Ohraničená Hessova matice ( bordered hessian ) je. Sestrojíme posloupnost determinantů (minorů):
|
|
- Vendula Matějková
- před 6 lety
- Počet zobrazení:
Transkript
1 Ohraničená Hessova matice ( bordered hessian ) je matice 2. parc. derivací L vzhledem k λ λ r x x n v tomto pořadí: g 0 0 g x n g g 2 x n g 0 0 r g x HB = r x n g g r 2 L 2 L. x 2 x x n g g x 2 r 2 L x 2 x 2 2 L x 2 x n g g x n r 2 L x n x n 2 L x 2 n Sestrojíme posloupnost determinantů (minorů): g 0 0 g x 2 g g 2 x 2 D 2 = g 0 0 r g r x 2 g g r 2 L 2 L x 2 x x 2 g x 2 2 L x 2 g r x 2 2 L x 2 2
2 2 D 3 = g 0 0 r g r x 2 g g r 2 L 2 L x 2 x x 2 g g x 2 r 2 L x 2 x 2 2 L x 2 2 g x 3 2 L x 3 2 L x 3 x 2 g r x 3 g g g g 2 x 2 g 2 x 3 g 2 x 2 x 3 g r x 3 2 L x 3 2 L x 2 x 3 2 L x 2 3 D n = HB. Pokud mají všechny determinanty počínaje D 2 v podezřelém bodě C shodné znaménko a to ( ) r f má v tomto bodě lokální vázané minimum. Pokud v podezřelém bodě C determinaty střídají znaménko počínaje ( ) r+ f má v tomto bodě lokální vázané maximum.
3 3 2.5 Kvazikonvexní kvazikonkávní funkce Funkce f se nazývá kvazikonvexní resp. kvazikonkávní pokud pro každé reálné číslo k je množina {X; f(x) k} resp. {X; f(x) k} konvexní. Platí: Funkce f je kvazikonvexní resp. kvazikonkávní pokud pro každou dvojici bodů x y a t (0 ) platí: f(x) f(y) f(tx + ( t)y) f(x) resp. f(x) f(y) f(tx + ( t)y) f(y). Fce f se nazývá ryze kvazikonvexní resp. r. kvazikonkávní pokud pro každou dvojici bodů x y a t (0 ) platí: f(x) f(y) f(tx + ( t)y) < f(x) resp.f(x) f(y) f(tx + ( t)y) > f(y). Platí: Funkce f je kvazikonvexní právě když f je kvazikonkávní. Nechť f má spojité 2. parc. derivace.
4 4 Ohraničená Hessova matice ( bordered hessian ) fce f: f f 0 x n f 2 f x 2 x x n HB f = f 2 f x 2 x 2 2 f. x 2 x n f x n x n 2 f x 2 n Sestrojíme posloupnost determinantů (minorů): f f 0 x 2 f B 2 = 2 f 2 f x 2 x x 2 B 3 = f x 2 0 f f x 2 f x 3 B n = HB f. x 2 f x 2 x 2 x 3 x 2 2 f x 2 x 2 x 2 2 x 3 x 2 f x 3 x 3 x 2 x 3 x 2 3 Označme K = {[x x n ] R n ; x x n > 0}. Pokud jsou všechny determinanty záporné v K f je v K ryze kvazikonvexní. Pokud determinaty střídají znaménko v K počínaje + f je v K ryze kvazikonkávní.
5 5 Platí: Pokud f je v K ryze kvazikonkávní pak je v N = {[x x n ] R n ; x x n 0} kvazikonkávní. Příklady kvazikonkávních funkcí: lineární funkce (ne ryze) Cobb-Douglasova (produkční) funkce f(x y) = Ax a y b a b (0 ) A > 0 CES produkční funkce f(x y) = A(tx a + ( t)y a ) a 0 a < A > 0 t (0 ) f(x) = x 2 x > 0 f(x y) = (x + a)(y + b) x y a b > 0. Platí: (Ryze) konkávní fce je (ryze) kvazikonkávní opačná implikace neplatí (např. y = x 2 x > 0). Platí: Pokud je funkce ryze kvazikonkávní (ryze kvazikonvexní) v konvexní množině M pak v bodě podezřelém z lokálního extrému nastává absolutní maximum (minimum) vzhledem k M. Platí: Pokud je funkce ryze kvazikonkávní (ryze kvazikonvexní) na konvexní vazbě M pak v bodě podezřelém z vázaného extrému nastává absolutní vázané maximum (minimum).
6 6 Homogenní funkce Funkce n proměnných f se nazývá homogenní stupně r pokud pro libovolné reálné číslo j platí: f(jx.. jx n ) = j r f(x.. x n ). Pokud r = f je lineárně homogenní. Např. Cobb-Douglasova (produkční) funkce f(x y) = Ax a y b je homogenní stupně a + b CES je lineárně homogenní. Chain rule Mějme funkci n proměnných F a funkce jedné proměnné f.. f n označme g(x) = F (f (x) f n (x)). Pak platí g (x) = F (f (x)) f (x) F x n (f n (x)) f n(x). Označíme-li h (x) = dh dx f i(x) = x i lze psát symbolicky: dg dx = F dx dx F x n dx n dx. Je-li n = jde o derivaci složené funkce.
7 Indiferenční analýza Mějme užitkovou funkci U(x y) x y > 0 U x U y > 0. Indiferenční křivka pro hodnotu U 0 je graf množiny {[x y] R 2 ; U(x y) = U 0 }. Platí: Pokud uvažujeme indif. křivku za graf funkce y proměnné x pak U(x y) = U 0 du dx = 0 Chain rule: U x dx dx + U y dy dx = 0 dy U dx = x Sklon indiferenční křivky neboli mezní míra substituce (ve spotřebě) x za y (MRSc) je dy dx = dy dx. Platí: U y Z předpokladů U x U dy > 0 plyne že y dx indiferenční křivky jsou klesající.. 7 < 0 tedy Pokud BH U > 0 U je ryze kvazikonkávní a indif. křivky konvexní. Tudíž M RSc je klesající. MRSc = dy U dx = x = MUx kde MUx resp. MUy U MUy y jsou funkce mezního užitku vzhledem k x resp. y.
8 8 P a P b = Rozpočtové omezení je vazební rovnice P x x+p y y = I kde P x resp. P y je cena statku x resp. y I je důchod spotřebitele. Sklon linie rozpočtu neboli mezní míra substituce ve směně (MRSe) je P x P y. Platí: Optimum spotřebitele neboli vázané maximum nastává pokud MRSc = MRSe. Přebytek spotřebitele je rozdíl mezi celkovým užitkem který přinese množství statku a jeho tržní hodnotou. Problém nejnižších nákladů Mějme funkci celkových nákladů C(a b) = ap a + bp b při vazební podmínce Q(a b) = Q 0 kde Q je hladká produkční funkce s kladnými parciálními derivacemi vše pro a b > 0. Platí: (Lze odvodit jako v předch. odstavci.) Vázané minimum nastává pokud Q a Q b = MRT Sab= mezní míra technické substituce a za b.
9 2.6. Kuhn-Tuckerovy podmínky (Optimalizace) Platí: Nechť v bodě C = [c.. c n ] je maximum funkce f vzhledem k množině dané nerovnicemi g (x.. x n ) 0.. g k (x.. x n ) 0 x 0.. x n 0. Sestavme Kuhn-Tucker-Lagrangian: L = f + λ g λ k g k. Potom platí Kuhn-Tuckerovy podmínky: L 0 x j 0 x j L = 0 pro j =.. n x j x j L λ j 0 λ j 0 λ j L λ j = 0 pro j =.. k. Pro minimalizaci stačí maximalizovat f. Předpokládejme že f a všechny vazební funkce g j j =.. k mají spojité druhé parciální derivace v množině N dané podmínkami x 0.. x n 0. Platí: Pokud f a všechny vazební funkce jsou konkávní v množině N pak bod splňující K-T podmínky je bodem maxima. Připomeňme že lineární a ryze konkávní funkce jsou konkávní. 9
10 0 Platí: Pokud f a všechny vazební funkce jsou kvazikonkávní v množině N pak bod splňující K-T podmínky ve kterém je alespoň jedna parciální derivace f nenulová je bodem maxima.
2.5 Kvazikonvexní, kvazikonkávní funkce. Funkce f se nazývá kvazikonvexní, resp. kvazikonkávní, pokud pro každé reálné číslo k je množina
1 2.5 Kvazikonvexní kvazikonkávní funkce Funkce f se nazývá kvazikonvexní resp. kvazikonkávní pokud pro každé reálné číslo k je množina {X;f(X) k} resp. {X;f(X) k}konvexní. Platí: Funkce f je kvazikonvexní(kvazikonkávní)
2. Diferenciální počet funkcí více proměnných
1 2. Diferenciální počet funkcí více proměnných 2.1. Druhé parciální derivace funkce více proměnných Mějme reálnou funkci n reálných proměnných. Značme X=[x 1 x n ]f(x)=f(x 1 x n ). Parciální derivace
Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A
æ æ Jméno... Cvičení den... hodina... Datum...rok... Počet listů.......... Varianta A 4 3 2 1 2 8 0 1 0 3 1. Vzhledem k reálnému parametru a diskutujte hodnost matice 2 1 0 1 2. 0 1 2 1 2 4 3 1 1 a 2.
Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou
1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový
DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH
DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz
Přijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
Kapitola 4: Extrémy funkcí dvou proměnných 1/5
Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
Funkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
Derivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
Matematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
Matematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
IX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
Užitek a užitkové funkce Jan Čadil FNH VŠE
Užitek a užitkové funkce Jan Čadil FNH VŠE Footer Text 3/24/2014 1 Užitek a preference Užitek je subjektivní pocit uspokojení potřeb (v našem případě pomocí spotřeby určitého statku/služby), v zásadě vyjadřuje
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
Funkce více proměnných. April 29, 2016
Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy
8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.
Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y
LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový
1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
Firma. Spotřebitel. Téma cvičení. Mikroekonomie. Příjmy, zisk Produkční analýza. Opakování. Příklad. Příklad. Příklad
Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Téma cvičení Firma Příjmy, zisk Produkční analýza Opakování Spotřebitel Máte danou funkci celkového užitku TU ve tvaru: 300X - 10X 2 (X značí
Uzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
pouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
Nelineární optimalizace a numerické metody (MI NON)
Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická
Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH DEFINICE. Funkce f více proměnných. má v bodě C D(f) lokální maximum, resp. lokální minimum, jestliže existuje okolí U bodu C takové, že f(c) je maximální (resp. minimální
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
Globální extrémy (na kompaktní množině)
Globální extrémy (na kompaktní množině) Budeme hledat globální extrémy funkce f na uzavřené a ohraničené (tedy kompaktní) množině M. Funkce f může svého globálního extrému na M nabývat bud v nějaké bodě
Funkce a základní pojmy popisující jejich chování
a základní pojmy ující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. 511 f bude v této části znamenat zobrazení nějaké neprázdné podmnožiny
verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1
1 Úvod Vázané extrémy funkcí více proměnných verze 1. Následující text popisuje hledání vázaných extrémů funkcí více proměnných. Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec
Michal Bulant. Masarykova univerzita Fakulta informatiky
Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2
4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
2 Odvození pomocí rovnováhy sil
Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy
OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU
OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice patří mezi nejužívanější nástroje matematiky v aplikacích. Jsou to rovnice, kde neznámou je funkce a rovnice obsahuje i derivace této funkce. Lze očekávat,
Matematika B 2. Úvodní informace
Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno
Mikroekonomie. Opakování příklad 1. Řšení. Příklad 2. Příklad 5. Proč Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU 16 D
Opakování příklad 1 Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Hodnota Edp = 0,1 znamená, že procentní změna množství při 10% změně ceny bude: a/ 0,2 b/ 2,5 c/ 5,0 d/ 1,0 e/ ze zadaných
OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice patří mezi nejužívanější nástroje matematiky v aplikacích. Jsou to rovnice, kde neznámou je funkce a rovnice obsahuje i derivace této funkce. Lze očekávat,
Časopis pro pěstování matematiky
Časopis pro pěstování matematiky Jiří Bečvář; Miloslav Nekvinda Poznámka o extrémech funkcí dvou a více proměnných Časopis pro pěstování matematiky, Vol. 81 (1956), No. 3, 267--271 Persistent URL: http://dml.cz/dmlcz/117194
Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální
ANTAGONISTICKE HRY 172
5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
Kapitola 1 Od maximalizace užitku k poptávce
10 Kapitola 1 ODDÍL I. ANALÝZA POPTÁVKY Kapitola 1 Od maximalizace užitku k poptávce V kapitole se budeme zabývat otázkou, za jakých podmínek lze nalézt jediné řešení problému spotřebitele, který maximalizuje
Rozpočtové omezení, preference a užitek
Rozpočtové omezení, preference a užitek Varian, Mikroekonomie: moderní přístup, kapitoly 2, 3 a 4 Varian, Intermediate Microeconomics, 8e, Chapters 2, 3 a 4 1 / 43 Teorie spotřebitele Spotřebitelé si volí
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
UŢITEK, PREFERENCE A OPTIMUM SPOTŘEBITELE
UŢITEK, PREFERENCE A OPTIMUM SPOTŘEBITELE PŘEDPOKLADY RACIONÁLNÍHO CHOVÁNÍ SPOTŘEBITELE Budeme se zabývat jak má spotřebitel rozdělit svůj důchod mezi různé statky Racionálně jednající spotřebitel maximalizuje
Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek mikroekonomie. Správná odpověď je označena tučně
řijímací řízení ak. r. 2010/11 Kompletní znění testových otázek mikroekonomie Správná odpověď je označena tučně 1. řebytek spotřebitele je rozdíl mezi a... a) cenou, mezními náklady b) cenou, celkovými
Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,
Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
FUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
Matematika V. Dynamická optimalizace
Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,
Mikroekonomie. Opakování - příklad. Řešení. Příklad - opakování. Příklad. Řešení Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU
Opakování - příklad Mikroekonomie Máte danou funkci celkového užitku TU ve tvaru: 300X - 10X 2 (X značí spotřebované množství statku). Určete interval spotřeby (množství statku X) v kterém TU bude mít
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,
Máte 1000 Kč a jdete si koupit svoji oblíbenou knihu?
Volba a projevené preference Varian, Mikroekonomie: moderní přístup, kapitola 5 a oddíly 7.1 7.7 Varian, Intermediate Microeconomics, Chapter 5 and Sections 7.1 7.7 () 1 / 1 EXPERIMENT: Neúspěšný nákup
DRN: Kořeny funkce numericky
DRN: Kořeny funkce numericky Kořenem funkce f rozumíme libovolné číslo r splňující f(r) = 0. Fakt. Nechť f je funkce na intervalu a, b. Jestliže f(a) f(b) < 0 (tj. f(a) a f(b) mají opačná znaménka) a f
PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
Optimalizace spotřebitele & poptávka Jan Čadil FNH VŠE
Optimalizace spotřebitele & poptávka Jan Čadil FNH VŠE Footer Text 3/24/2014 1 Podstata problému Spotřebitel se snaží maximalizovat užitek a zároveň je omezen rozpočtovým omezením Optimum nastává tehdy,
Písemná zkouška z Matematiky II pro FSV vzor
Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Základy matematiky pro FEK
Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
5. Rozdílné preference dvou spotřebitelů
Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 2 Teorie chování spotřebitele Obsah. 1. Měření užitku 2. Indiferenční křivka 3. Indiferenční mapa 4.
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Přednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
Projekty - Úvod do funkcionální analýzy
Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
Minimalizace nákladů. Varian: Mikroekonomie: moderní přístup, kapitoly 19 a 20 Varian: Intermediate Microeconomics, 8e, Chapters 20 and 21 () 1 / 34
Minimalizace nákladů a nákladové křivky Varian: Mikroekonomie: moderní přístup, kapitoly 19 a 20 Varian: Intermediate Microeconomics, 8e, Chapters 20 and 21 () 1 / 34 Na této přednášce se dozvíte co je
Globální extrémy. c ÚM FSI VUT v Brně. 10. ledna 2008
10. ledna 2008 Příklad. Určete globální extrémy funkce f(x, y) = x 2 + 2xy + 2y 2 3x 5y na množině M. Množina M je trojúhelník určený body A[0, 2], B[3, 0], C[0, 1]. Protože množina M je kompaktní (uzavřená,
Dodatek 2: Funkce dvou proměnných 1/9
Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.
@083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce
. Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní
Matematická analýza pro informatiky I. Extrémy funkcí více proměnných
Matematická analýza pro informatiky I. 12. přednáška Extrémy funkcí více proměnných Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 12. dubna 2011
EKONOMETRIE 4. přednáška Modely chování spotřebitele
EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební
Pavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
21. Úvod do teorie parciálních diferenciálních rovnic
21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé