in Transortation - MOSATT 005" VLIV ELETROMAGNETICÉ OMATIBILITY NA BEZEČNOST LETOVÉHO ROVOZU INFLUENCE OF THE ELECTROMAGNETIC COMATIBILITY ON THE
Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení
Měřicí a řídicí echnia magisersé sudium FTOP - přednášy ZS 29/1 REGULACE regulované sousavy sandardní signály ační členy reguláory Bloové schéma regulačního obvodu z u regulovaná sousava y ační člen měřicí
Číslicové řízení procesů
Číslicové řízení procesů čební text VOŠ a SPŠ Ktná Hora Ing. Lděk Kohot Základní pojmy číslicového řízení Rozdělení řízení podle průběh signálů logické řízení binární signály (RUE, FALSE) analogové řízení
Termodynamické základy ocelářských pochodů
29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických
CVIČENÍ Z ELEKTRONIKY
Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97
Hluk Nepříjemný nebo nežádoucí zvuk, nebo jiné rušení (ČSN ).
14SF3 00 Úvod do akustiky Zvuk Zvuk je mechanické vlnění ružného rostředí (lynného nebo kaalného), které je vnímatelné lidským sluchem. Jedná se o odélné vlnění, kdy částice rostředí kmitají v ásmu slyšitelných
Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)
Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,
Difuze v procesu hoření
Difuze v procesu hoření Fyziální podmíny hoření Záladní podmínou nepřetržitého průběhu spalovací reace je přívod reagentů (paliva a vzduchu) do ohniště a zároveň odvod produtů hoření (spalin). Pro dosažení
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
Práce s PID regulátorem regulace výšky hladiny v nádrži
Práce s PID regulátorem regulace výšky hladiny v nádrži Cíl úlohy Zopakování základní teorie regulačního obvodu a PID regulátoru Ukázka praktické aplikace regulačního obvodu na regulaci výšky hladiny v
PARALELNÍ PROCESY A PROGRAMOVÁNÍ
PARALELNÍ PROCESY A PROGRAMOVÁNÍ 6 Analýza složitosti algoritmů - cena, ráce a efektivita Ing. Michal Bližňák, Ph.D. Zlín 2013 Tento studijní materiál vznikl za finanční odory Evroského sociálního fondu
Stabilita prutu, desky a válce vzpěr (osová síla)
Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1
ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí
Měření růtou lynu rotametrem a alibrace ailárního růtooměru Úvod: Průtoy lynů se měří lynoměry, rotametry nebo se vyočítávají ze změřené tlaové diference v místech zúžení růřezu otrubí nař.clonou, Venturiho
Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,
"Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů
Nelineární model pneumatického pohonu
XXVI. SR '1 Seminar, Instruments and Control, Ostrava, ril 6-7, 1 Paer 48 Nelineární model neumatického ohonu NOSKIEVIČ, Petr Doc.,Ing., CSc., Katedra TŘ-35, VŠ-TU Ostrava, 17. listoadu, Ostrava - Poruba,
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.
Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,
Technická kybernetika. Linearizace. Obsah
Aademcý ro 06/07 řpravl: adm Farana Techncá ybernea Idenface yémů, algebra bloových chéma Obah Lnearzace. Analycá denface. Expermenální denface. Algebra bloových chéma. Záladní přenoy reglačního obvod.
VYSOKÉ UCENÍ TECHNICKÉ V BRNE BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UCENÍ ECHNICKÉ V BRNE BRNO UNIVERSIY OF ECHNOLOGY FAKULA ELEKROECHNIKY A KOMUNIKAČNÍCH ECHNOLOGIÍ ÚSAV AUOMAIZACE A MEŘÍCÍ ECHNIKY FACULY OF ELECRICAL ENGINEERING AND COMMUNICAION DEPARMEN OF CONROL
OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU
OPTMALZACE PARAMETRŮ PD REGULÁTORU POMOCÍ GA TOOLBOXU Radomil Matouše, Stanislav Lang Department of Applied Computer Science Faculty of Mechanical Engineering, Brno University of Technology Abstrat Tento
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDICÍ TECHNIKY DIPLOMOVÁ PRÁCE. Řízení aktivního tlumení pomocí metody H
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKUTA EEKTROTECHNICKÁ KATERA ŘÍICÍ TECHNIKY IPOMOVÁ PRÁCE Říení ativního tlení oocí etody H Praha, 9 indřich Chaloe Prohlášení Prohlašji, že jse svo diloovo ráci vyracoval
ELEKTRICKÁ TRAKCE 7. ADHEZE
4..8 ER7.DOC Eletricá trace 7. Adheze Obsah Doc. Ing. Jiří Danzer CSc. ELEKRICKÁ RAKCE 7. ADHEZE Obsah Úvod...3 Adheze náravy...5. Koeficient adheze... 5. Sluzová charateristia... 8.. Poměry ve styu.....
3.2 Metody s latentními proměnnými a klasifikační metody
3. Metody s latentními roměnnými a klasifikační metody Otázka č. Vyočtěte algoritmem IPALS. latentní roměnnou z matice A[řádek,slouec]: A[,]=, A[,]=, A[3,]=3, A[,]=, A[,]=, A[3,]=0, A[,3]=6, A[,3]=4, A[3,3]=.
Modelování a simulace regulátorů a čidel
Modeloání a simulace regulátorů a čidel. Modeloání a simulace PI regulátoru Přenos PI regulátoru je yjádřen následujícím ztahem F( p) = ( + p ) p V Simulinu je tento blo obsažen nihoně prů. Bohužel použití
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 Technické předměty Ing. Otakar Maixner 1 Spojité
Regulace. Dvoustavová regulace
Regulace Dvoustavová regulace Využívá se pro méně náročné aplikace. Z principu není možné dosáhnout nenulové regulační odchylky. Měřená hodnota charakteristickým způsobem kmitá kolem žádané hodnoty. Regulační
Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.
8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S
Elektrické přístroje. Přechodné děje při vypínání
VŠB - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky Katedra elektrických strojů a řístrojů Předmět: Elektrické řístroje Protokol č.5 Přechodé děje ři vyíáí Skuia: Datum: Vyracoval: - -
Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot
Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot Martin Hunčovský 1,*, Petr Siegelr 1,* 1 ČVUT v Praze, Fakulta strojní, Ústav přístrojové a řídící techniky, Technická 4, 166 07 Praha
ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII
VYSOÁ ŠOLA BÁŇSÁ TECHNICÁ UNIVERZITA OSTRAVA FAULTA STROJNÍ ZÁLADY AUTOMATIZACE TECHNOLOGICÝCH PROCESŮ V TEORII Rozdělení regulovaných soustav Ing. Romana Garzinová, Ph.D. prof. Ing. Zora Jančíková, CSc.
Předpjatý beton Přednáška 12
Předjatý beton Přednáška 12 Obsah Mezní stavy oužitelnosti - omezení řetvoření Deformace ředjatých konstrukcí Předoklady, analýza, Stanovení řetvoření. Všeobecně - u ředjatých konstrukcí nejen růhyb od
Experimentální identifikace tepelného výměníku. Bc. Michal Brázdil
Exerimentální identifikace teelného výměníku Bc Michal Brádil STOČ 9 UTB ve Zlíně, Fakulta alikované informatiky, 9 ABSTRAKT Cílem této ráce je senámení čtenáře s laboratorním aříením Armfield PCT 4 a
Je vzduch vhodný modelový plyn pro výkonnostní zkoušky plynového radiálního kompresoru?
Turbostroje 03 Je vzduch vhodný modelový lyn ro výonnostní zoušy lynového radálního omresoru? Ing. Jří Oldřch, CSc. ČKD KOMPRESORY, a.s., Klečáova 347, 90 0 Praha 9 jr.oldrch@cdomresory.cz oldrch.jr@seznam.cz
Přechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
Analytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Kvalita regulačního pochodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
elektrické filtry Jiří Petržela pasivní filtry
Jiří Petržela výhody asivních filtrů levné a jednoduché řešení filtrace není nutné naájení aktivních rvků nevýhody asivních filtrů maximálně jednotkový řenos v roustném ásmu obtížnější kaskádní syntéza
Experimentální ověření modelu dvojčinného pneumomotoru
Exerientální ověření odelu dvojčinného neuootoru vořák, Lukáš Ing., Katedra hydroechaniky a hydraulických zařízení, Fakulta strojní, Vysoká škola báňská Technická univerzita Ostrava, 7. listoadu 5, Ostrava
Porovnání diskrétního spojitého regulátoru při přímovazební a zpětnovazební regulaci
Porovnání disrétního spojitého regulátoru při přímovazební a zpětnovazební regulaci Comparison of discrete-time and continuous-time controller at feedforward and feedbac control Miroslav Kirchner Baalářsá
ř š ú š Č š ž ř š Š Š Í ú š ď ř š ú Š ů ú ř ř ř ř ů ř Ž š ů ú ů ř Š Š Š ř ů řň ň řň řň ů ř ř š Í ř ř ř ř ř ř ř ř Ž Ž ř ú ů ú ú š Ú ú ú Í Ž Ž ů Ž Ž Č ň Ú řš ř řš ú Ž ú ť ň Í ř ř ů ť š š ř Í řš ú Ý Í ť ú
SIMULACE ŘÍZENÍ HYDRAULICKÉHO POHONU KOMBINACÍ VENTILŮ HYDRAULICKÝCH PŮLMŮSTKŮ
IMULCE ŘÍZENÍ HYDRULICÉHO POHONU OMINCÍ VENTILŮ HYDRULICÝCH PŮLMŮTŮ Ing. oňaří Petr VŠ-Technicá univerzita Ostrava faulta strojní atedra automatizační techniy a řízení bstrat This aer deal with detail
23 - Diskrétní systémy
23 - Disrétní systémy Michael Šebe Automaticé řízení 218 29-4-18 Disrétní čas: z podstaty, z měření či z pohonu Otáčející se radar - měření polohy cíle jednou za otáču radaru motivace v počátcích historie
SROVNÁNÍ METOD SYNTÉZY PRO ŘÍZENÍ SOUSTAV S DOPRAVNÍM ZPOŽDĚNÍM
VYSOKÁ ŠKOLA BÁŇSKÁ ECHNCKÁ UNVERZA OSRAVA UNVERZNÍ SUDJNÍ ROGRAM MECHARONKA KAEDRA AUOMAZAČNÍ ECHNKY A ŘÍZENÍ SROVNÁNÍ MEOD SYNÉZY RO ŘÍZENÍ SOUSAV S DORAVNÍM ZOŽDĚNÍM COMARSON OF SYNHESS MEHODS FOR LANS
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. 6 Ing. Petra Schreiberová, Ph.D. Ostrava Ing. Petra Schreiberová, Ph.D. Vsoká škola báňská Technická
VZTAHY MEZI ZISKEM, OBJEMEM VÝROBY, CENOU A NÁKLADY, ANALÝZA BODU ZVRATU
VTAHY MEI ISKEM, OBJEMEM VÝROBY, CENOU A NÁKLADY, ANALÝA BODU VRATU Mezi základní ekonomické veličiny atří: Výnosy Náklady isk Ojem výroy Cena rodukce hlediska účetnictví výnosy, náklady a zisk (hosodářský
Úpravy úlohy DE1 v systému LABI.
Úpravy úlohy DE v systému LABI. Edit problem DE in system LABI Bc. Daniel Kašný Diplomová práce 200 ABSTRAKT Tato práce se zabývá úpravou úlohy DE v systému LABI, terá byla vytvořena pro výuové účely
6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy
6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého
7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
IV. Zatížení stavebních konstrukcí rázem
Jiří Máca - atedra echaniy - B35 - tel. 435 45 aca@fsv.cvt.cz 1. Klasicá teorie ráz. Nedoonale pržný ráz - sostava s 1 SV 3. Doonale nepržný ráz - sostava s 1 SV 4. Sostavy s více stpni volnosti 5. Přílady
4.1 Řešení základních typů diferenciálních rovnic 1.řádu
4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po
Řízení motoru Mendocino
Laboratorní úloha Řízení motoru Mendocino Návod k úloze Obsah: 1. Obecný popis úlohy 2 2. Seřízení PID regulátoru 3 2.1 Uzavřený regulační obvod 3 2.2 Úkol úlohy 3 2.3 Metoda relé 4 2.4 Spouštění úlohy