NÁVRH PREDIKTIVNÍCH REGULÁTORŮ POMOCÍ MINIMALIZACE l p NORMY V PROSTŘEDÍ MATLAB. Jaroslav Pekař *, Jan Štecha *, Vladimír Havlena *, **
|
|
- Sára Švecová
- před 6 lety
- Počet zobrazení:
Transkript
1 NÁVRH PREDIKIVNÍCH REGULÁORŮ POMOCÍ MINIMALIZACE l NORMY V PROSŘEDÍ MALAB Jaroslav Pekař *, Jan Štecha *, Vladimír Havlena *, ** * Katedra řídicí techniky, Fakulta elektrotechnická, České vysoké učení technické v Praze. ** Honeywell Prague Laboratory in Prague, Honeywell Intl.. Úvod Prediktivní regulace (Model-based Predictive Control, MPC) [, 3] se stala jednou z okročilých metod řízení, která nachází široké ulatnění ři řízení rocesů v růmyslové výrobě. Předností této metody je relativní jednoduchost, řirozená možnost řízení rozsáhlých systémů, systémů s mnoha vstuy a výstuy, možnost klást ožadavky na omezení veličin v řízeném rocesu a odobně. Při návrhu MPC regulátoru se vychází ze znalosti modelu systému (nař. řechodová nebo imulsní charakteristika, řenosová funkce, stavový model), omocí něhož odhadujeme budoucí trajektorie výstuních veličin. Dalším důležitým rvkem ři návrhu MPC je volba vhodného kritéria, jehož otimalizací (minimalizací) získáme na základě redikce trajektorií výstuů otimální trajektorie vstuních veličin ro daný horizont. Kritérium (ztrátová funkce) bývá obvykle voleno jako druhá mocnina odchylky redikce výstuu od referenčního signálu jinými slovy kvadratická norma. V takovém říadě vede minimalizace na úlohu nejmenších čtverců (Least Squares). Pokud budeme uvažovat omezení některých veličin, získáme úlohu kvadratického rogramování (Quadratic Programming). Pokud oužijeme ro kritérium l nebo l inf normu, můžeme roblém definovat jako úlohu lineárního rogramování (Linear Programming) [7, 8]. Použití l normy v MPC řízení je uvedeno v mnoha racích, nař. [4, 5, 6]. Cílem článku je exerimentální ověření vlastností a chování systému řízeného rediktivním regulátorem v závislosti na volbě druhu l normy, kde budeme uvažovat z intervalu,. Z výše uvedeného je zřejmé, že budeme otřebovat řešit úlohy lineárního a kvadratického rogramování, k čemuž využijeme funkce Matlabu z otimalizačního toolboxu.. Prediktivní regulátor minimalizující l normu Pro návrh MPC regulátoru oužijeme stavový ois systému ve tvaru x( t+ ) = Ax( t) + Bu( t), yt () = Cxt () + Dut ()
2 kde x(t), y(t) a u(t) je stav, výstu a vstu systému. A, B, C, a D jsou matice systému. Dále je třeba nadefinovat kritérium otimalizace N J = y() t w() t + r u() t, t= nebo častěji oužívaný tvar, kde neenalizujeme velikost vstuního signálu, ale rychlost jeho změny, tj. Po zavedení matic N J = y() t w() t + r u() t. t= D CB D C S, Q = = N N 3 N N 3 CA B CA D CA CA a vektorů redikce výstuu, vstuu a ( ) N P= C A C A C [ () ( )], [ () ( )] Y = y y N U = u u N [ () ( )] W = w w N můžeme kritérium řesat do maticového tvaru S Px() W J = Y W + r U = SU + Px() W + r U = U + / r I Otimální oslounost řízení získáme minimalizací ředchozího vztahu, tedy { } U * min SU Px () W r U U = + +. Pro návrh MPC regulátoru můžeme obecně oužít l normu. V tomto článku se zaměříme na z intervalu <, >. Minimalizaci l normy v daném intervalu nelze řešit jedním algoritmem, roto je třeba interval rozdělit na tři části: Minimalizace l normy úlohu lze formulovat jako lineární rogram. Minimalizace l normy, kde je z intervalu (, ) tento otimalizační roblém řeší algoritmus Iteratively Reweighted Lest Squares (iterativní vážené nejmenší čtverce). Minimalizace l normy jedná se o standardní Least Squares roblém.
3 Nejrve se odívejme na okrajové říady, tj. na l a l normu. V říadě minimalizace l můžeme jednoduše nalézt analytický tvar řešení ( ) ( () ) * U S S ri S Px W = +. Pokud budeme chtít zavést omezení na některé veličiny v regulačním obvodu, je třeba minimalizaci řešit numericky, omocí kvadratického rogramování. Úlohu kvadratického rogramování vyřešíme v Matlabu funkcí quadrog. Minimalizaci l normy lze řevést na úlohu lineárního rogramování, a to následujícím zůsobem (obecně): { } min Ax b min y : Ax b y, Ax b y. x y Po zavedení nového vektoru tvaru x z = y získáme standardní úlohu lineárního rogramování ve { c z Az b} c = [ ] min : ; z A I b A= ; b = A I b Úlohu lineárního rogramování řeší v Matlabu funkce linrog. V osledním říadě, tj. minimalizace l normy ro z intervalu (, ), oužijeme iterativní algoritmus vážených nejmenších čtverců. Máme tedy následující úlohu { } min Ψ ( x ) = Ax b, < <. x Uvažujme, že všechny složky vektoru ε ( x) = b Ax jsou nenulové. Pak můžeme funkci Ψ ( x) definovat následovně: m m εi εi εi i= i=. Ψ ( x) = ( x) = ( x) ( x) Minimalizace ředchozí rovnice jsou vážené nejmenší čtverce: ( ) = ( ) min D( ε ) b Ax, D( ε) diag ε. x Z důvodu závislosti diagonální matice ( ) D ε na neznámém řešení x musíme minimalizaci řešit iterativně. Algoritmus ak vyadá následovně:
4 .. ( k) ( k) ε = b Ax ( k ) (k) D = diag ε δx ( k) = arg min D ( k) ε ( k) Aδx 3. ( ) 4. δ x k + ( k) ( k) ( ) x = x + δ x Výis funkce iterativních vážených nejmenších čtverců matlabu: function x = lnorm(a,b,,e) Nmax =; x = A\b; if (sum(x_)~=) for k=:nmax r = b - A*x; D = diag(abs(r).^((-)/)); dx = (D*A)\(D*r); if(norm(dx)<e) return; end x = x + dx; end end 3. Simulace V této kaitole si uvedeme říklad, na kterém ukážeme vliv tyu l normy, váhového koeficientu r a délky horizontu redikce na růběhy veličin ři MPC regulaci. Uvažujme systém druhého řádu zadaného omocí řenosové funkce: Gs () = s. +.7s+.93 Systém je vzorkován s eriodou s =.s. Při návrhu řízení máme tři volné arametry ro ladění vlastností regulátoru, tj. druh l normy, horizont redikce N a váhový koeficient r. Provedeme následující tři exerimenty:. Vliv tyu l normy (evný horizont redikce, evný váhový koeficient).. Vliv váhového koeficientu r (evná norma, evný horizont redikce). 3. Vliv délky horizontu redikce (evná norma, evný váhový koeficient). Na následujících třech stránkách jsou uvedeny výsledky simulací všech tří exerimentů. První stránka ukazuje vliv tyu l normy ro =, =.5, = (evné N=3, r=). Na druhé stránce je ukázán vliv váhového koeficientu r =., r =, r = (ro l normu, N=3). řetí stránka ukazuje vliv délky horizontu redikce N =, N =, N = 5 (ro l normu, r=).
5 systemoutut [-] MPC control by minimizing of. norm system outut System inut 8 systeminut [-] systemoutut [-] MPC control by minimizing of.5 norm system outut System inut 8 systeminut [-] systemoutut [-] MPC control by minimizing of. norm system outut System inut 8 systeminut [-]
6 systemoutut [-] norm (N = ) system outut System inut systeminut [-] systemoutut [-] norm (N = ) system outut System inut 8 systeminut [-] systemoutut [-] norm (N = 5) system outut System inut 8 systeminut [-]
7 systemoutut [-] norm (r =.) system outut System inut 3 systeminut [-] systemoutut [-] norm (r = ) system outut System inut 8 systeminut [-] systemoutut [-] norm (r = ) system outut System inut 8 systeminut [-]
8 4. Závěr Cílem ráce bylo exerimentální ověření chová rediktivního regulátoru v závislosti na tyu normy oužité ve ztrátové funkci, na váhovém koeficientu a na délce horizontu redikce. Při výočtu regulátoru jsme oužili funkce ro lineární a kvadratické rogramování linrog a quadrog z otimalizačního toolboxu. Simulace ukázaly, že oužití l normy vede na dead beat řízení. Pro normu l ro blížící se k získáme hladší růběh vstuní veličiny a řízení je méně agresivní. Délka horizontu otimalizace ři l řízení má vliv na celkový očet změn řídicí veličiny. Velikost váhového koeficientu r ři l řízení má vliv na celkovou dobu řechodového děje. 5. Poděkování ato ráce byla částečně odořena granty //H6 a // Grantové agentury České reubliky. 6. Kontaktní informace Jaroslav Pekař Katedra řídicí techniky Fakulta elektrotechnická ČVU v Praze Karlovo náměstí 3, 8 Praha ekarj@control.felk.cvut.cz Jan Štecha Katedra řídicí techniky Fakulta elektrotechnická ČVU v Praze Karlovo náměstí 3, 8 Praha stecha@control.felk.cvut.cz Vladimír Havlena Honeywell Prague Laboratory Honeywell Intl. Pod vodárenskou věží Praha vladimir.havlena@htc.honeywell.cz 7. Literatura [] L. Ljung, System identification: heory for the User. (Prentice Hall, Englewood Cliffs, N.J., 987.) [] K. J.Astrom, B. Wittenmark, Comuter Controlled Systems: heory and design, (Prentice Hall,Inc, Uer Saddle River, NJ, 997). [3] R. Findeisen, L. Imsland, F. Allgower, B.A. Foss, State and Outut Feedback Nonlinear Model Predictive Control: An Overview, Euroean Journal of Control, 9, (3), 9-6. [4] Christoher V. Rao, James B. Rawlings, Linear rogramming and model redictive control, Journal of Process Control,,, [5] J.C. Allwright, G.C. Paavasiliou, On linear rogramming and robust model redictive control using imulse resonse, Sys. Cont. Let., 8, 99, [6] H. Genceli, M. Nikolau, Robust stability analysis of constrained l-norm model redictive control, AIChE J., 39 (), 993, [7].S. Change, D.E. Seborg, A linear rogramming aroach for multivariable feedback control with inequality constraints, Int. J. Control, 37, 983,
9 [8] L.A. Zadeh, J.H. Whalen, On otimal control and linear rogramming, IRE rans. Auto, Cont. 7, 96, [9] A. Bjorck, Numerical Methods for Least Squares Problems, (Siam, Philadelhia, 996). [] S.Van Huffel, J. Vandewalle, he otal Least Squares Problem. Comutational Asects and Analysis. Siam, Philadelhia, 99. [] S. Boyd, L. Vandenberghe L., Introduction to Convex Otimization with Engineering Alications (Lesture notes, Stanford University, ).
zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.
Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)
VíceZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 10. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
VíceSystémové struktury - základní formy spojování systémů
Systémové struktury - základní formy sojování systémů Základní informace Při řešení ať již analytických nebo syntetických úloh se zravidla setkáváme s komlikovanými systémovými strukturami. Tato lekce
VíceÚvěr a úvěrové výpočty 1
Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./
VíceLaplaceova transformace.
Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci
VíceMĚŘENÍ VÝKONU V SOUSTAVĚ MĚNIČ - MOTOR. Petr BERNAT VŠB - TU Ostrava, katedra elektrických strojů a přístrojů
MĚŘENÍ VÝKONU V SOUSAVĚ MĚNIČ - MOOR Petr BERNA VŠB - U Ostrava, katedra elektrických strojů a řístrojů Nástu regulovaných ohonů s asynchronními motory naájenými z měničů frekvence řináší kromě nesorných
VícePREDIKTIVNÍ ŘÍZENÍ NELINEÁRNÍHO SYSTÉMU
PREDIKIVNÍ ŘÍZENÍ NELINEÁRNÍHO SYSÉMU P. Chalupa Univerzita omáše Bati ve Zlíně Fakulta aplikované informatiky Ústav řízení procesů Nad Stráněmi 45, 76 5 Zlín Abstrakt Příspěvek zkoumá možnosti použití
VíceSměrová kalibrace pětiotvorové kuželové sondy
Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The
VíceCVIČENÍ Z ELEKTRONIKY
Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97
VícePřevedení okrajové úlohy na sled
Převedení okrajové úlohy na sled úloh počátečních 1 Jiří Taufer Abstrakt Tento příspěvek je věnován řešení okrajových problémů pro soustavu okrajových obyčejných diferenciálních lineárních rovnic metodami,
Více3.2 Metody s latentními proměnnými a klasifikační metody
3. Metody s latentními roměnnými a klasifikační metody Otázka č. Vyočtěte algoritmem IPALS. latentní roměnnou z matice A[řádek,slouec]: A[,]=, A[,]=, A[3,]=3, A[,]=, A[,]=, A[3,]=0, A[,3]=6, A[,3]=4, A[3,3]=.
VíceVýpočet svislé únosnosti osamělé piloty
Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro
VíceVýpočet svislé únosnosti osamělé piloty
Inženýrský manuál č. 13 Aktualizace: 06/2018 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro
VíceUniverzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ
Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.
Více7.5.13 Rovnice paraboly
7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,
VíceAplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
VíceZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)
VícePARALELNÍ PROCESY A PROGRAMOVÁNÍ
PARALELNÍ PROCESY A PROGRAMOVÁNÍ 6 Analýza složitosti algoritmů - cena, ráce a efektivita Ing. Michal Bližňák, Ph.D. Zlín 2013 Tento studijní materiál vznikl za finanční odory Evroského sociálního fondu
VíceDIAGNOSTICKÁ MĚŘENÍ V SOUSTAVĚ MĚNIČ - MOTOR
Ing. PER BERNA VŠB - U Ostrava, FEI, katedra elektrických strojů a řístrojů, ul. 17. listoadu 15, 78 33 Ostrava Poruba, tel. 69/699 4468, E-Mail: etr.bernat@vsb.cz DIAGNOSICKÁ MĚŘENÍ V SOUSAVĚ MĚNIČ -
VíceFaster Gradient Descent Methods
Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,
VícePRŮTOK PLYNU OTVOREM
PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy
VíceExperimentální identifikace tepelného výměníku. Bc. Michal Brázdil
Exerimentální identifikace teelného výměníku Bc Michal Brádil STOČ 9 UTB ve Zlíně, Fakulta alikované informatiky, 9 ABSTRAKT Cílem této ráce je senámení čtenáře s laboratorním aříením Armfield PCT 4 a
VíceNumerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou
Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz
VícePozorovatel, Stavová zpětná vazba
Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.
VíceObvodové rovnice v časové oblasti a v operátorovém (i frekvenčním) tvaru
Obvodové rovnice v časové oblasti a v oerátorovém (i frekvenčním) tvaru EO Přednáška 5 Pavel Máša - 5. řednáška ÚVODEM V ředchozím semestru jsme se seznámili s obvodovými rovnicemi v SUS a HUS Jak se liší,
VíceMarkovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain)
Markovovy řetězce se soitým časem CTMC (Continuous time Markov Chain) 3 5 1 4 Markovovy rocesy X Diskrétní stavový rostor Soitý obor arametru t { } S e1, e,, en t R t 0 0 t 1 t t 3 t Proces e Markovův
VíceStudium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru
1 Portál pre odborné publikovanie ISSN 1338-0087 Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru Barot Tomáš Elektrotechnika
VíceMATLAB & Simulink. ÚSTAV KONSTRUOVÁNÍ - ÚK Modelování technických systémů. Josef Nevrlý
ÚSTAV KONSTRUOVÁNÍ - ÚK Modelování technických systémů MATLAB & Simulink Josef Nevrlý FSI VUT v Brně Ústav konstruování Technická 2896/2 616 69 Brno Česká reublika e-mail: nevrly@fme.vutbr.cz tel.: +420
VíceZákladní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
VíceDynamické programování
ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5
VícePOŽADAVKY NA REGULACI
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V RAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Základy řízení systémů cvičení 5 OŽADAVKY NA REGULACI etr Hušek (husek@control.felk.cvut.cz) Základními požadavky
VíceÚlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
VíceModel tenisového utkání
Model tenisového utkání Jan Šustek Semestrální rojekt do ředmětu Náhodné rocesy 2005 V této ráci se budu zabývat modelem tenisového utkání. Vstuními hodnotami budou úsěšnosti odání jednotlivých hráčů,
VíceDAMAGE IDENTIFICATION OF DYNAMICALLY LOADED STRUCTURES: METHODOLOGY AND MODAL PROPERTIES STUDY
DAMAGE IDENTIFICATION OF DYNAMICALLY LOADED STRUCTURES: METHODOLOGY AND MODAL PROPERTIES STUDY D. Lehký*, D. Novák*, P. Frantík* Summary: The aer is focused on damage identification of dynamically loaded
Více2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
VíceHIERARCHICKÝ OPTIMÁLNÍ REGULÁTOR Branislav Rehák ČVUT FEL, katedra řídicí techniky
HIERARCHICKÝ OPTIMÁLNÍ REGULÁTOR Branislav Rehák ČVUT FEL, katedra řídicí techniky Úvod Teorie dynamických optimalizačních úloh je již delší dobu dobře rozpracována. Přesto není v praxi příliš často využívána.
VíceVYUŽITÍ TRANSIMPEDANČNÍCH ZESILOVAČŮ V AKTIVNÍCH FILTRECH
VYŽITÍ TRANSIMPEDANČNÍCH ZESILOVAČŮ V ATIVNÍCH FILTRECH sing Transimedance Amlifiers in Active Filters Vladimír Axman * Abstrakt Článek ojednává o možnostech využití transimedančních zesilovačů s vyvedenou
VíceNÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL
NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL 1. ZADÁNÍ Navrhněte růměr a výztuž vrtané iloty délky L neosuvně ořené o skalní odloží zatížené v hlavě zadanými vnitřními silami (viz
VíceAPROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL
APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce
VíceIV120 Spojité a hybridní systémy. Jana Fabriková
IV120 Spojité a hybridní systémy Základní pojmy teorie řízení David Šafránek Jiří Barnat Jana Fabriková Problém řízení IV120 Základní pojmy teorie řízení str. 2/25 Mějme dynamický systém S definovaný stavovou
VíceSIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU
SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU M. Anderle, P. Augusta 2, O. Holub Katedra řídicí techniky, Fakulta elektrotechnická, České vysoké učení technické v Praze 2 Ústav teorie informace
VíceBc. Martin Sládek, Chudenín 31, 340 22 Nýrsko Česká republika
NÁVRH A VÝPOČET SPECIÁLNÍHO FRÉZOVACÍHO ZAŘÍZENÍ IFVW 113 SVOČ FST 2010 Bc. Martin Sládek, Chudenín 31, 340 22 Nýrsko Česká reublika ABSTRAKT Práce se zabývá konstrukčním návrhem seciálního frézovacího
Více7. VÝROBNÍ ČINNOST PODNIKU
7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která
VíceProgram SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
VíceMATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
VíceUKÁZKY REGULACÍ S PREDIKTIVNÍM ŘÍZENÍM EXAMPLES OF GOVERNINGS WITH PREDICTIVE CONTROLS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
VíceIdentifikace a řízení nelineárního systému pomocí Hammersteinova modelu
1 Portál pre odborné publikovanie ISSN 1338-0087 Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu Brázdil Michal Elektrotechnika 25.04.2011 V praxi se často setkáváme s procesy,
VícePOUŽITÍ REAL TIME TOOLBOXU PRO REGULACI HLADIN V PROPOJENÝCH VÁLCOVÝCH ZÁSOBNÍCÍCH
POUŽITÍ REAL TIME TOOLBOXU PRO REGULACI HLADIN V PROPOJENÝCH VÁLCOVÝCH ZÁSOBNÍCÍCH P. Chalupa Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav řízení procesů Abstrakt Příspěvek se zabývá problémem
VíceKMS cvičení 9. Ondřej Marek
KMS cvičení 9 Ondřej Marek SYSTÉM S n DOF ŘEŠENÍ V MODÁLNÍCH SOUŘADNICÍCH Pohybové rovnice lineárního systému: U je modální matice, vlastní vektory u 1, u 2,..., u n jsou sloupce v matici U x - vektor
VíceROBUSTNÍ ŘÍZENÍ SYNCHRONNÍCH MOTORŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
VíceCvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
VíceEva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci.
Ortogonální regrese pro 3-složkové kompoziční data využitím lineárních modelů Eva Fišerová a Karel Hron Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci
VíceT E O R I E C H Y B A V Y R O V N Á V A C Í P O
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T
VíceGEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova
GEOMETRICKÉ PROJEKCE S VYUŽITÍM 3D POČÍTAČOVÉHO MODELOVÁNÍ Petra Surynková, Yulianna Tolkunova Článek ojednává o realizovaných metodách inovace výuky deskritivní geometrie na Matematicko-fyzikální fakultě
VíceZápadočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička
Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d
VíceTéma 7: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV
Téma 7: Přímý Otimalizovaný Pravděodobnostní Výočet POPV Přednáška z ředmětu: Pravděodobnostní osuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola
VícePokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými
1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte
Více13. Kvadratické rovnice 2 body
13. Kvadratické rovnice 2 body 13.1. Rovnice x 2 + 2x + 2 m = 0 (s neznámou x) má dva různé reálné kořeny, které jsou oba menší než tři, právě a) m (1, 17), b) m = 2, c) m = 2 m = 5, d) m 2, 5, e) m >
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI AKULTA ELEKTROTECHNICKÁ Katedra eletromechaniy a výonové eletroniy BAKALÁŘSKÁ PRÁCE Vývoj aliace ro výuu regulační techniy Václav Šeta 06 Vývoj aliace ro výuu regulační
VíceOddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE
ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly
VícePRINCIPY ZPRACOVÁNÍ HLASU V KLASICKÉ A IP TELEFONII
PRINCIPY ZPRACOVÁNÍ HLASU V KLASICKÉ A IP TELEFONII Doc. Ing. Boris ŠIMÁK, CSc. racoviště: ČVUT FEL, Katedra telekomunikační techniky; mail: simak@feld.cvut.cz Abstrakt: Tento řísěvek si klade za cíl seznámit
VíceKnihovna modelů technologických procesů. Bc. Radim Pišan
Knihovna modelů tehnologikýh roesů B. Radim Pišan 2007 ABSTRAKT V rái je ředstavena knihovna modelů tehnologikýh roesů, vytvářená v rogramovém rostředí MATLAB-SIMULINK. Tato využívá bloku s-funtion (s-funkí)
VíceInterpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
VíceMetody s latentními proměnnými a klasifikační metody
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie etody s latentními roměnnými a klasifikační metody Ing. Roman Slavík V Bohumíně 4.4. ŽDB a.s. Příklad č. Vyočtěte algoritmem
VíceRegresní lineární model symboly
Lneární model, Dskrmnační analýza, Podůrné vektory Regresní lneární model symboly Použté značení b arametry modelu (vektor ) očet atrbutů (skalár) N očet říkladů (skalár) x jeden říklad (vektor ) x -tá
VíceMetody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením
Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením J. Machalová, P. Ženčák, R. Kučera Katedra matematické analýzy a aplikací matematiky PřF UP Olomouc Katedra matematiky a deskriptivní
VíceCITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I
Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci
VíceGONIOMETRICKÉ ROVNICE -
1 GONIOMETRICKÉ ROVNICE - Pois zůsobu oužití: teorie k samostudiu (i- learning) ro 3. ročník střední školy technického zaměření, teorie ke konzultacím dálkového studia Vyracovala: Ivana Klozová Datum vyracování:
VíceReference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému
Módy systému Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 8 Reference Úvod Řešení stavových rovnic Předpokládejme stavový popis spojitého, respektive diskrétního systému ẋ(t)=ax(t)+bu(t)
VíceZpůsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie
Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího
VíceÚvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
VíceVzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
VíceZpůsobilost. Data a parametry. Menu: QCExpert Způsobilost
Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány
VíceObr. V1.1: Schéma přenosu výkonu hnacího vozidla.
říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním
VíceÝ Ž Š Š Š Ť ů ú ý ž ý ž ý Š ý ú Ž ů ý ů Ž Ž š Ú š ř ý Ž ř ů Ú ů ý ý ž ý ú ů ů Ó ý ř Ó ýš Í ú Ý Ž Š Š Š Š ú ů ý ž ý Ž ý ý ú Ž ů ý ú Ž Ž š ú š ř ý Ž ř ů Í Ú ů š ý ž ó ý ž ý ý ý ř ý ó Ř Ý ř ů ú ý ž ý ž Š
VíceEUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
VícePředpjatý beton Přednáška 6
Předjatý beton Přednáška 6 Obsah Změny ředětí Okamžitým ružným řetvořením betonu Relaxací ředínací výztuže Přetvořením oěrného zařízení Rozdílem telot ředínací výztuže a oěrného zařízení Otlačením betonu
VíceREGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB
62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TEHNIKÉ V BNĚ BNO UNIVESITY OF TEHNOLOGY FAKULTA ELEKTOTEHNIKY A KOMUNIKAČNÍH TEHNOLOGIÍ FAULTY OF ELETIAL ENGINEEING AND OMMUNIATION ÚSTAV TELEKOMUNIKAÍ DEPATMENT OF TELEOMMUNIATIONS DIFEENČNÍ
VíceSHANNONOVY VĚTY A JEJICH DŮKAZ
SHANNONOVY VĚTY A JEJICH DŮKAZ JAN ŠŤOVÍČEK Abstrakt. Důkaz Shannonových vět ro binární symetrický kanál tak, jak měl být robrán na řednášce. Číslování vět odovídá řednášce. 1. Značení a obecné ředoklady
VíceZABEZPEČENÍ PŘENOSU DAT OBECNÝMI LINEÁRNÍMI BLOKOVÝMI KÓDY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
VíceDOOSAN Škoda Power s. r. o. a Západočeská univerzita v Plzni ŘÍZENÍ AERODYNAMICKÉHO TUNELU PRO KALIBRACI TLAKOVÝCH SOND
DOOSAN Škoda Power s. r. o. a Západočeská univerzita v Plzni ŘÍZENÍ AERODYNAMICKÉHO TUNELU PRO KALIBRACI TLAKOVÝCH SOND Autor práce: Ing. Lukáš Kanta Obsah prezentace 1. Seznámení s aerodynamickým kalibračním
VíceVícekanálové čekací systémy
Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve
VíceKvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,
VíceZpětná vazba, změna vlastností systému. Petr Hušek
Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze
VíceZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
VíceStavový popis, linearizace
Stavový popis, linearizace Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 4 Reference 5 Úvod Stavové rovnice nelineárního systému ẋ(t) f x(t), u(t), t () y(t) g x(t), u(t), t, kde první
VíceOsnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita
Víceší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu
Modelování Modelování, klasifikace a odvozování modelů» áhrada studovaného ojektu modelem na základě odonosti» Smsl» studium originálu rostřednictvím modelu» idealizovaný» jednodušší» dostunější All models
VíceMOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod
Kvaternion 1/2013, 7 14 7 MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE LADISLAV SKULA Abstrakt V článku je uvedena definice pseudoinverzní matice, ukázána její existence a jednoznačnost a zmíněny dvě
VíceFP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Více5 Časové řady. Definice 16 Posloupnost náhodných veličin {X t, t T } nazveme slabě stacionární, pokud
5 Časové řady Časovou řadou rozumíme posloupnost reálných náhodných veličin X 1,..., X n, přičemž indexy t = 1,..., n interpretujeme jako časové okamžiky. Někdy však uvažujeme i nekonečné posloupnosti
Více9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
VíceCvičení 5 - Inverzní matice
Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,
VíceNumerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
VíceAplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
VíceExperimentální ověření modelu dvojčinného pneumomotoru
Exerientální ověření odelu dvojčinného neuootoru vořák, Lukáš Ing., Katedra hydroechaniky a hydraulických zařízení, Fakulta strojní, Vysoká škola báňská Technická univerzita Ostrava, 7. listoadu 5, Ostrava
VíceSoustavy rovnic pro učební obory
Variace 1 Soustavy rovnic pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy rovnic
Více