Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60
|
|
- Vladimíra Mašková
- před 6 lety
- Počet zobrazení:
Transkript
1 Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS / 60
2 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU v Brně) Axonometrie ZS / 60
3 Princip axonometrie π... půdorysna ν... nárysna µ... bokorysna KG - L (MZLU v Brně) Axonometrie ZS / 60
4 Princip axonometrie α... axonometrická průmětna α protíná všechny tři osy x, y, z v bodech X, Y, Z XYZ... trojúhelník axonometrický KG - L (MZLU v Brně) Axonometrie ZS / 60
5 Princip axonometrie objekty v prostoru promítáme kolmo do roviny α do roviny α promítáme i půdorysy, nárysy a bokorysy do roviny α promítneme i osy x, y, z KG - L (MZLU v Brně) Axonometrie ZS / 60
6 Princip axonometrie Průmětem os x, y, z vzniká axonometrický osový kříž O, x, y, z. Průmětem jednotkové úsečky j na osách x, y, z jsou axonometrické jednotky j x, j y, j z. KG - L (MZLU v Brně) Axonometrie ZS / 60
7 Princip axonometrie Věta (Pohlkeova věta) Průmětem os x, y, z vzniká axonometrický osový kříž O, x, y, z. Průmětem jednotkové úsečky j na osách x, y, z jsou axonometrické jednotky j x, j y, j z. Každé tři úsečky v rovině, které mají společný jeden krajní bod, a které neleží v jedné přímce, jsou rovnoběžným průmětem tří vzájemně kolmých a stejně dlouhých úseček, které mají společný jeden krajní bod. KG - L (MZLU v Brně) Axonometrie ZS / 60
8 Průmět bodu souřadnicový kvádr bodu A: A... axonometrický průmět A 1... axonometrický půdorys A 2... axonometrický nárys A 3... axonometrický bokorys KG - L (MZLU v Brně) Axonometrie ZS / 60
9 Průmět bodu souřadnicový kvádr bodu A: A... axonometrický průmět A 1... axonometrický půdorys A 2... axonometrický nárys A 3... axonometrický bokorys A[a 1, a 2, a 3 ] x A = a 1 j x, y A = a 2 j y, z A = a 3 j z, x A, y A, z A jsou tzv. redukované souřadnice bodu A. KG - L (MZLU v Brně) Axonometrie ZS / 60
10 Průmět bodu souřadnicový kvádr bodu A: A... axonometrický průmět A 1... axonometrický půdorys A 2... axonometrický nárys A 3... axonometrický bokorys A[a 1, a 2, a 3 ] x A = a 1 j x, y A = a 2 j y, z A = a 3 j z, x A, y A, z A jsou tzv. redukované souřadnice bodu A. Pro určení bodu stačí 2 průměty, zpravidla A, A 1. Spojnice bodů A, A 1 je tzv. ordinála. KG - L (MZLU v Brně) Axonometrie ZS / 60
11 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU v Brně) Axonometrie ZS / 60
12 Typy axonometrií 1 Podle velikosti jednotek j x, j y, j z : izometrie j x = j y = j z dimetrie j x = j y j x = j z j y = j z trimetrie j x j y j z 2 Podle směru promítání s α pravoúhlá axonometrie s α šikmá (kosoúhlá) axonometrie KG - L (MZLU v Brně) Axonometrie ZS / 60
13 Speciální axonometrie Volné rovnoběžné promítání j x : j y : j z = 1 : 2 : 2 (x, z) = 135, (y, z) = 90 Kavalírní promítání j x : j y : j z = 1 : 1 : 1 (x, z) = 135, (y, z) = 90 KG - L (MZLU v Brně) Axonometrie ZS / 60
14 Speciální axonometrie Vojenská perspektiva j x : j y : j z = 1 : 1 : 1 (x, z) = 135, (y, z) = 135 Technická izometrie j x : j y : j z = 1 : 1 : 1 (x, z) = 120, (y, z) = 120 KG - L (MZLU v Brně) Axonometrie ZS / 60
15 Speciální axonometrie Technická dimetrie (inženýrská perspektiva) j x : j y : j z = 1 : 2 : 2 (x, z) = 132, (y, z) = 97 KG - L (MZLU v Brně) Axonometrie ZS / 60
16 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU v Brně) Axonometrie ZS / 60
17 Pravoúhlá axonometrie s α obecně trimetrie: j x j y j z osy x, y, z se promítají do výšek trojúhelníka XYZ KG - L (MZLU v Brně) Axonometrie ZS / 60
18 Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. KG - L (MZLU v Brně) Axonometrie ZS / 60
19 Průmět přímky Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu. KG - L (MZLU v Brně) Axonometrie ZS / 60
20 Průmět přímky Příklad (1) Sestrojte stopníky přímky m, která je dána axonometrickým průmětem m a axonometrickým půdorysem m 1. KG - L (MZLU v Brně) Axonometrie ZS / 60
21 Průmět přímky Příklad (1) Sestrojte stopníky přímky m, která je dána axonometrickým průmětem m a axonometrickým půdorysem m 1. P... půdorysný stopník KG - L (MZLU v Brně) Axonometrie ZS / 60
22 Průmět přímky Příklad (1) Sestrojte stopníky přímky m, která je dána axonometrickým průmětem m a axonometrickým půdorysem m 1. P... půdorysný stopník M... bokorysný stopník N... nárysný stopník KG - L (MZLU v Brně) Axonometrie ZS / 60
23 Vzájemná poloha dvou přímek rovnoběžky různoběžky mimoběžky KG - L (MZLU v Brně) Axonometrie ZS / 60
24 Zobrazení roviny Rovina se zadává sdruženými průměty určujících prvků (2 různoběžky, 2 rovnoběžky, bod + přímka, 3 body) pomocí stop: KG - L (MZLU v Brně) Axonometrie ZS / 60
25 Zobrazení roviny Zvláštní polohy roviny: rovina rovnoběžná s π rovina kolmá k π KG - L (MZLU v Brně) Axonometrie ZS / 60
26 Přímka v rovině Příklad (2) Je dána rovina σ svými stopami. Sestrojte axonometrický průmět přímky m, m σ, je-li dáno m 1. KG - L (MZLU v Brně) Axonometrie ZS / 60
27 Přímka v rovině Příklad (2) Je dána rovina σ svými stopami. Sestrojte axonometrický průmět přímky m, m σ, je-li dáno m 1. KG - L (MZLU v Brně) Axonometrie ZS / 60
28 Přímka v rovině Příklad (2) Je dána rovina σ svými stopami. Sestrojte axonometrický průmět přímky m, m σ, je-li dáno m 1. KG - L (MZLU v Brně) Axonometrie ZS / 60
29 Přímka v rovině Příklad (2) Je dána rovina σ svými stopami. Sestrojte axonometrický průmět přímky m, m σ, je-li dáno m 1. KG - L (MZLU v Brně) Axonometrie ZS / 60
30 Přímka v rovině Příklad (3) Rovina σ je dána třemi body A, B, C. Sestrojte stopy roviny σ. KG - L (MZLU v Brně) Axonometrie ZS / 60
31 Přímka v rovině Příklad (3) Rovina σ je dána třemi body A, B, C. Sestrojte stopy roviny σ. KG - L (MZLU v Brně) Axonometrie ZS / 60
32 Přímka v rovině Příklad (3) Rovina σ je dána třemi body A, B, C. Sestrojte stopy roviny σ. KG - L (MZLU v Brně) Axonometrie ZS / 60
33 Přímka v rovině Příklad (3) Rovina σ je dána třemi body A, B, C. Sestrojte stopy roviny σ. KG - L (MZLU v Brně) Axonometrie ZS / 60
34 Přímka v rovině Příklad (3) Rovina σ je dána třemi body A, B, C. Sestrojte stopy roviny σ. KG - L (MZLU v Brně) Axonometrie ZS / 60
35 Přímka v rovině Příklad (3) Rovina σ je dána třemi body A, B, C. Sestrojte stopy roviny σ. KG - L (MZLU v Brně) Axonometrie ZS / 60
36 Přímka v rovině Příklad (3) Rovina σ je dána třemi body A, B, C. Sestrojte stopy roviny σ. KG - L (MZLU v Brně) Axonometrie ZS / 60
37 Průsečík přímky s rovinou - metoda krycí přímky Příklad (4) Sestrojte průsečík přímky a s rovnoběžníkem ABCD. Vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
38 Průsečík přímky s rovinou - metoda krycí přímky Příklad (4) Sestrojte průsečík přímky a s rovnoběžníkem ABCD. Vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
39 Průsečík přímky s rovinou - metoda krycí přímky Příklad (4) Sestrojte průsečík přímky a s rovnoběžníkem ABCD. Vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
40 Průsečík přímky s rovinou - metoda krycí přímky Příklad (4) Sestrojte průsečík přímky a s rovnoběžníkem ABCD. Vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
41 Průsečík přímky s rovinou - metoda krycí přímky Příklad (4) Sestrojte průsečík přímky a s rovnoběžníkem ABCD. Vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
42 Průsečík přímky s rovinou - metoda krycí přímky Příklad (4) Sestrojte průsečík přímky a s rovnoběžníkem ABCD. Vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
43 Průsečík přímky s rovinou - metoda krycí přímky Příklad (4) Sestrojte průsečík přímky a s rovnoběžníkem ABCD. Vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
44 Průsečík přímky s rovinou - metoda krycí přímky Příklad (5) Sestrojte průsečík přímky a s rovinou σ danou stopami a vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
45 Průsečík přímky s rovinou - metoda krycí přímky Příklad (5) Sestrojte průsečík přímky a s rovinou σ danou stopami a vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
46 Průsečík přímky s rovinou - metoda krycí přímky Příklad (5) Sestrojte průsečík přímky a s rovinou σ danou stopami a vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
47 Průsečík přímky s rovinou - metoda krycí přímky Příklad (5) Sestrojte průsečík přímky a s rovinou σ danou stopami a vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
48 Průsečík přímky s rovinou - metoda krycí přímky Příklad (5) Sestrojte průsečík přímky a s rovinou σ danou stopami a vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
49 Průsečík přímky s rovinou - metoda krycí přímky Příklad (5) Sestrojte průsečík přímky a s rovinou σ danou stopami a vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
50 Průsečík přímky s rovinou - metoda krycí přímky Příklad (5) Sestrojte průsečík přímky a s rovinou σ danou stopami a vyznačte viditelnost přímky a. KG - L (MZLU v Brně) Axonometrie ZS / 60
51 Vzájemná poloha dvou rovin Příklad (6) Sestrojte průsečnici rovin σ a ϱ, které jsou dány svými stopami. KG - L (MZLU v Brně) Axonometrie ZS / 60
52 Vzájemná poloha dvou rovin Příklad (6) Sestrojte průsečnici rovin σ a ϱ, které jsou dány svými stopami. KG - L (MZLU v Brně) Axonometrie ZS / 60
53 Vzájemná poloha dvou rovin Příklad (6) Sestrojte průsečnici rovin σ a ϱ, které jsou dány svými stopami. KG - L (MZLU v Brně) Axonometrie ZS / 60
54 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. KG - L (MZLU v Brně) Axonometrie ZS / 60
55 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k KG - L (MZLU v Brně) Axonometrie ZS / 60
56 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k KG - L (MZLU v Brně) Axonometrie ZS / 60
57 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k KG - L (MZLU v Brně) Axonometrie ZS / 60
58 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k KG - L (MZLU v Brně) Axonometrie ZS / 60
59 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k KG - L (MZLU v Brně) Axonometrie ZS / 60
60 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k 2 ML ABC = {S} pomocí krycí přímky m KG - L (MZLU v Brně) Axonometrie ZS / 60
61 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k 2 ML ABC = {S} pomocí krycí přímky m KG - L (MZLU v Brně) Axonometrie ZS / 60
62 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k 2 ML ABC = {S} pomocí krycí přímky m KG - L (MZLU v Brně) Axonometrie ZS / 60
63 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k 2 ML ABC = {S} pomocí krycí přímky m KG - L (MZLU v Brně) Axonometrie ZS / 60
64 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k 2 ML ABC = {S} pomocí krycí přímky m KG - L (MZLU v Brně) Axonometrie ZS / 60
65 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k 2 ML ABC = {S} pomocí krycí přímky m 3 r = RS KG - L (MZLU v Brně) Axonometrie ZS / 60
66 Příklad (7) Sestrojte průsek trojúhelníků ABC a KLM. 1 KL ABC = {R} pomocí krycí přímky k 2 ML ABC = {S} pomocí krycí přímky m 3 r = RS KG - L (MZLU v Brně) Axonometrie ZS / 60
BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
AXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102
Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou
Polohové úlohy v axonometrii
Přímka p leží v rovině α. Doplňte p a p 2. Bod A leží v rovině α. Doplňte A a A 2. Přímka p leží v rovině α. Doplňte p a p 3. Sestrojte průmět a půdorys bodu A, který leží v rovině ρ. Přímka a leží v rovině.
Polohové úlohy v axonometrii
Sestrojte a označte průmět, půdorys, nárys a bokorys přímky p: y=3 a z=2. Sestrojte a popište stopy roviny : x=3 a určete její průsečík R s přímkou p. Sestrojte a označte průmět, půdorys, nárys a bokorys
MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
Mongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
Pravoúhlá axonometrie
Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:
KONSTRUKTIVNÍ GEOMETRIE
KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně
Pravoúhlá axonometrie - osvětlení těles
Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
Pravoúhlá axonometrie - řezy hranatých těles
Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA
Zářezová metoda Kosoúhlé promítání
Zářezová metoda Kosoúhlé promítání Mgr. Jan Šafařík Přednáška č. 6 přednášková skupina P-B1VS2 učebna Z240 Základní literatura Jan Šafařík: příprava na přednášku Autorský kolektiv Ústavu matematiky a deskriptivní
Mongeovo zobrazení. Bod a přímka v rovině
Mongeovo zobrazení Bod a přímka v rovině Přímka v rovině Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka leží v rovině; Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka
ZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L
Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů
Mongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
VŠB-Technická univerzita Ostrava
Úvod do promítání Mgr. František Červenka VŠB-Technická univerzita Ostrava 6. 2. 2012 Mgr. František Červenka (VŠB-TUO) Úvod do promítání 6. 2. 2012 1 / 15 osnova 1 Semestr 2 Historie 3 Úvod do promítání
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
Zadání domácích úkolů a zápočtových písemek
Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační
Zobrazení a řezy těles v Mongeově promítání
UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání
RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen.
RELIÉF Lineární (plošná) perspektiva ne vždy vyhovuje pro zobrazování daných předmětů. Například obraz, namalovaný s osvětlením zleva a umístěný tak, že je osvětlený zprava, se v tomto pohledu "nemodeluje",
půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho
Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;
Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:
Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...
STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...
Úvod do Deskriptivní geometrie
Úvod do Deskriptivní geometrie Deskriptivní geometrie se věnuje zkoumání geometrických vztahů trojrozměrných objektů prostřednictvím jejich dvojrozměrného znázornění. www.ak3d.de/portfolio/tutorials/freesample.pdf
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text
Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy polohové (bod, přímka, rovina, bod v rovině, hlavní přímky roviny, rovina daná různoběžkami, průsečnice rovin, průsečík přímky s rovinou) Budeme pracovat v rovině nejlépe
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...
Test č. 1. Kuželosečky, afinita a kolineace
Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2006-2007 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].
Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie
středu promítání (oka) se objekty promítají do roviny (nahrazuje sítnici). Perspektivní obrazy
Lineární perspektiva Lineární perspektiva je významnou aplikací středového promítání. V technické praxi se používá především k zobrazování objektů větších rozměrů, napodobuje tak lidské vidění. Ze středu
Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání
Sedlová plocha (hyperbolický paraboloid)
Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
pomocný bod H perspektivního obrázku zvolte 10 cm zdola a 7 cm zleva.)
Teoretické řešení střech Zastřešení daného půdorysu rovinami různého spádu vázaná ptačí perspektiva Řešené úlohy Příklad: tačí perspektivě vázané na Mongeovo promítání zobrazte řešení střechy nad daným
Mongeovo zobrazení. Vzájemná poloha dvou přímek
Mongeovo zobrazení Vzájemná poloha dvou přímek Dvě přímky a, b mohou být v prostoru: Dvě přímky a, b mohou být v prostoru: a) rovnoběžné totožné a = b Dvě přímky a, b mohou být v prostoru: a) rovnoběžné
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE
1 Rovnoběžné promítání a promítací metody. Nevlastní útvary. Osová afinita v rovině.
Přednáška 1 Mgr.Güttnerová FAST Dg - bakaláři VŠB-TU Ostrava 1 Rovnoběžné promítání a promítací metody. Nevlastní útvary. Osová afinita v rovině. Literatura: (1)Černý, J. - Kočandrlová, M.: Konstruktivní
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
11. Rotační a šroubové plochy
Rotační a šroubové plochy ÚM FSI VU v Brně Studijní text. Rotační a šroubové plochy. Rotační plochy Rotační plochy jsou plochy, které lze získat rotačním šablonováním křivky. Jejich rovnice je tedy tvaru
Mongeovo zobrazení. Řez jehlanu
Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice
Test č. 9. Zborcené plochy
Test č. 9 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2002/2003 Zborcené plochy Při vypracování úloh se využijí následující poučky: a) u plochy jednodílného hyperboloidu
Test č. 9. Zborcené plochy
Test č. 9 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr Zborcené plochy Při vypracování úloh se využijí následující poučky: a) u plochy jednodílného hyperboloidu a hyperbolického
Pravoúhlá axonometrie. tělesa
Pravoúhlá axonometrie tělesa V Rhinu vypneme osy mřížky (tj. červenou vodorovnou a zelenou svislou čáru). Tyto osy v axonometrii vůbec nevyužijeme a zbytečně by se nám zde pletly. Stejně tak můžeme vypnout
Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem
Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Mongeovo zobrazení. Konstrukce stop roviny
Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu
Kótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
Deskriptivní geometrie
Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké
Deskriptivní geometrie BA03
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2006 Obsah 1. Kuželosečky 2 2.
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva
Prùniky tìles v rùzných projekcích
UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
Deskriptivní geometrie
Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké
Test č. 9. Zborcené plochy
Test č. 9 Deskriptivní geometrie, I. ročník distančního studia FAST, letní semestr 2000/2001 Zborcené plochy Posluchači užijí pouček, že: a) u plochy jednodílného hyperboloidu a hyperbolického paraboloidu
8 Mongeovo promítání
8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou
Metrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
A 1. x x. 1.1 V pravoúhlé axonometrii zobrazte průměty bodu A [4, 5, 8].
strana 1 1. onometrie. 1.1 V pravoúhlé aonometrii obrate průmět bodu [4, 5, 8]. 1.2 Zobrate bývající pravoúhlé průmět bodu do souřadnicových rovin. Určete souřadnice bodu, který je obraen v pravoúhlé aonometrii.
KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ
KÓTOVANÉ PROMÍTÁNÍ 2.KÓTOVANÉ PROMÍTÁNÍ Označíme: s...směr promítání, s p k c...kóta bodu C C 1 (k c )...kótovaný průmět bodu C. pokud k c 0 (k c 0), potom bod C leží nad (pod) průmětnou p. jednotka j=1cm
BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie
UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava
Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2
Kreslení, rýsování Zobrazení A B Promítání E 3 E 2 1 Promítání lineární 1. Obrazem bodu je bod 2. Obrazem přímky je přímka (nebo bod) 3. Obrazem roviny je rovina (nebo přímka) Nelineární perspektivy: válcová...
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok
Deskriptivní geometrie 0A5
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie 0A5 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Veronika Roušarová Brno c 2003 Obsah
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
Rovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity
Číslo projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB I. Autor :
Rys č. 1 Zobrazení objektu
Deskriptivní geometrie I zimní semestr 2018/19 Rys č. 1 Zobrazení objektu Pokyny pro vypracování platné pro všechny příklady Použijte čerchovanou čáru pro otočený půdorys v PA, KP. elips a parabol. Čerchovaná
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,
Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje
5 Pappova věta a její důsledky
5 Pappova věta a její důsledky Pappos z Alexandrie (?90?350), řecký matematik a astronom. Pod označením Pappova věta je uváděno více vět. Proto je třeba uvést, o jaké z těchto vět hovoříme. Zde se budeme
Konstruktivní geometrie BA008
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Konstruktivní geometrie BA008 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2017 Určeno pro studenty studijních
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:
Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,
Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží
Test č. 1. Kuželosečky, afinita a kolineace
Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů
Technické zobrazování
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Technické zobrazování V technické praxi se setkáváme s potřebou zobrazení prostorových útvarů pomocí náčrtu
tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí
Řešené úlohy Rozvinutelná šroubová plocha v Mongeově promítání Příklad: V Mongeově promítání zobrazte půl závitu rozvinutelné šroubové plochy, jejíž hranou vratu je pravotočivá šroubovice, která prochází
SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru
SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI
Konstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační